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Abstract 9 

Phylogenomics has revealed the remarkable frequency with which introgression occurs across 10 

the tree of life. These discoveries have been enabled by the rapid growth of methods designed to 11 

detect and characterize introgression from whole-genome sequencing data. A large class of 12 

phylogenomic methods makes use of data from one sample per species to infer introgression 13 

based on expectations from the multispecies coalescent. These methods range from simple tests, 14 

such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we 15 

provide a detailed overview of the various signals that different modes of introgression are 16 

expected leave in the genome, and how current methods are designed to detect them. We discuss 17 

the strengths and pitfalls of these approaches and identify areas for future development, 18 

highlighting the different signals of introgression and the power of each method to detect them. 19 

We conclude with a discussion of current challenges in inferring introgression and how they 20 

could potentially be addressed. 21 
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 41 

Introduction 42 

The potential for hybridization and subsequent backcrossing between lineages—also known as 43 

introgression—has long been understood (Heiser 1949, Heiser 1973, Rieseberg and Wendel 44 

1993, Dowling and Secor 1997). Recent hybridization often leads to clear genome-wide patterns 45 

in hybrid individuals because they are the result of reproduction between two previously isolated 46 

lineages or species. This allows for the detection of F1, F2, and early back-cross hybrids from 47 

limited sequence data (Nason and Ellstrand 1993, Miller 2000, Anderson and Thompson 2002). 48 

However, many generations of back-crossing can substantially reduce the number of loci 49 

retaining a history of hybridization, rendering more ancient hybridization events difficult to 50 

detect. As a result, until genome sequencing became widely available to biologists, it was often 51 

difficult to quantify patterns of introgression effectively and reliably. In part precipitated by the 52 

discovery of introgression between archaic human populations (Green et al. 2010, Huerta-53 

Sanchez et al. 2014), the past decade has seen an explosive increase in the rate of discovery of 54 

reticulate evolution across the tree of life (Mallet et al. 2016, Taylor and Larson 2019). Although 55 

great efforts have been made in recent years to synthesize the biological implications of these 56 

discoveries (Hedrick 2013, Ellstrand et al. 2013, Harrison and Larson 2014, Racimo et al. 2015, 57 

Ottenburghs et al. 2017, Suarez-Gonzalez et al. 2018, Dagilis et al. 2021), comparatively little 58 

synthesis has been provided on the accompanying growth in methods used to detect and 59 

characterize introgression.  60 

Modern studies of introgression are often predicated on “phylogenomic” datasets. These 61 

typically consist of whole-genome or whole-transcriptome sequencing data, collected from a 62 

single individual in at least three populations or species. Gene trees can be constructed from 63 

alignments of individual loci or non-overlapping genomic windows (neither of which necessarily 64 

contain protein-coding genes), resulting in a collection of thousands of tree topologies; most 65 

methods also require a species tree to be inferred from the same data. A common finding from 66 

phylogenomic studies is the ubiquity of gene tree discordance—topologies from different loci 67 

will disagree with both each other and with the inferred species tree (e.g. Pollard et al. 2006, 68 

Fontaine et al. 2015, Pease et al. 2016, Novikova et al. 2016, Edelman et al. 2019). Although the 69 

gene tree topologies from neighboring loci are more likely to be similar (Slatkin and Pollack 70 

2006), discordance occurs even between neighboring loci, as recombination uncouples the 71 

history of flanking genomic windows.  72 

It is often difficult to uncover the processes leading to discordance at a single locus. When many 73 

loci are sampled in a phylogenomic framework, it becomes possible to learn about the general 74 

factors causing discordance in a dataset, allowing for introgression to be distinguished from other 75 

processes that generate gene tree heterogeneity. Data from a rooted triplet of species—or an 76 

unrooted quartet—is the minimum requirement to carry out powerful tests for introgression using 77 

genome-scale datasets. Importantly, this can be done using only a single haploid sequence per 78 

species (here, we use the term “species” loosely to refer to any lineage or population which 79 

shows evidence of historical long-term isolation from other such lineages) and without strong 80 

assumptions about neutrality. The robustness to non-neutral processes in some methods occurs 81 
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because much of the genealogical signal of introgression is not mimicked by selection 82 

(Przeworski et al. 1999, Williamson and Orive 2002, Vanderpool et al. 2020). Phylogenomic 83 

methods include the D statistic (also known as the ABBA-BABA test; Green et al. 2010, Durand 84 

et al. 2011), its numerous analogs and extensions (see below), methods based on pairwise 85 

sequence divergence such as the D3 statistic (Hahn and Hibbins 2019), and phylogenetic network 86 

approaches such as those implemented in PhyloNet (Than et al. 2008, Wen et al. 2018), SNaQ 87 

(Solís-Lemus and Ané 2016), and SpeciesNetwork (Zhang et al. 2018). 88 

In this review, we focus on phylogenomic methods for studying introgression, most of which are 89 

based on the multispecies coalescent model. We provide a detailed overview of the signals that 90 

various introgression scenarios are expected to leave in the genome, highlighted by a small 91 

simulation study, and the methods that are designed to detect these signals. We discuss common 92 

misuses and misinterpretations of these methods, and provide recommendations for best-use 93 

practices. Based on these results, we identify areas for future theoretical and methodological 94 

advancement, as well as the challenges that remain for visualizing and interpreting current 95 

methods.  96 

Biological processes that generate gene tree heterogeneity 97 

We begin our discussion of phylogenomic methods with the simplest possible sampling scheme: 98 

genomic data from a single sampled haploid individual from each of three focal species and an 99 

outgroup. By “genomic data” we mean data sampled from many loci across the genome, often 100 

with the standard assumption of no intra-locus recombination and free inter-locus recombination. 101 

This data structure will hereafter be referred to as a quartet or rooted triplet. For three ingroup 102 

species, P1, P2, and P3, and an outgroup species, O, there are three possible tree topologies 103 

describing how they can be related: (((P1,P2),P3),O), (((P2,P3),P1),O), or (((P1,P3),P2),O) 104 

(Figure 1). In addition to a single phylogeny describing the evolutionary history of the quartet, 105 

trees can be constructed for each individual locus. The frequencies of each topology across loci 106 

are referred to as gene tree frequencies, even when they do not come from protein-coding genes. 107 

This heterogeneity in both the topology and branch lengths of gene trees is caused by two 108 

different biological processes: incomplete lineage sorting and introgression. Below we describe 109 

the expected effects of both processes in order to understand how tests for introgression work. 110 

Incomplete lineage sorting as a null hypothesis for tests of introgression 111 

The phenomenon of incomplete lineage sorting (ILS), in which two or more lineages fail to 112 

coalesce in their most recent ancestral population (looking backwards in time), can result in 113 

individual gene trees that are discordant with the species history (Figure 1). Phylogenomic 114 

methods must account for this phenomenon to make accurate inferences about introgression. 115 

Discordant gene trees occur because, when ILS occurs, it becomes possible for the order of 116 

coalescent events to differ from the order of splits in the species phylogeny (Figure 1, top right 117 

panel). Gene tree discordance due to ILS is very common in modern phylogenomic datasets (e.g. 118 

Pollard et al. 2006, Fontaine et al. 2015, Pease et al. 2016, Novikova et al. 2016, Copetti et al. 119 

2017, Wu et al. 2018a; Edelman et al. 2019) and can arise within phylogenies that contain no 120 

introgression events. Because both ILS and introgression can generate many of the same 121 
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genealogical patterns, it is essential to incorporate ILS into the null hypothesis of tests for 122 

introgression.  123 

Fortunately, the effects of the parameters mostly likely to influence the probability of ILS—time 124 

between speciation events and ancestral population size—are well understood from the 125 

multispecies coalescent (MSC) model (Hudson 1983, Tajima 1983, Pamilo and Nei 1988). For a 126 

rooted triplet, the probability that the two sister lineages (e.g. P1 and P2 in Figure 1) coalesce in 127 

their most recent common ancestral population is given by the formula 1 − 𝑒−𝜏, where τ is the 128 

length of this internal branch in units of 2N generations (sometimes referred to as "coalescent 129 

units"). Conversely, the probability of ILS (i.e. that they do not coalesce) is 𝑒−𝜏. If ILS occurs, 130 

all three lineages (P1, P2, and P3) enter their joint ancestral population. Within this population 131 

the coalescent events happen at random, such that lineages leading to each pair of species have a 132 

1/3 chance of coalescing first. This means that the two discordant gene tree topologies are 133 

expected to be equal in frequency (Figure 1, top right), with probabilities of  1 3⁄ 𝑒−𝜏 each. In 134 

addition, the concordant tree topology can be produced either by lineage sorting with probability 135 

1 − 𝑒−𝜏 or incomplete lineage sorting with probability 1 3⁄ 𝑒−𝜏 (Figure 1, top left). This 136 

guarantees that the concordant tree topology will always be at least as frequent as the two 137 

discordant trees (Figure 1, top row). These expectations under ILS form the null hypothesis for 138 

tests of introgression based on gene tree frequencies.  139 

In addition to gene tree frequencies, ILS affects expected coalescence times, and therefore 140 

sequence divergence, between pairs of species. In any population, the expected times to 141 

coalescence depends on how many lineages are present (Kingman 1982, Hudson 1983, Tajima 142 

1983). If three lineages are present, the first coalescence is expected to occur 2 3⁄ 𝑁  generations 143 

in the past. After this first coalescence—or if only two lineages were present to begin with—the 144 

next coalescence is expected a further 2N generations in the past. These expectations are equally 145 

applicable to current populations as to ancestral populations, but coalescence cannot occur until 146 

the lineages under consideration are in a common population. Therefore, expected coalescence 147 

times between species always have the time of speciation included as a constant, no matter how 148 

far back lineage-splitting occurred (Gillespie and Langley 1979).  149 

For example, the time to coalescence between species P1 and P2 in Figure 1 is expected to be 2N 150 

generations prior to their speciation event. If this coalescent event happens in their most recent 151 

common ancestral population (i.e. lineage sorting), then the next coalescent event occurs 152 

between the resulting single lineage and the lineage leading to P3 in the common ancestral 153 

population of all three species (Figure 1, bottom row). This event is again 2N generations prior to 154 

the speciation event between P3 and the common ancestor of P1+P2. If ILS occurs, then the first 155 

coalescence (regardless of which lineages are involved) occurs 2 3⁄ 𝑁 generations prior to this 156 

same speciation event, and the second coalescence 2N generations before this. Note that, if we 157 

condition on lineage sorting having occurred, the expected coalescence times become slightly 158 

more complicated (see Mendes and Hahn 2018, Hibbins and Hahn 2019 for exact expectations) 159 

The two pairs of non-sister lineages in a rooted triplet (P1 and P3 or P2 and P3 in Figure 1) can 160 

coalesce at one of two times, depending on whether they are the first or second pair to coalesce 161 

in a gene tree (there can only be a discordant topology if they are the first to coalesce). Owing to 162 
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the symmetry of gene tree topology shapes and frequencies, these times are equivalent across 163 

loci, leading to the null expectation under ILS that genome-wide divergence between both pairs 164 

of non-sister taxa should be equal (Figure 1, bottom row). Finally, each of these coalescence 165 

times is expected to follow a unimodal exponential distribution under ILS alone (Hudson 1983, 166 

Tajima 1983). 167 

The effects of introgression on gene trees 168 

Introgression between two lineages occurs when an initial hybridization event is followed by 169 

back-crossing into one or both of the parental lineages. Hybridization itself—the creation of a 170 

hybrid individual—is generally not sufficient to be called introgression, though polyploid or 171 

homoploid hybrid species will be identified by many of the same tests described here (e.g. Meng 172 

and Kubatko 2009; Blischak et al. 2018; Folk et al. 2018). Similarly, horizontal gene transfer 173 

will also generate discordant gene trees, but introgression is generally distinguished from this 174 

process by the requirement that there be mating between the hybridizing lineages in order to be 175 

considered introgression. This mating requirement means that phylogenetically distant species 176 

are unlikely to be closely related at individual loci due to introgression. Horizontal gene transfer, 177 

on the other hand, can produce highly discordant topologies that can only be produced by the 178 

interspecific exchange of genetic material (e.g. Knowles et al. 2018). 179 

There are a large number of different introgression scenarios, each with a different effect on the 180 

underlying gene trees. While there are well-developed mathematical tools that describe the 181 

effects of introgression on gene tree topologies (e.g. the multispecies network coalescent; 182 

reviewed in Degnan 2018, Elworth et al. 2019), we generally do not need the predictions from 183 

these models to test for the presence of introgression (with some exceptions discussed below). 184 

Instead, because our tests are often simply looking for a rejection of the ILS-only model (see 185 

previous section for a description of expected patterns under ILS alone), a general understanding 186 

of the key outcomes of introgression will be sufficient. Figure 2 summarizes the scenarios 187 

involving introgression that are most commonly encountered.  188 

As a first key distinction, introgression can occur either between sister lineages (events 1 and 2 189 

in Figure 2A) or non-sister lineages (events 3, 4, and 5 in Figure 2A). As a general rule, 190 

introgression between sister lineages should increase the proportion of concordant gene trees 191 

relative to the case of ILS alone. To see why this is, consider introgression event 1 in Figure 2: 192 

gene flow after speciation between P1 and P2 effectively increases τ, the length of the internal 193 

branch separating these two lineages from their common ancestor with P3. This is because P1 194 

and P2 can now be more closely related at introgressed loci than in the species phylogeny. As 195 

discussed in the previous section, the rate of ILS is inversely proportional to the value of τ. Loci 196 

with an introgressed history therefore have a reduced probability of ILS because of the increased 197 

time for P1 and P2 to coalesce. While there are some exceptions to this rule—all of which 198 

involve introgression between sister lineages on an internal branch of the species tree (i.e. event 199 

2 in Figure 2; Solís-Lemus et al. 2016, Long and Kubatko 2018, Jiao and Yang 2020)—in no 200 

cases should gene flow between sister lineages result in one discordant topology becoming more 201 

common than the other discordant topology.  202 
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Because an increase in concordant topologies can also be generated under an ILS-only model 203 

with a longer internal branch in the species tree, gene tree frequencies alone cannot tell us 204 

whether introgression has occurred between sister lineages. Note, however, that loci with a 205 

history of introgression can have a different distribution of branch lengths in this scenario than 206 

expected under ILS alone: the coalescence times are more recent than expected under ILS for 207 

either event 1 or 2 (Figure 2B). Our ability to determine whether the distribution of branch 208 

lengths is due to a history of introgression partly depends on whether gene flow is continuously 209 

occurring after speciation or occurs as a single pulse of hybridization and backcrossing at a 210 

period considerably after speciation: pulses of introgression following secondary contact 211 

between species will almost always be easier to detect (see section on "Detecting introgression 212 

using coalescence times"). Using only a single haploid sequence from each species, we also 213 

cannot determine the direction of gene flow between sister lineages; this is why we have drawn 214 

events 1 and 2 as bidirectional introgression. In order to make this determination between sister 215 

species we must use population genetic methods (e.g. Schrider et al. 2018). 216 

When introgression occurs between non-sister lineages (events 3, 4, and 5 in Figure 2A) then one 217 

discordant tree topology can become more common than the other. The resulting asymmetry in 218 

discordant tree topologies is one of the clearest signals of introgression. In both events 3 and 4 219 

we expect loci that have introgressed to be more likely to have a gene tree topology placing P2 220 

and P3 sister to one another: ((P2,P3),P1) (Figure 2C). While not all loci following this 221 

introgression history will have this discordant topology, the extended period of shared history 222 

between P2 and P3 makes it more likely for these lineages to coalesce. In general, the strength of 223 

the asymmetry in discordant topologies will depend on the net rate, timing, and direction of 224 

introgression (Durand et al. 2011; Martin et al. 2015; Zheng and Janke 2018), as well as the 225 

absence of introgression between the other non-sister pair (in which case the other discordant 226 

topology would also go up in frequency). Although the same discordant topology will be 227 

produced in excess by events 3 and 4 (Figure 2C), note that the resulting branch lengths will 228 

differ on average between the two. This difference makes it possible to determine the main 229 

direction of introgression between non-sister taxa (see below). Note that while we have drawn 230 

gene flow as unidirectional to highlight the fact that this distinction can be made, bidirectional 231 

gene flow between these lineages is equally biologically plausible. 232 

Detecting introgression using gene tree frequencies 233 

The D statistic 234 

A widely used method for inferring introgression is the D statistic, or—perhaps because there are 235 

already so many D's in use—what is commonly referred to as the ABBA-BABA test (Green et 236 

al. 2010). The statistic quantifies biallelic site patterns produced by introgression between non-237 

sister taxa as a proxy for gene tree frequencies. Because it is just using site patterns, it avoids the 238 

need to infer gene trees from individual blocks of the genome; the test was originally formulated 239 

to test for evidence of gene flow between Neanderthals and archaic humans (Green et al. 2010, 240 

Durand et al. 2011), where reconstructing full gene trees may not have been feasible. Possibly as 241 

a result of this minimal requirement, it is the most commonly used test for introgression (Dagilis 242 

et al. 2021). 243 
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The D statistic counts the occurrence of two configurations of shared derived alleles across three 244 

species and an outgroup. Assuming the species tree (((P1,P2),P3)O), and denoting the ancestral 245 

allele as "A" and the derived allele as "B," there are two parsimony-informative patterns of 246 

discordant sites. The pattern “ABBA” represents sites where P2 and P3 share a derived allele, 247 

while P1 and the outgroup have the ancestral allele. The pattern “BABA” represents sites where 248 

P1 and P3 share a derived allele, to the exclusion of P2 and the outgroup (Figure 3). For clarity, 249 

note that sites supporting the species topology would have the pattern BBAA; however, these are 250 

not used in this statistic. 251 

The D statistic assumes an infinite sites model, meaning that the two discordant site patterns can 252 

only arise via single mutations on the internal branches of discordant gene trees (Figure 3, blue 253 

dots/branches). Under this assumption, the frequencies of ABBA and BABA site patterns 254 

summed across many genomic loci are expected to reflect the frequencies of underlying gene 255 

trees. If the number of ABBA and BABA sites differ significantly, then an asymmetry in gene 256 

tree topologies is inferred, with introgression occurring between the species sharing the derived 257 

state more frequently. Figure 3 depicts the scenario when the site pattern ABBA is more 258 

common, implying introgression between P2 and P3.  259 

To make it comparable across studies, the value of the D statistic is typically reported after 260 

normalization using the sum of ABBA and BABA pattern counts, giving the following formula: 261 

𝐷 =  
𝐴𝐵𝐵𝐴 − 𝐵𝐴𝐵𝐴

𝐴𝐵𝐵𝐴 + 𝐵𝐴𝐵𝐴
 262 

where ABBA and BABA represent the number of sites of each type. This statistic has an 263 

expected value of D = 0 if there is no gene flow (see “High ILS” simulation condition; 264 

Supplementary Figures 2, 3). When used as a whole-genome test of introgression between non-265 

sister taxa, the D-statistic is robust under many different scenarios (Zheng and Janke 2018, Kong 266 

and Kubatko 2021), but can be affected by certain forms of ancestral population structure 267 

(Slatkin and Pollack 2008, Durand et al. 2011, Lohse and Frantz 2014) (see section entitled 268 

"Distinguishing introgression from ancestral population structure" for more discussion of this 269 

issue).  270 

Despite the widespread popularity and relative robustness of D, there are several important 271 

considerations and limitations to its use, some of which are often overlooked. The first of these 272 

concerns how to properly test the null hypothesis that D = 0. The expected site pattern counts of 273 

the D-statistic can easily be calculated, so it may be tempting to use a parametric test for 274 

differences. However, such tests assume that individual observations represent independent 275 

samples: this assumption is violated because closely spaced sites often share the same underlying 276 

local genealogy, making them non-independent. The pseudoreplication that results from treating 277 

all sites independently leads to inaccurate p-values. The solution to this issue is to use a block-278 

bootstrap (or block-jackknife) approach to estimate the sample variance and then to calculate the 279 

p-value (Green et al. 2010). This approach correctly accounts for correlations within blocks of 280 

adjacent sites.  281 
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Although formulated as a single genome-wide test, there are cases where the D-statistic has been 282 

applied to look for introgression in smaller genomic windows (e.g. Kronforst et al. 2013, Zhang 283 

et al. 2016, Wu et al. 2018b, Grau-Bové et al. 2020). However, the genome-wide expectation 284 

under ILS alone that D = 0 does not hold true for smaller genomic windows. Since a single non-285 

recombining locus contains a single genealogy by definition, it is only capable of generating one 286 

parsimony-informative biallelic site pattern (again assuming an infinite sites mutation model). 287 

The consequence is that the value of D at a single locus can only be +1, 0, or -1, depending on 288 

the local genealogy (i.e. only ABBA, BBAA, or BABA). Therefore, even in ILS-only scenarios, 289 

there will be regions of the genome with extreme values of D, either positive or negative. This 290 

situation is more likely to occur in regions of low recombination, as in these regions even large 291 

genomic windows may only contain a small number of independent genealogies. Highlighting 292 

this problem, Martin et al. (2015) found that the variance of D is inflated in regions of low 293 

recombination, resulting in an excess of false positives if tests were to be performed on a per-294 

window basis. Similar caution is warranted when applying D to inversions, as the entire 295 

inversion can act as a single locus (cf. Fuller et al. 2018). For these reasons, while it may be 296 

informative to plot the value of the D statistic along chromosomes, tests using D should be 297 

applied only to whole genomes, or at least to genomic regions that are sufficiently large to 298 

guarantee sampling a large number of underlying genealogies.  299 

The D-statistic does not provide any information about introgression other than its presence or 300 

absence. While its value does increase with the proportion of introgressed loci, it is not a good 301 

estimator of this quantity, tending to greatly overestimate the true value (Martin et al. 2015, 302 

Hamlin et al. 2020). In addition, the sign of D is sometimes interpreted as providing information 303 

on the direction of introgression, though it can only identify which taxa are involved, and not the 304 

donor and recipient populations. For example, a significant D statistic implying introgression 305 

between P1 and P3 could involve the P3 → P1 direction, the P1 → P3 direction, or some 306 

combination of the two. D has more power to detect introgression in the P3 → P1 direction (see 307 

simulation conditions “P1 into P3” and “P3 into P1”; Supplementary Figures 2,3), but can detect 308 

it in either direction. Lastly, the D statistic is agnostic to the timing of introgression (as long as it 309 

is post-speciation) and may yield a positive result under a variety of scenarios, including 310 

instantaneous “pulses” of introgression, hybrid speciation/admixed population formation, or gene 311 

flow over continuous periods of time.   312 

Overall, the D statistic is a very reliable genome-wide test for introgression, but alternative 313 

methods are needed to infer more details about any detected introgression events. 314 

Inferring the rate and direction of introgression using derived allele counts  315 

Many researchers are interested not only in the presence or absence of introgression, but in 316 

quantifying its magnitude and in identifying the donor and recipient populations. The “rate” of 317 

introgression can generally be taken to mean one of two things. In the context of phylogenomic 318 

approaches and phylogenetic networks, the rate refers to the proportion of the genome that 319 

originates from a history of introgression. This is also sometimes referred to as the “inheritance 320 

probability” or “admixture proportion.” Alternatively, in the isolation-with-migration (IM) 321 

framework, the rate refers to the movement of migrant individuals over continuous time 322 
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(Wakeley and Hey 1998, Nielsen and Wakeley 2001). In this and following sections, we will 323 

take the “rate” to have the first meaning.   324 

Accurate estimates of the rate and direction can be obtained by considering additional biallelic 325 

site patterns to ABBA and BABA. Many such methods exist, and discussing them at length is 326 

unnecessary for the scope of our review; here we simply mention a few of these approaches and 327 

direct readers to the relevant literature. As mentioned earlier, simply using the D statistic does 328 

not provide an unbiased estimation of the rate of introgression (Martin et al. 2015, Hamlin et al. 329 

2020). A recently proposed extension of D called Dp adds the counts of BBAA sites to the 330 

denominator to form:  331 

𝐷𝑝 = |
𝐴𝐵𝐵𝐴 − 𝐵𝐴𝐵𝐴

𝐵𝐵𝐴𝐴 + 𝐴𝐵𝐵𝐴 + 𝐵𝐴𝐵𝐴
| 332 

Taking the degree of asymmetry as a fraction of the total number of parsimony-informative 333 

biallelic sites brings Dp conceptually closer to estimating a genome-wide introgression 334 

proportion. The statistic tends to slightly underestimate the true rate of introgression 335 

(Supplementary Figure 5)—and its accuracy is affected by the direction of introgression—but it 336 

scales linearly with the rate of introgression and has better precision for lower true amounts of 337 

introgression (Hamlin et al. 2020).  338 

Another common approach is to compare the observed value of an introgression test statistic to 339 

the value that would be expected under a scenario where the entire genome was introgressed. 340 

The F4-ratio or α (Green et al. 2010, Patterson et al. 2012, Peter 2016) and fd (Martin et al. 2015) 341 

statistics take this approach. The α statistic requires data from five samples and assumes an 342 

admixed population with two parent populations, while fd assumes complete homogenization of 343 

allele frequencies under total introgression, making it applicable to a quartet. HyDe (Blischak et 344 

al. 2018, Kubatko and Chifman 2019) estimates the rate in a similar way under a hybrid 345 

speciation scenario using linear combinations of derived site patterns. The assumptions of F4 and 346 

HyDe are somewhat restrictive and are not likely to be reflective of the majority of introgression 347 

in nature (Schumer et al. 2014). However, HyDe gives highly accurate estimates of the rate of 348 

introgression when its assumptions about hybridization are met, and still provides reasonable 349 

estimates for the rate when these assumptions are violated (Kong and Kubatko 2021).  350 

Unless additional assumptions are made, there is not enough information contained in the 351 

frequency of gene tree topologies (i.e. site pattern counts) alone to estimate the direction of 352 

introgression in a quartet or rooted triplet. However, if a sample is obtained from a fifth species 353 

(Eaton and Ree 2013, Pease and Hahn 2015) or if polymorphism data is available for the quartet 354 

(Martin and Amos 2020), then it is possible to infer the direction of introgression. The 355 

“partitioned D-statistics” of Eaton and Ree (2013) were the first attempt to infer the direction of 356 

introgression in a five-taxon phylogeny. Unfortunately, redundant site pattern counts make the 357 

results of this directionality test uninterpretable. The DFOIL method of Pease and Hahn (2015) 358 

resolves this problem by setting up a system of four D statistics, explicitly testing each of the 16 359 

possible introgression events and directions. DFOIL assumes that the 5-taxon phylogeny is 360 

symmetric, with two pairs of sister species. In this particular configuration of species it becomes 361 
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possible to polarize introgression events because the direction of introgression affects 362 

relationships between the donor and both the recipient species and its sister taxon. Unfortunately, 363 

DFOIL does not work if the species tree is an asymmetric, or "caterpillar," tree. 364 

Martin and Amos (2020) introduced an approached called the “D frequency spectrum,” or DFS 365 

for short, which makes use of multiple sampled individuals per lineage. DFS estimates the D 366 

statistic in each bin of the joint derived allele frequency spectrum constructed for the two sister 367 

taxa in a quartet. The shape of the DFS is expected to be affected by the direction, rate, and 368 

timing of introgression in predictable ways, allowing inferences about these quantities to be 369 

made. The shape of the DFS is also affected by demographic history and changes under more 370 

complex introgression scenarios, so it will typically be necessary to perform simulations to 371 

explicitly test different introgression scenarios with this approach (Martin and Amos 2020).  372 

Inferring introgression events from reconstructed gene trees 373 

While methods based on site patterns and allele frequencies can be powerful, there are also 374 

fundamental limitations to the kinds of data they can be applied to. First, as mentioned earlier, a 375 

key assumption of the D statistic is an infinite sites model of mutation. When applied to closely 376 

related, extant species, this assumption is likely to hold. However, with increasing divergence 377 

times it becomes more likely that ABBA and BABA site patterns can accumulate due to 378 

convergent substitutions, and thus will no longer reflect underlying gene tree topologies. While 379 

this is not an issue for detecting introgression if convergent substitutions accumulate at the same 380 

rate on all branches of the species tree, it can potentially lead to false positives if there is 381 

variation in substitution rates among samples. For this reason, site patterns may not be a reliable 382 

way to test for introgression between more distantly related extant species, or along branches 383 

deeper in a species tree. Second, as the number of sampled species increases, the number of 384 

possible trees and quartets increases super-exponentially (Felsenstein 2004). This makes it 385 

impractical to apply quartet-based methods to trees with many taxa.  386 

A solution to these problems is to estimate gene tree topologies directly, as many different 387 

methods can be used to accurately infer the topology at a locus. Once gene trees have been 388 

reconstructed from a large number of loci, the counts of discordant topologies can be used in 389 

much the same way as ABBA and BABA sites are in the D test. In fact, Huson et al. (2005) 390 

proposed such a test comparing alternate tree topologies in a triplet, using a statistic they called 391 

∆. Significance in genome-scale datasets can be evaluated by bootstrap-sampling the estimated 392 

gene trees (Vanderpool et al. 2020) or by assuming a 2 distribution (Suvorov et al. 2021), with 393 

∆ = 0 again representing the null hypothesis under ILS alone.  While ∆ has greater potential to 394 

be affected by sources of technical error such as systematic bias in gene tree inference—and may 395 

have limited power to detect very ancient introgression—it has the advantage of being more 396 

robust to the infinite-sites assumption and allows for testing of introgression along deep, internal 397 

branches of a phylogeny, while maintaining power comparable to D for more recent 398 

introgression scenarios (Supplementary Figure 3). Therefore, ∆ represents a straightforward way 399 

to test for introgression using a small number of additional assumptions. 400 
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Estimated gene trees can also be used as input to phylogenetic network methods. These methods 401 

construct a likelihood or pseudolikelihood function that is explicitly derived from a phylogenetic 402 

network model, for which parameters can then be estimated using either maximum likelihood or 403 

Bayesian approaches. The program PhyloNet has methods that infer networks directly from gene 404 

tree topologies using either maximum likelihood (InferNetwork_ML, Yu et al. 2014) or 405 

maximum pseudolikelihood (InferNetwork_MPL, Yu and Nakhleh 2015). Similarly, SNaQ 406 

(Solís-Lemus and Ané 2016) estimates a network with reticulation edges via maximum 407 

pseudolikelihood using quartet concordance factors (Baum 2007)—essentially just the counts of 408 

the three possible unrooted tree topologies. We will discuss phylogenetic network methods in 409 

more detail later, in the section entitled “Likelihood methods for detecting introgression.”  410 

Detecting introgression using coalescence times 411 

While much can be learned about introgression from the frequency of gene tree topologies alone, 412 

including additional information about the distribution of coalescence times can lead to much 413 

richer inferences. Some advantages of including coalescence times include more flexibility in 414 

inferring introgression between non-sister species, detection of introgression between sister taxa, 415 

and distinguishing introgression from ancestral population structure. In the following sections we 416 

expand on the expected effects of introgression on coalescence times and branch lengths, 417 

followed by a description of how this information is used in concert with gene tree frequencies to 418 

make inferences about introgression.  419 

Detecting introgression using signals of pairwise divergence  420 

Just as was the case for gene tree topologies, it is possible to make inferences about introgression 421 

by studying violations of expected patterns of pairwise coalescence times under an ILS-only 422 

model. As previously mentioned, one of these expected patterns is a symmetry in coalescence 423 

times between the two pairs of non-sister taxa in a quartet (Figure 1, bottom). If one pair of non-424 

sister taxa has more recent coalescence times on average than the other, post-speciation 425 

introgression between that pair is a likely explanation. Coalescence times can be approximated 426 

using simple measures of pairwise sequence divergence, assuming an infinite sites model (or at 427 

least that genetic distance is proportional to coalescence time). Therefore, one of the simplest 428 

ways to test for introgression is to test for an asymmetry in pairwise sequence divergence. This 429 

logic has been informally applied to test for introgression (Brandvain et al. 2014) and has 430 

recently been formalized in several test statistics including D3 (Hahn and Hibbins 2019) and the 431 

branch-length test (Suvorov et al 2021). D3 is straightforward, and has the following definition 432 

(changed from the original to be consistent with the notation used here):  433 

𝐷3  =  
𝑑𝑃2𝑃3 – 𝑑𝑃1𝑃3

𝑑𝑃2𝑃3  +  𝑑𝑃1𝑃3
 434 

Where d denotes the genetic distance between the specified populations. This statistic takes the 435 

same general form as the D-statistic, where the relevant difference in the numerator is 436 

normalized by the sum of the two values in the denominator. Like the D-statistic, significance of 437 

D3 can be evaluated using a block-bootstrap. A major advantage of D3 over site-pattern based 438 

tests is that it does not require data from an outgroup—it only needs one haploid sequence from 439 



 13 

three ingroup species. As with D, D3 can only detect introgression between non-sister lineages, 440 

and has comparable power under this scenario (Supplementary Figure 3). 441 

Characterizing introgression using reconstructed gene trees with branch lengths 442 

Using pairwise divergences between only non-sister taxa ignores information about the full 443 

distribution of coalescence times within different gene tree topologies. More information is 444 

contained within these branch lengths, allowing for estimation of the timing and direction of 445 

introgression in a quartet. As with pairwise measures, we assume that branch lengths from gene 446 

trees are a good proxy for coalescence times. However, branch lengths can be affected by other 447 

factors such as mutation rate variation, selection, and/or sequencing error. Care must therefore be 448 

taken when applying all methods that use this information, including the likelihood methods 449 

described later. Despite these caveats, a number of signals appear to be robust to many 450 

perturbing factors. 451 

Because introgressing taxa can coalesce via either introgression (Figure 4A, blue) or speciation 452 

(Figure 4A, red) depending on the history at a locus, a bimodal distribution arises when 453 

coalescence times are measured across loci (Figure 4A). This distribution is not expected under 454 

ILS alone, and can therefore be used to test for introgression. In addition, the more recent peak 455 

provides information about the timing of introgression, while the frequency of gene trees under 456 

this peak compared to the older peak provides information on the rate of introgression. This 457 

approach to characterizing introgression is implemented in the software QuIBL (Quantifying 458 

Introgression via Branch Lengths; Edelman et al. 2019).  459 

The direction of introgression uniquely affects the coalescence times of the non-sister pair of 460 

species uninvolved in introgression (Figure 2C, Figure 4B). For example, the direction of 461 

introgression between P2 and P3 has predictable effects on the coalescence time between P1 and 462 

P3. When introgression occurs from P3 into P2 (Figure 4B, left), P2 traces its ancestry through 463 

the P3 lineage at introgressed loci (note that while the direction of introgression is typically 464 

described forward in time, the coalescent process occurs backwards in time). Because of this, 465 

divergence between P1 and P3 is unchanged by introgression in this direction. By contrast, when 466 

introgression is from P2 into P3 (Figure 4B, right), P3 traces its ancestry through the P2 lineage 467 

at introgressed loci. This allows P3 to coalesce with P1 earlier than it normally would, which 468 

decreases the divergence between P1 and P3.  469 

These genealogical processes lead to general predictions that can be used to infer the primary 470 

direction of introgression between taxa. Gene trees that are concordant with the species tree can 471 

be used as a baseline for the expected amount of P1-P3 divergence; although these trees can 472 

arise from ILS at introgressed loci, the effect of the direction will not be manifest since they are 473 

concordant. By comparing this baseline divergence to the amount of P1-P3 divergence in gene 474 

trees consistent with a history of introgression, the direction of introgression can be inferred. 475 

Lower P1-P3 divergence in the latter class of trees provides evidence for P2 → P3 introgression, 476 

but does not necessarily rule out the other direction (i.e. there could simply be less gene flow in 477 

the other direction). Alternatively, if P1-P3 divergence is the same in both topologies, then 478 
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introgression is primarily P3 → P2. This logic to polarizing introgression is used by the D2 479 

statistic (Hibbins and Hahn 2019) and the DIP method (Forsythe et al. 2020).  480 

Finally, PhyloNet’s InferNetwork_ML method (Yu et al. 2014) is able to infer phylogenetic 481 

networks with reticulation edges (i.e. discrete introgression events) from gene trees with branch 482 

lengths using maximum likelihood. See the section “Likelihood methods for detecting 483 

introgression” for a more detailed discussion. 484 

Distinguishing introgression from ancestral population structure  485 

In addition to being generated by introgression, asymmetric gene tree topology frequencies can 486 

arise from certain kinds of ancestral population structure (Slatkin and Pollack 2008, Durand et al. 487 

2011, Lohse and Frantz 2014). The scenario that generates asymmetries imagines that the 488 

population ancestral to all three species is split into at least two subpopulations, such that the 489 

ancestors of P3 are more closely related to either the ancestors of P1 or P2 (but not both) 490 

(Supplementary Figure 1A). Because the gene tree topologies in this ancestral species will be 491 

skewed toward relationships joining P3 and one of the sister lineages, this scenario can lead to a 492 

significant asymmetry in gene tree topologies even in the absence of post-speciation 493 

introgression (Durand et al. 2011). This will also result in a slight asymmetry of genome-wide 494 

pairwise divergence times, since the more common discordant tree will contribute more to the 495 

average value. All of this means that ancestral structure can result in false positives when testing 496 

for introgression using simple patterns of asymmetry.  497 

Fortunately, while these two scenarios are indistinguishable using only gene tree topologies 498 

alone, they are distinguishable when using the distribution of branch lengths. Under ancestral 499 

population structure, divergence between the sister taxa in whichever discordant gene tree 500 

becomes more frequent will be higher than it would be under introgression. Lohse and Frantz 501 

(2014) incorporated the expected branch length differences in these two models into a maximum 502 

likelihood framework, which was then used to confirm the signal of human-Neanderthal 503 

introgression that was originally uncovered by the D-statistic. Additionally, ancestral population 504 

structure is not expected to result in a bimodal distribution of coalescence times. This means that 505 

methods capable of detecting two peaks of coalescence, such as QuIBL and PhyloNet-based 506 

methods that use trees with branch lengths or sequence data directly (and possibly other 507 

likelihood methods), should also be robust to the effects of population structure.  508 

Detecting introgression between sister species 509 

Introgression between sister species is very difficult to detect using a single haploid sequence 510 

from each species. The classic asymmetry patterns described in previous sections do not apply in 511 

this scenario, either for gene tree topologies or coalescence times. While introgression between 512 

sister species should lead to an increased variance in coalescence times compared to an ILS-only 513 

model, this signal is easily confounded by other processes such as non-equilibrium demography 514 

or linked selection (Cruickshank and Hahn 2014; Roux et al. 2016; Sethuraman et al. 2019). 515 

These limitations have typically been addressed by combining two alternative sources of 516 

information: 1) polymorphism data for the two introgressing species, and 2) local reductions in 517 

between-species divergence relative to a genome-wide baseline.  518 
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Most available methods for inferring introgression between sister taxa are not phylogenomic in 519 

multiple senses: they typically require polymorphism data, they often identify locally 520 

introgressed regions rather than genome-wide signals, and they do not explicitly test against an 521 

ILS-only case. Genome scans using summary statistics such as FST  (Wright 1949) and dxy (Nei 522 

and Li 1979) are common, though relative measures of divergence such as FST are confounded 523 

by natural selection when used for this task (Charlesworth 1998, Noor and Bennett 2009, 524 

Nachman and Payseur 2012, Cruickshank and Hahn 2014). There are multiple statistics based on 525 

minimum pairwise distances between multiple haplotypes in two species that avoid problems 526 

caused by selection (Joly et al. 2009, Geneva et al. 2015, Rosenzweig et al. 2016), and new 527 

machine learning methods combine multiple summary statistics into a single comparative 528 

framework that is powerful and robust (e.g. Schrider et al. 2018). However, these methods also 529 

usually require coalescent simulation under known demographic history to evaluate patterns of 530 

introgression, and this information is not always available.  531 

None of the aforementioned limitations mean that genome-wide tests with one sample per 532 

species are not possible. Introgression between sister taxa—at least when it occurs in relatively 533 

discrete pulses—should result in the same multimodal distribution of coalescence times 534 

described above for non-sister taxa. This may be the most promising avenue for a genome-wide 535 

test of sister introgression when only one sample per species is available, since coalescence times 536 

for two species should follow an exponential distribution under ILS alone. Nevertheless, no 537 

methods have been developed to date that explicitly test for this pattern (QuIBL can only infer it 538 

for non-sister taxa). However, PhyloNet’s InferNetwork_ML method appears to be capable of 539 

reliably inferring introgression (including estimating the timing and rate) between sister taxa 540 

using gene trees with branch lengths using this signal (Yu et al. 2014) (Supplementary Figures 541 

3,5) at least when nested within a tree containing more taxa. The MSci method in BPP (Flouri et 542 

al. 2020) can also evaluate models involving introgression between sister species. Despite this, 543 

the direction of introgression between sister taxa may not be inferable from only one sample per 544 

species.  545 

Finally, while introgression between extant sister species is not detectable using gene tree 546 

frequencies, this may not necessarily be the case for introgression between ancestral sister 547 

lineages. Several studies have now shown that when introgression occurs between P3 and the 548 

ancestor of P1 and P2 (event 2 in Figure 2), it becomes possible under specific conditions for 549 

both discordant gene tree topologies to become more common than the species tree topology, 550 

while remaining at equal frequencies (Solís-Lemus et al. 2016, Long and Kubatko 2018, Jiao and 551 

Yang 2020). It should be possible in principle to infer introgression using this pattern, but it 552 

requires sufficiently high rates of introgression to result in the anomalous trees, in addition to 553 

independent knowledge of the species tree topology.  554 

Likelihood methods for detecting introgression 555 

Perhaps the most powerful phylogenomic methods for inferring introgression are those that use 556 

model-based maximum likelihood or Bayesian inference. These methods can be constructed 557 

from a variety of different introgression models, can estimate a variety of different parameters, 558 

and can be applied to different types of data. Some methods infer introgression directly from a 559 
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multiple sequence alignment, while others use estimated gene trees; some are based on the 560 

multispecies network coalescent framework for modelling introgression, while others use the 561 

isolation-with-migration model; finally, some perform full likelihood calculations, while others 562 

estimate approximate likelihoods or pseudolikelihoods. Common to all of these approaches is the 563 

ability to widely search the space of possible introgression scenarios, making the best possible 564 

use (in principle) of available datasets to construct a phylogenetic network.   565 

Likelihood methods for inferring introgression generally use one of two underlying models: 566 

either the multispecies network coalescent (MSNC) model (Meng and Kubatko 2009) or the 567 

isolation-with-migration (IM) model (Wakeley and Hey 1998, Nielsen and Wakeley 2001). The 568 

models are quite similar, differing mainly as to whether introgression occurs in discrete pulses 569 

(MSNC) or over a continuous time interval (IM). The models provide expectations for the 570 

probability and coalescence times of gene tree topologies under incomplete lineage sorting and 571 

introgression. These expectations—sometimes combined with models for sequence evolution 572 

along trees—allow maximum likelihood or Bayesian inference to be applied to either an inferred 573 

set of gene trees or to a set of sequence alignments. From these data, methods can infer the taxa 574 

involved in introgression, as well as the rate, timing, and direction of introgression.  575 

Methods that use more data can provide more information, though this comes at a computational 576 

cost. Two methods implemented in PhyloNet, InferNetwork_ML (Yu et al. 2014) and 577 

MCMC_GT (Wen et al. 2016), can use gene trees without branch lengths, while 578 

InferNetwork_ML can also use trees with branch lengths. If branch lengths are not provided, only 579 

introgression between non-sister lineages can be identified (as with summary statistics such as 580 

D), with accurate estimates of the rate and potentially the direction of introgression. With branch 581 

lengths, the timing of introgression can also be accurately estimated, along with the identification 582 

of introgression between sister lineages. Using full sequences from each locus rather than gene 583 

trees can provide still more information, although maximum likelihood inference is only possible 584 

in the simplest scenarios (e.g. Lohse and Frantz 2014, Dalquen et al. 2017). Instead, most 585 

methods that take sequence data as input use Bayesian approaches for inference. These methods 586 

include the MSNC-based MCMC_SEQ (Wen and Nakhleh 2018) and MCMC_BiMarkers (Zhu et 587 

al. 2018) methods in PhyloNet, the SpeciesNetwork (Zhang et al. 2018) method in BEAST2, and 588 

the MSci method in BPP (Flouri et al. 2020). Examples of IM-based Bayesian methods include 589 

IMa3 (Hey et al. 2018) and G-PhoCS (Gronau et al. 2011).  590 

A major disadvantage of full maximum likelihood and Bayesian methods for inferring 591 

introgression is that the computational performance of these approaches tends to scale poorly to 592 

larger datasets. For example, the InferNetwork_ML method can only be practically applied to 593 

datasets of up to 10 species (Hejase and Liu 2016). Bayesian approaches scale especially poorly, 594 

and are limited to datasets of dozens to hundreds of loci (Flouri et al. 2020). Some methods have 595 

addressed this problem by estimating approximate likelihoods or pseudolikelihoods. The 596 

InferNetwork_MPL (Yu and Nakhleh 2015) method in PhyloNet and SNaQ (Solís-Lemus and 597 

Ané 2016) both maximize the pseudolikelihood of a set of gene tree topologies (in SNaQ the 598 

gene trees are first used to calculate gene concordance factors). By using pseudolikelihoods, 599 

these methods can be applied to larger datasets with more than ten species and thousands of loci 600 
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(Hejase and Liu 2016, Solís-Lemus and Ané 2016). However, in some regions of parameter 601 

space, the phylogenetic network is unidentifiable with these methods; that is, many different 602 

combinations of network parameters could be equally consistent with the observed data. These 603 

pseudolikelihood methods are also not ideal for use with information criteria, which makes it 604 

challenging to evaluate the fit of different inferred networks (see section on “Inferring the 605 

number of introgression events”).   606 

The richness of parameters estimated by likelihood methods can also be a double-edged sword, 607 

as these inferences are only possible with relatively strong assumptions. In addition to 608 

assumptions about no recombination within loci and free recombination between loci, all 609 

methods assume that sequences are evolving neutrally. While many methods make assumptions 610 

about neutrality, those that detect introgression using only gene tree topologies are quite robust 611 

to this assumption (Przeworski et al. 1999, Williamson and Orive 2002, Vanderpool et al. 2020). 612 

By contrast, the effect of various forms of selection is to cause changes in the distribution of 613 

gene tree branch lengths (Adams et al. 2018), a change that can be interpreted as introgression by 614 

full likelihood methods. This is especially true for inferences of introgression between sister 615 

lineages, where information on gene tree topologies is often not useful in distinguishing between 616 

these two scenarios (Ewing and Jensen 2016; Roux et al. 2016). Since interpreting likelihood 617 

methods can be difficult under such circumstances, we recommend complementing these 618 

analyses with other approaches that are formulated to be more robust to common model 619 

violations. Despite these limitations, likelihood methods for inferring introgression can have 620 

many advantages in terms of the power and richness of inference when compared to simpler 621 

approaches.  622 

Challenges for inferring introgression 623 

Dealing with phylogenetic uncertainty in introgression analyses 624 

Most methods for inferring introgression require that the species phylogeny is known or can be 625 

inferred accurately. More precisely, they require a model of the possible histories of coalescence 626 

of samples in the absence of introgression, against which introgression hypotheses can be tested. 627 

However, for both technical and biological reasons, a single phylogeny often cannot be inferred 628 

accurately and/or with a high confidence. If the wrong species tree is chosen, then introgression 629 

may be erroneously inferred. In the case where certain regions of the phylogeny are poorly 630 

resolved, one approach is to permute only the poorly resolved regions in different introgression 631 

analyses, leaving the more confidently resolved “backbone” constant (Beckman et al. 2018, 632 

Pease 2018). Alternatively, it may be that the wrong species phylogeny is inferred with high 633 

confidence; in this case, careful examination of local genealogical patterns and coalescence times 634 

can uncover which histories correspond to speciation vs. introgression (Fontaine et al. 2015, 635 

Forsythe et al. 2020). Finally, likelihood methods should be less vulnerable to uncertainty, since 636 

the phylogeny and introgression events are typically co-estimated. However, computational and 637 

visual representations of these results can often be uninformative or misleading with regard to 638 

the true species branching order (see section below entitled “Distinguishing among models of 639 

introgression”) 640 
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 641 

Evaluating introgression from unsampled ghost lineages  642 

As we briefly mentioned above, there is always the possibility that the species being studied may 643 

have exchanged genes with unsampled “ghost” lineages. These lineages may be unsampled 644 

because appropriate specimens were not available for sequencing, because they are currently 645 

extinct, or simply because they are unknown taxa. Regardless of their origin, introgression from 646 

a distant ghost lineage into a sampled lineage can generate gene tree asymmetry in a rooted 647 

triplet. In the scenario considered here (Figure 5a), the ghost lineage is the donor of introgressed 648 

alleles into species P1a. As a result, at some introgressed loci P2 and P3 will appear to be sister 649 

lineages (Figure 5b), possibly resulting in an inference of introgression. 650 

Our simulation study (Supplementary Figures 2 and 3), in addition to recent work from Tricou et 651 

al. (2021), demonstrates that introgression between a ghost lineage and a sampled taxon can 652 

result in significant tests for introgression, using both summary statistic and likelihood 653 

approaches. While introgression has indeed occurred, the problem is that the timing, direction, 654 

and identity of lineages involved in introgression may all be inferred incorrectly. As with results 655 

from sampled taxa, significant results are most likely to occur when the ghost taxon is not sister 656 

to the species it is exchanging genes with and when the ghost taxon is the donor of introgressed 657 

alleles rather than the recipient (Supplementary Figure 3).  658 

There are a number of approaches researchers can take to detect the presence of ghost 659 

introgression. If multiple ingroup lineages are available for testing—but only one of them has 660 

been the recipient of introgression—switching the species used in the quartet being tested can 661 

reveal ghost introgression. Imagine we have two lineages available to serve as species P1: P1a 662 

and P1b (Figure 5a). P1a is the recipient of introgression from an unsampled lineage, X, which is 663 

more distant than P3. If species P1a is sampled, we may incorrectly infer introgression between 664 

P2 and P3 (Figure 5b). In contrast, P1b is uninvolved in ghost introgression; if the quartet 665 

(((P1b,P2),P3),O) is tested for introgression, the result should no longer be significant (Figure 666 

5b). Such a result would be consistent with ghost introgression into P1a. If both quartets are 667 

significant, this would rule out ghost introgression into P1a alone, but could still be explained by 668 

ghost introgression into the ancestor of P1a and P1b.  669 

Given an excess of gene trees with P2 and P3 sister to one another, another sign of ghost 670 

introgression is that the genetic distance between P2 and P3 at discordant loci will not be 671 

reduced relative to concordant loci, as would occur if they were truly exchanging alleles (Figure 672 

5c). Although the D3 statistic is still significant under ghost introgression (Supplementary Figure 673 

3), this is because P3 is also being compared to P1. A simple comparison of the distance 674 

between P2 and P3 at concordant and discordant loci should reveal if there is any signal of ghost 675 

introgression. Conversely, the presence of exceptionally divergent haplotypes in P1 that are 676 

unlikely to have originated from known extant species are also consistent with ghost 677 

introgression (Figure 5c). In fact, most known cases of putative ghost introgression have been 678 

identified this way (i.e. Ai et al. 2015, Kuhlwilm et al. 2019, Zhang et al. 2019). Finally, as noted 679 

by Ottenburghs (2020), recent advances in model-based demographic inference may make it 680 
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possible to explicitly evaluate ghost introgression scenarios against scenarios involving gene 681 

flow between sampled taxa. The vast array of possible ghost introgression scenarios may make 682 

model selection difficult, but plausible scenarios can potentially be identified using the 683 

approaches described above.  684 

Distinguishing among models of introgression  685 

Introgression events are often depicted using a phylogenetic network. In these representations, a 686 

reticulation edge connects two lineages in the tree that have exchanged genes. However, the 687 

placement and orientation of these reticulations can imply specific information about the timing, 688 

direction, and species involved in introgression. While methods for inferring introgression are 689 

developed under a specific introgression model, many of them are agnostic to the true underlying 690 

model when applied to empirical data. More importantly, many methods that construct 691 

phylogenetic networks will produce the same network from data generated under very different 692 

underlying models (Huson and Bryant 2005). In this section we highlight the challenges 693 

associated with interpreting the results of introgression tests in the context of the underlying 694 

model of introgression  695 

Two important models to consider are introgression that occurs between already-existing 696 

lineages and introgression that results in the formation of a new lineage. Figure 6A depicts the 697 

former scenario, which corresponds to the introgression scenarios considered in the paper thus 698 

far. In such cases, a single horizontal reticulation edge is typically used to connect the two taxa 699 

involved. This does not naturally convey any information about the direction of introgression, 700 

unless the donor and recipient lineages are explicitly identified (e.g. with an arrowhead). By 701 

contrast, methods that assume the formation of an admixed population (e.g., Bertorelle and 702 

Excoffier 1998, Wang 2003) or hybrid species (e.g., Meng and Kubatko 2009) often use the 703 

visualization shown in Figure 6B, where reticulations connect each parent lineage to the newly 704 

formed lineage. This representation implies a directionality of introgression without any 705 

additional labelling: from the two parent lineages into the newly formed lineage. In both cases, a 706 

horizontal reticulation edge can be used to denote the instantaneous exchange of alleles between 707 

the involved lineages. Alternatively, Figure 6C shows an example using non-horizontal branches, 708 

which may imply a period of branching off and independent evolution from the parent species 709 

before the hybrid lineage is formed (e.g., Patterson et al 2012, Yu et al. 2014, Zhang et al. 2018). 710 

An alternative interpretation of this representation is that it shows "standard" introgression 711 

involving a now extinct species, in which case the extinct lineage was the donor in the 712 

introgression scenario. In this case there really was a period of independent evolution, but it 713 

occurred along a lineage that was not sampled. In all three cases, the placement of the 714 

reticulation edge conveys information about the timing of introgression and/or lineage formation. 715 

It important to consider how the methods for detecting introgression discussed here relate to the 716 

underlying introgression scenarios, and how this may affect our interpretation of results. Many 717 

tests for introgression are agnostic to the particulars of the underlying introgression scenario, and 718 

will therefore be significant under different models. For example, the D-statistic can detect 719 

introgression between non-sister taxa regardless of the direction of gene flow (Martin et al. 2015, 720 

Supplementary Figure 3), or whether introgression results in the formation of a new lineage 721 
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(Kong and Kubatko 2021). Other methods enforce a particular model of introgression, even 722 

though it may not reflect the underlying data. For example, HyDe (Blischak et al. 2018) is less 723 

accurate when estimating the admixture proportion if its hybrid speciation assumption is violated 724 

(Kong and Kubatko 2021), while other tests explicitly require the labelling of a putative admixed 725 

population under a lineage-formation scenario (Peter 2016). Some statistical methods can 726 

explicitly distinguish among these scenarios. The D1 statistic (Hibbins and Hahn 2019) tests 727 

whether gene tree branch lengths are more consistent with hybrid speciation (Figure 6B) or post-728 

speciation introgression (Figure 6A). The multispecies network coalescent implementation in 729 

BPP (Flouri et al. 2020) may also be able to differentiate among a variety of possible 730 

introgression scenarios. 731 

One additional obstacle to distinguishing among models of introgression is a consequence of the 732 

information required by machine-readable formats for representing phylogenetic networks. In 733 

general, methods return inferred phylogenetic networks in the Extended Newick format (Cardona 734 

et al. 2008), which requires the specification of a bifurcating “parent” node that occurs closer to 735 

the root than the “hybrid” node, which has two incoming lineages. While it is possible for the 736 

hybrid node in this format to represent a lateral gene transfer event that does not have a parent 737 

closer to the root (Cardona et al. 2008), this format is often not used to represent introgression 738 

(though it could be).  739 

Visualizing these results often complicates their interpretation even further. To highlight this, we 740 

inferred networks using PhyloNet's InferNetwork_ML method (Yu et al. 2014) for simulated P3 741 

→ P1 and P1 → P3 introgression after speciation (see Supplementary Figure 2), and plotted the 742 

results using three popular tools (Figure 7): Dendroscope (Huson and Scornavacca 2012), 743 

IcyTree (Vaughan 2017), and PhyloPlots, which is part of the Julia package PhyloNetworks 744 

(Solís-Lemus et al. 2017). All three methods handle the placement of parent and daughter nodes 745 

differently. Dendroscope visualizes the two incoming lineages to the hybrid node with blue 746 

reticulations, which can erroneously imply a lineage-formation or hybrid speciation scenario 747 

with P2 involved in hybridization when introgression is P3 → P1 (Figure 7A). As a consequence 748 

of the parent/hybrid node structure, all three methods use non-horizontal reticulations (Figure 749 

7A-F), which may imply periods of independent evolution in the donor population prior to 750 

introgression, even under an instantaneous “pulse” scenario. The general use of reticulations to 751 

connect parent and daughter nodes also heavily implies a discrete-time event or series of 752 

discrete-time events, rather than a continuous window of gene flow as conceptualized in the 753 

isolation-with-migration model. While none of the output networks contained branch lengths, the 754 

arbitrary location of placement of the reticulations could imply an inferred time of introgression. 755 

We should stress that PhyloNet’s InferNetwork_ML method was accurate in its inferences about 756 

the presence and direction of introgression (Supplementary Figure 3)—it is only the visualization 757 

that is misleading.  758 

The visualization of introgression results is especially difficult when information on the timing 759 

and direction of gene flow cannot be inferred. The software admixturegraph (Leppälä et al. 760 

2017) plots a network representation solely from the results of a series of D tests. We applied this 761 

visualization to simulated P3 → P1 and P1 → P3 introgression (Supplementary Figure 2). The 762 
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resulting plots shown in Figures 7G and 7H imply that P1 formed from hybridization after 763 

periods of independent evolution in P2 and P3. However, none of these processes are knowable 764 

from a D-statistic result (because the direction of introgression cannot be inferred), and this is not 765 

the scenario that produced the data. In general, special care should be taken when visualizing the 766 

results of D-statistics and related test statistics on a phylogeny, since they only provide 767 

information on the presence/absence of introgression, and not the direction of introgression. 768 

Clearly differentiating among different possible models of introgression remains challenging. 769 

Care should be taken not to over-interpret the results of methods that are model-agnostic, or that 770 

rely on a particular model of introgression rather than inferring it from data. This is especially 771 

true when interpreting results from common machine-readable visualizations. If possible, hand-772 

drawn “tube tree” representations (e.g. Figure 4) may be more effective in accurately conveying 773 

the information available. If automated plotting software is being used, it appears that the 774 

visualizations produced by PhyloPlots (Figure 7E-F) are most faithful to the true model of 775 

introgression. 776 

Inferring the number of introgression events  777 

A major challenge that remains in the inference of introgression is how to assess the fit of 778 

different numbers of introgression events inferred on the same tree. The mostly widely used 779 

methods are formulated to test for the presence of introgression versus no introgression, but 780 

provide no rigorous way to evaluate the number of distinct introgression events. One approach is 781 

to perform many quartet-based tests, and then to infer the most parsimonious set of introgression 782 

events by collapsing sets of positive tests that share the same ancestral populations (Pease et al. 783 

2016, Suvorov et al. 2021). However, this approach is highly conservative, as it can collapse 784 

cases where there truly are multiple instances of post-speciation introgression within a clade. 785 

Additionally, it requires large datasets and the piecing together of many quartets, which makes it 786 

impractical in many cases. Nonetheless, such approaches can be used to generate a conservative 787 

estimate for the minimum number of introgression events.  788 

Even with likelihood methods, estimating the number of introgression events is not a solved 789 

problem. One issue is that adding additional parameters to the likelihood model always improves 790 

the likelihood score. This makes it necessary to penalize model complexity when comparing 791 

estimated likelihoods. Unfortunately, the information measures that are classically used to 792 

perform model selection, such as AIC and BIC, do not adequately scale with the increased 793 

complexity of adding a new reticulation to a phylogenetic network. This is because adding a new 794 

reticulation does not just add a single new model parameter—it adds a whole new space of 795 

possible networks, with different taxa involved in introgression, at different times, and in 796 

different directions (Blair and Ané 2020). AIC and BIC penalize the increased complexity of 797 

model parameters, but not the increased complexity of models within a set of parameters. The 798 

problem is greater for methods based on pseudolikelihood such as SNaQ, because these 799 

information measures are not intended for pseudolikelihood estimates. Bayesian approaches such 800 

as those implemented in PhyloNet (Wen and Nakhleh 2018) and SpeciesNetwork can incorporate 801 

appropriate penalties for model complexity, but unfortunately scale poorly to larger datasets and 802 

larger numbers of reticulations (Elworth et al. 2019). 803 
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While no methods currently exist that can both explicitly penalize model complexity and scale to 804 

large datasets, there are several alternate approaches available for assessing the fit of 805 

phylogenetic networks. One simple, empirical approach is to use a slope heuristic where 806 

networks are inferred across different numbers of reticulations, and the best network is taken as 807 

the least complex one after which the likelihood score appears to stop improving. This is the 808 

method recommended for use with SNaQ (Solís-Lemus and Ané 2016). PhyloNet has methods 809 

that can evaluate the fit of a network using k-fold cross-validation or parametric bootstrapping 810 

(Yu et al. 2014), which can both address this problem. Finally, a promising approach from Cai 811 

and Ané (2020) involves using the multispecies network coalescent to calculate the quartet 812 

concordance factors expected from an estimated network. A goodness-of-fit function is then used 813 

to evaluate the fit of these expected concordance factors to those observed in the data. This is 814 

similar to the method implemented in admixturegraph (Leppälä et al. 2017) for use with D 815 

statistics. 816 

Conclusions 817 

In conclusion, several methodological and technical challenges remain in the inference of 818 

introgression, including: more accurate estimation of the rate, timing, and direction of 819 

introgression; detection of introgression between sister taxa; spurious results generated by 820 

unsampled lineages; inference of the number of introgression events in a clade; and accurate 821 

automated visualization of phylogenetic networks. Despite these challenges, currently available 822 

approaches have remarkable power to detect and characterize introgression under a wide variety 823 

of conditions, especially when used in a complementary fashion. Overall, these methods will 824 

continue to reveal the nature and influence of introgression throughout the natural world.  825 

Acknowledgements 826 

We thank Leonie Moyle, Rafael Guerrero, Claudia Solís-Lemus, Cécile Ané, Mia Miyagi, and 827 

Luay Nakhleh for helpful comments and discussion. Michael Turelli and three reviewers all also 828 

provided constructive criticisms. This work was supported by National Science Foundation grant 829 

DEB-1936187.  830 

 831 

  832 



 23 

 833 

 834 

 835 

 836 

Figure 1: Expected gene tree topologies and coalescence times under ILS only. For a rooted 837 

triplet, four topologies are possible (top row): two concordant with the species tree, which can 838 

result either from lineage sorting or ILS (top left), and two that are discordant with the species 839 

tree and arise from ILS only (top right). The two concordant trees must be at least as frequent as 840 

the two discordant trees, which are equally frequent to each other. For non-sister pairs of taxa—841 

either P2-P3 (bottom left) or P1-P3 (bottom right)—coalescence is expected to occur at one of 842 

two times, depending on whether they coalesce first or second in a gene tree (grey dotted lines). 843 

These expected times are symmetrical across gene trees, and so pairwise divergences between 844 

the non-sister lineages are expected to be equal when averaged across loci.  845 

 846 

 847 

 848 

 849 

 850 
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 851 

Figure 2: An overview of detectable introgression scenarios for a rooted triplet, and their effects 852 

on gene tree frequencies and branch lengths. A) The species tree relating three lineages. 853 

Introgression can occur between extant (1) or ancestral (2) sister lineages, or between non-sister 854 

taxa, with P3 as either the recipient (3) or the donor (4). B) Gene trees at introgressed loci for 855 

introgression between sister lineages. Introgression between sister taxa reduces divergence 856 

between the involved taxa but does not generate discordant gene trees (events 1 and 2). In both 857 

trees the expected time to coalescence for pairs of lineages in the absence of introgression is 858 

denoted with dashed horizontal lines. C) Gene trees at introgressed loci for introgression between 859 

non-sister lineages. When P3 is the recipient of introgression (event 3), discordant gene trees are 860 

generated uniting P2 and P3. In addition, divergence is reduced between both P2 and P3 and 861 

between P1 and P3. When P3 is the donor of introgression (event 4) discordant gene trees are 862 

again generated uniting P2 and P3. In this case divergence is reduced only between P2 and P3, 863 

while divergence is increased between P1 and P2. In both trees the expected time to coalescence 864 

for pairs of lineages in the absence of introgression is denoted with dashed horizontal lines.  865 

 866 

 867 

 868 

 869 
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 870 

Figure 3: Biallelic site patterns are informative of underlying gene tree topologies. With the 871 

exception of low levels of homoplasy, such patterns can only arise from mutations (blue) on 872 

internal branches of the local genealogy. The occurrence of the incongruent site patterns 873 

“ABBA” (top middle) and “BABA” (top right) are therefore expected to reflect the frequency of 874 

discordant gene tree topologies. With introgression between a specific non-sister species pair, 875 

one incongruent pattern (bottom) can increase in frequency over the other due to the underlying 876 

asymmetry in gene tree frequencies.  877 

 878 

 879 

 880 

 881 
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 882 

Figure 4: Coalescence times provide information on the timing, direction, and presence of 883 

introgression. A) Post-speciation introgression between P2 and P3 allows them to coalesce more 884 

quickly at introgressed loci (blue). This reduces their whole-genome divergence relative to P1 885 

and P3, an asymmetry that can be used to test for introgression. Since coalescence can now occur 886 

at one of two times, after introgression (blue) or after speciation (red), it also results in a bimodal 887 

distribution of coalescence times across loci (right figure). The more recent peak of this 888 

distribution can be used to estimate the timing of introgression. B) The direction of introgression 889 

between P2 and P3 affects the time to coalesce of P1 and P3 at introgressed loci. P2 → P3 890 

introgression allows P1 and P3 to coalesce more quickly (right), reducing their divergence at 891 

introgressed loci.  892 

 893 

 894 

 895 
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 896 

Figure 5: Understanding and detecting ghost introgression. A) A scenario of ghost introgression 897 

from an unsampled outgroup lineage, X, into P1a. B) When ghost introgression has occurred and 898 

a quartet including P1a is sampled, introgression may be erroneously inferred between P2 and 899 

P3. This occurs because at some introgressed loci P1a will be more distantly related to both P2 900 

and P3, leading to an excess of discordant trees with P2 and P3 sister to one another (top). If 901 

instead a quartet including P1b is sampled, there should no longer be an excess of discordant 902 

trees (bottom). C) Ghost introgression should also be detectable via a change (or a lack of 903 

change) in branch lengths. True introgression between P2 and P3 should cause them to be more 904 

similar; i.e. shorter branch lengths separating them in discordant trees. In contrast, ghost 905 

introgression will not make them more closely related in discordant trees than in concordant trees 906 

on average. Similarly, the distance between P1a and all ingroup lineages will be higher when it 907 

is the recipient of ghost introgression from an outgroup. 908 
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 912 

 913 

 914 

Figure 6: Conceptualizing different models of introgression. A) Introgression between extant 915 

lineages. B) and C) Introgression that results in the formation of a new lineage, differing only 916 

with respect to whether there appears to be a period of independent evolution before lineage 917 

formation.  918 
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 920 

Figure 7: Different visualizations of the same underlying phylogenetic networks. The left 921 

column comes from a network representing P3 → P1 introgression, while the right column 922 

comes from a network representing P1 → P3 introgression. The rows, from top to bottom, show 923 

visualizations from A) and B) Dendroscope, C) and D) IcyTree, E) and F) PhyloPlots, and G) 924 

and H) admixturegraph.   925 

 926 
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Supplementary Materials and Methods for Hibbins & Hahn 2021 1 

Simulation study under different introgression scenarios  2 

To illuminate many of the patterns and approaches discussed in this review, we conducted a 3 

small simulation study. We used the five introgression scenarios shown in Figure 2, as well as 4 

one scenario with only ILS and several additional scenarios involving ghost introgression 5 

(Supplementary Figure 2). Introgression was simulated in ms by specifying an instantaneous 6 

population split and join event; this is equivalent to simulating under the multispecies network 7 

coalescent framework (Hibbins and Hahn 2019). For each set of conditions, we performed 100 8 

replicate simulations each consisting of 3000 gene trees with branch lengths. We evaluated the 9 

performance of three different test statistics designed to capture slightly different information 10 

about introgression: D, D3, and ∆. In addition, we applied the InferNetwork_ML method (Yu et 11 

al. 2014) in PhyloNet, which infers a phylogenetic network using maximum-likelihood. For the 12 

three test statistics, we evaluated significance by bootstrap-resampling the gene trees in each 13 

dataset to estimate the sampling variance. The z-score obtained from bootstrap-resampling was 14 

used to estimate a two-tailed p-value. The method we use in PhyloNet evaluates the fit of a 15 

phylogenetic network internally (Yu et al. 2012) using a combination of the model selection 16 

measures AIC (Akaike 1974), AICc (Burnham and Anderson 2002), and BIC (Schwarz 1978). 17 

For our purposes, a positive result was taken as any result where PhyloNet selected a network 18 

over a strictly bifurcating tree. See Supplementary Table 1 for the simulation parameters used for 19 

each condition.  20 

The power of each method to detect introgression under each scenario is shown in 21 

Supplementary Figure 3. All four methods yielded low false positive rates in the presence of high 22 

ILS but no introgression, confirming that they are effective tests against an ILS-only null 23 

hypothesis. For non-sister taxa, PhyloNet was always capable of identifying introgression, while 24 

the power of the other methods was strongly affected by the direction of introgression. A 25 

reduction of power for P1 → P3 introgression is consistent with the effect of direction on gene 26 

tree branch lengths described above, but the magnitude of the reduction is somewhat surprising: 27 

there is almost three times as much power to detect P3 → P1 introgression. Of the four methods, 28 

only PhyloNet appears capable of reliably inferring introgression between sister lineages, again 29 

consistent with expectations. 30 

The D and ∆ statistics, as well as PhyloNet, did not give significant results when introgression 31 

occurred between P1 and an unsampled ingroup lineage. The D3 statistic, interestingly, does 32 

appear to be sensitive to this scenario, at least when the ghost population is the donor. This 33 

suggests that patterns of pairwise divergence may be especially useful for detecting introgression 34 

with unsampled populations. When introgression occurs between P1 and an outgroup ghost 35 

lineage, there is no effect when the ghost is the recipient, while all four methods are strongly 36 

affected when the ghost is the donor. These observations are consistent with expectations for 37 

ghost populations, highlighting the importance of careful interpretation of the potential taxa 38 

involved in a positive result. In this case, all methods appear to suggest introgression between P2 39 

and P3, even though neither of these lineages was involved in the introgression. This occurs 40 



because introgression from outside the rooted triple draws P1 to the outside as well, leaving P3 41 

more closely related to P2.  42 

In addition to testing for the presence of introgression, we evaluated the ability of PhyloNet to 43 

infer the direction of introgression, and of several methods to infer the rate of introgression. We 44 

evaluated the ability of PhyloNet to correctly identify the taxa involved, the donor and recipient 45 

lineages, and the rate of introgression. For the two conditions involving introgression between 46 

non-sister taxa, we additionally estimated the rate of introgression using the Dp statistic and an 47 

analogous version of the ∆ statistic where the count of the concordant tree topology was added to 48 

the denominator; we refer to this statistic as ∆p. 49 

We found that PhyloNet was highly accurate at identifying the taxa and direction for P1 → P3 50 

introgression (Supplementary Figure 3). However, somewhat surprisingly, it often failed to 51 

identify the taxa involved when introgression was P3 → P1 (although it always correctly 52 

identified that introgression had occurred somewhere). While it is more difficult to detect 53 

introgression in the P1 → P3 direction, once it is detected it appears that the additional signal in 54 

gene tree branch lengths makes it easier for PhyloNet to infer the direction. For sister lineages, 55 

PhyloNet always correctly identified the taxa, but cannot accurately infer the direction. However, 56 

PhyloNet must always specify the direction of introgression, and its behavior differs between 57 

scenarios. For introgression between extant sister species, the direction of introgression appears 58 

to be assigned randomly, while for ancestral sister species introgression is always inferred to be 59 

in one direction. For the rate of introgression, PhyloNet appears to slightly overestimate the true 60 

rate under all scenarios in which it correctly identified introgression (Supplementary Figure 4). 61 

By contrast, Dp and ∆p tend to slightly underestimate the rate of introgression between non-sister 62 

taxa (Supplementary Figure 4).  63 
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Supplementary Figures and Tables  78 

 79 

Supplementary Figure 1: Distinguishing ancestral population structure (A) from introgression 80 

(B). Persistent structure in the ancestral population of a quartet, which may or may not continue 81 

after the first speciation event, can result in the same asymmetries in gene tree topologies and 82 

divergence times that are expected from introgression between non-sister taxa. These two 83 

scenarios are distinguishable by studying the distribution of branch lengths, in particular the 84 

length of the tip branch leading to P3 (red).  85 
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 97 

Supplementary Figure 2: A visual overview of the ten different conditions used in our simulation 98 

study. Branch lengths are not to scale.  99 
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 113 

Supplementary Figure 3: Power (y-axis) of four different methods (color legend) to infer the 114 

presence of introgression across ten different simulation conditions (x-axis). Power is measured 115 

as the proportion of tests that are significant; for the "High ILS" condition it therefore represents 116 

the false positive rate. 117 
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Supplementary Figure 4: The power of PhyloNet to identify the taxa involved and direction of 125 

introgression across five simulation conditions. 126 
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 142 

Supplementary Figure 5: Accuracy of three methods (color legend) for estimating the rate of 143 

introgression (y-axis) across four simulation conditions (x-axis). The horizontal dashed line 144 

shows the true simulated rate of introgression.  145 
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Supplementary Table 1: Parameters used for introgression simulation conditions in ms. Split 160 

times and theta are in units of 2N generations.  161 

 162 
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 166 

 167 

Condition P1/P2_split P1P2/P3_split P1P2P3/O1_split O1/O2_split intro_timing intro_rate ghostpop_split theta

P1 into P3 0.6 1.2 8 20 0.3 0.05 N/A 0.005

P3 into P1 0.6 1.2 8 20 0.3 0.05 N/A 0.005

Sister species 0.6 1.2 8 20 0.3 0.05 N/A 0.005

Ancestor into P3 0.6 1.2 8 20 0.9 0.05 N/A 0.005

P3 into ancestor 0.6 1.2 8 20 0.9 0.05 N/A 0.005

High ILS 0.6 0.62 8 20 N/A 0.05 N/A 0.005

P1 into ingroup ghost 0.6 8 20 30 0.3 0.05 1.2 0.005

Ingroup ghost into P1 0.6 8 20 30 0.3 0.05 1.2 0.005

P1 into outgroup ghost 0.6 1.2 8 30 0.3 0.05 20 0.005

Outgroup ghost into P1 0.6 1.2 8 30 0.3 0.05 20 0.005
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