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Abstract. 12 

Coupled biogeochemical cycles drive ecosystem ecology by influencing individual-to-13 

community scale behaviors; yet the development of process-based models that accurately capture 14 

these dynamics remains elusive. Soil organic matter (SOM) decomposition in particular is 15 

influenced by resource stoichiometry that dictates microbial nutrient acquisition (‘ecological 16 

stoichiometry’). Despite its basis in biogeochemical modeling, ecological stoichiometry is only 17 

implicitly considered in many high-resolution microbial investigations and the metabolic models 18 

they inform. State-of-science SOM decomposition models in both fields have advanced largely 19 

separately, but they agree on a need to move beyond pool-based models. This presents an 20 

opportunity and a challenge to maximize the strengths of various models across different scales 21 

and environmental contexts. To address this challenge, we contend that ecological stoichiometry 22 

provides a framework for merging biogeochemical and microbiological models, as both 23 

explicitly consider substrate chemistries that are the basis of ecological stoichiometry as applied 24 

to SOM decomposition. We highlight two gaps that limit our understanding of SOM 25 

decomposition: (1) understanding how individual microorganisms alter metabolic strategies in 26 

response to substrate stoichiometry and (2) translating this knowledge to the scale of 27 

biogeochemical models. We suggest iterative information exchange to refine the objectives of 28 

high-resolution investigations and to specify limited dynamics for representation in large-scale 29 

models, resulting in a new class of omics-enabled biogeochemical models. Assimilating 30 

theoretical and modelling frameworks from different scientific domains is the next frontier in 31 

SOM decomposition modelling, and advancing technologies in the context of stoichiometric 32 

theory provides a consistent framework for interpreting molecular data, and further distilling this 33 

information into tractable SOM decomposition models. 34 
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Introduction.  37 

The world’s soil ecosystems contain a pool of carbon that is larger than vegetation and 38 

atmospheric stocks combined, with 1500 Gt C stored in the top one meter alone (Batjes 2016). A 39 

large proportion of belowground C is contained in soil organic matter (SOM) whose 40 

destabilization has the potential to dramatically alter future climates (Crowther et al. 2019). Soil 41 

organic matter decomposition is regulated by physical, chemical, hydrologic, and biological 42 

controls (collectively called biophysical controls) on resource availability that determine 43 

microbial energy generation and carbon and nutrient acquisition (Robertson et al. 2019; Wang & 44 

Houlton 2009; Zhang et al. 2014). These processes are notoriously difficult to measure and 45 

predict beyond the scale of experimental plots (Bond‐Lamberty et al. 2016; Naylor et al. 2020). 46 

Because of this, SOM decomposition at scales most relevant to climate change largely continues 47 

to be predicted through generalized environmental proxies such as moisture, temperature, 48 

minerology, and total soil C or nutrient pool sizes (Bailey et al. 2018) –– parameters that leave a 49 

substantial amount of uncertainty surrounding model predictions (Todd-Brown et al. 2014; 50 

Todd-Brown et al. 2013). The shortcomings of predicting SOM decomposition beyond localized 51 

scales point to a need for scalable spatial and biogeochemical processes in SOM decomposition 52 

models (Todd-Brown et al. 2013).  53 

This topic has received considerable attention from multiple scientific domains over the 54 

past few decades, resulting in parallel advances between biogeochemical and microbial research 55 

(Fig. 1) and calls for greater diversity of measurements used within biogeochemical models 56 

(Billings et al. 2021). Collectively, we have made outstanding progress in our understanding of 57 

global C cycles; however, a key opportunity remains in integrating theoretical and modelling 58 

frameworks from different scientific domains. Existing classes of models each have strengths at 59 



 5 

different scales and environmental contexts –– where one model fails, another excels. Recent 60 

work has improved conceptual, empirical, and numerical representations of mineral protection 61 

and hydrologic mechanisms that regulate microbial access to SOM (Blankinship et al. 2018; 62 

Waring et al. 2020; Woolf & Lehmann 2019). In contrast, detailed representations of the 63 

microbial metabolisms that directly convert SOM into carbon dioxide are still missing from 64 

predictive models at the ecosystem-scale (Stone et al. 2021). Soil organic matter decomposition 65 

(particularly unprotected SOM) is often rate-limited by microbial metabolism (Dwivedi et al. 66 

2019; Hunter et al. 1998; Lehmann & Kleber 2015). In turn, microbial decomposition is coupled 67 

to necromass stabilization that is now thought to be the primary mechanism of belowground C 68 

storage (Cotrufo et al. 2013; Kallenbach et al. 2015; Kallenbach et al. 2016; Liang et al. 2019; 69 

Robertson et al. 2019; Zhang et al. 2021; Fig. 2). Microbial processes and soil physical 70 

properties are therefore central considerations in SOM modelling, but they are still coarsely 71 

represented in cutting edge SOM decomposition models. Due to recent technological 72 

achievements, we now have the ability to measure soil biophysical properties with high 73 

molecular resolution (i.e., genes, transcripts, proteins, and metabolites, and soil mineralogy, 74 

porosity, chemistry). Our current challenge lies in interpreting and scaling these vast molecular 75 

data types into information useful for biogeochemical models (Hall et al. 2018; Malik et al. 76 

2020). Next-generation models that are able to link across molecular to ecosystem scales should 77 

enable more robust predictions of SOM decomposition (Chowdhury et al. 2019), with follow-on 78 

improvement in global C cycling predictions.  79 

 80 

Research Opportunities for Integrating Microbial and Biogeochemical Modelling 81 

Approaches 82 
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 The importance of various controls on decomposition rates differs with the state of SOM 83 

at a given point in time and space, the portion of the soil system that is being represented in a 84 

given model, and/or with the predictive goal of the model. Biophysical attributes that regulate 85 

SOM decomposition collectively vary with soil type and horizon (Patel et al. 2021; Rumpel & 86 

Kögel-Knabner 2011); and SOM pool size and composition is dynamic within a single 87 

environment. SOM is continuously added to soils through plant litter production, root turnover, 88 

and rhizodeposition, while simultaneously being metabolized through microbial decomposition 89 

that leads to secondary metabolites and biomass synthesis, all of which have multiple possible 90 

routes through soil C cycles (Cotrufo et al. 2013; Liang et al. 2019; Sulman et al. 2014; Wieder 91 

et al. 2014). Small changes in the balance of various SOM inputs and subsequent decomposition 92 

processes impact the overall fate of C within the Earth system. Embedded in this is an 93 

understanding of rate limitation, as soil biology interacts with physiochemistry to constitute a 94 

holistic soil ecosystem. In some cases, SOM decomposition may be regulated by abiotic 95 

interactions with soil biology –– relationships between SOM substrates and microbial 96 

decomposition are perhaps most important in the soil organic horizon and within the rhizosphere 97 

in mineral layers, where decomposition ultimately regulates C flow to persistent SOM pools  98 

These ideas have been formalized into a biogeochemical model that centers on mineral 99 

stabilization while also highlighting the controls of microbial metabolic efficiency on rates of 100 

SOM formation and accumulation (Robertson et al. 2019, Fig. 2). While there may be physical 101 

limits on the amount of SOM that can accumulate in mineral layers (the C-saturation hypothesis, 102 

Six et al. 2002; Stewart et al. 2007), Craig et al. (2021) recently used a simulation model to show 103 

that microbial community dynamics which impact biomass C flow are also strong regulators of 104 

mineral-stabilized SOM. As such, microorganisms impact SOM cycling across all soil horizons. 105 
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Understanding the strength and mechanisms of this regulation across different portions of the 106 

soil system (e.g., size fractions and horizons) will further help constrain SOM model 107 

development but is beyond the scope of this paper. 108 

Key foci of biogeochemical modelling efforts to improve estimates of SOM 109 

decomposition and/or accumulation include mineral-SOM interactions, soil hydrologic 110 

properties, chemical speciation of SOM, and microbial bimass and/or microbial use efficiency 111 

(Dungait et al. 2012; Robertson et al. 2019; Wieder et al. 2014; Zhang et al. 2021). 112 

Physicochemical protection (e.g., mineral-associated ‘MAOM’ or ‘protected pool(s)' vs. 113 

'unprotected pool(s)' including rhizosphere and particulate organic matter) and SOM chemistry in 114 

particular are pervasive across most classes of biogeochemical models (Robertson et al. 2019; 115 

Sulman et al. 2014; Zhang et al. 2021). For instance, the PROMISE framework centers on SOM 116 

accessibility as a key determinant of decomposition, encompassing the known roles of clay 117 

mineral composition and heterogeneity in residence times of identical molecules (Müller & 118 

Höper 2004; Waring et al. 2020). State-of-science biogeochemical frameworks, even those with 119 

an emphasis on physical processes, acknowledge chemical diversity within all SOM pools by 120 

using chemical parameters to constrain the fate of various classes SOM and/or generate 121 

distribution of decomposition rates for a given pool (Azizi‐Rad et al. 2021; Robertson et al. 122 

2019; Waring et al. 2020; Zhang et al. 2021). 123 

While the rate-limiting biophysical factor(s) fluctuates with environmental context, 124 

microbial metabolism is the proximate control of bioavailable SOM decomposition in all cases. 125 

Because the connectivity between protected and unprotected SOM is already encompassed by 126 

state-of-science biogeochemical models, we largely consider processes occurring within 127 

unprotected SOM pools when considering avenues for consolidating microbial and 128 
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biogeochemical models. While we recognize that pore-scale spatial data is critical to 129 

understanding SOM decomposition, these data types remain difficult to obtain and are not yet 130 

widely used. In contrast, omics data are becoming widespread, and information on microbial 131 

communities reflect their underlying physical and chemical habitat. Process-based models 132 

arising from microbiology generally represent much smaller spatial and temporal scales than 133 

biogeochemical models, with inputs comprised of higher molecular resolution data. They tend to 134 

focus on genomic pathways or microbial traits that lead to decompostion (Borer et al. 2019; 135 

Borer & Or 2021; Heinken et al. 2021; Malik et al. 2020; Wang & Allison 2021).  136 

Each class of microbial and biogeochemical models provides valuable information on 137 

SOM decomposition while also acknowledging considerable error and seeking opportunities for 138 

improvement. Therefore, a pressing question remains: how do we merge disperate model 139 

structures and underlying theoretical assumptions such that we maximize our predictive power of 140 

SOM decomposition, mineralization, and stabilization? 141 

We see a ripe opportunity for harmonizing microbial and biogeochemical SOM models 142 

within and across all scales through substrate (plant and microbial) chemistries, which determine 143 

SOM composition (from a biogeochemical perspective) as well as the rate and pathway of 144 

microbial metabolism (from a microbial perspective). Billings et al. (2021) have identified SOM 145 

chemistry as a measurement for the next generation of soil C research, highlighting the 146 

increasing usage of molecular advances such as Fourier-Transformed Infrared Spectroscopy 147 

(FTIR, Cheng et al. 2006; Keiluweit et al. 2010), mid-infrared spectral libraries (Dangal et al. 148 

2019), and Diffuse Reflectance Fourier-Transformed Infrared (DRIFTS, Kaiser & Ellerbrock 149 

2005; Leue et al. 2010). Substrate chemistry is represented in fine-scale biogeochemical models 150 

(e.g., reaction networks and reactive transport models) by influencing reactions with specific 151 
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SOM molecules, extracellular enzymes, or inorganic nutrients (Porta et al. 2018; Riley et al. 152 

2014; Wilson et al. 2019). Microbiology also considers substrate chemistry at the individual 153 

level (e.g., single cell metabolic models), albeit with different terminology, in the framework of 154 

metabolomics. Metabolic models consider substrate chemistry in the context of a model 155 

organism’s genome to make predictions of growth dynamics or specific metabolomic products 156 

(e.g., GEMS, Duarte et al. 2004; Loira et al. 2012; Lu et al. 2019). Biogeochemical models at 157 

intermediate scales consider the composition of elemental and SOM pools, often through 158 

relatively coarse parameters such as fast vs. slow cycling SOM pools (unprotected vs. protected), 159 

mineral SOM, chemical classes or C:N ratios of SOM, and/or organic vs. inorganic nutrient 160 

pools. Many recent advances to consider SOM composition have been incorporated in MEND 161 

(Wang et al. 2020a; Wang et al. 2015), RESOM (Tang & Riley 2015), CORPSE (Sulman et al. 162 

2014) and MIMICS-CN (Kyker-Snowman et al. 2020), yet none leverage molecular chemical 163 

information or stoichiometry of compounds or elements other than C and N. Microbial models at 164 

the intermediate-scale simulate interactions between individuals, limited sets of individuals (or as 165 

cumulative “mixed-bag” organisms)(Henry et al. 2016), or their characteristic traits to predict 166 

metabolite chemistry or changes in the growth of specific organisms or functional guilds 167 

(Bouskill et al. 2012; Follows & Dutkiewicz 2011; Malik et al. 2020; Reed et al. 2014). Recent 168 

research has also implicitly used the intersection of biogeochemistry and microbiology through 169 

substrate chemistry in order to move towards integration by representing fine- (individual 170 

microbial metabolisms and metabolites), intermediate- (groups of microorganisms and/or 171 

elemental pool composition), and coarse-resolution (multiple interacting microbial groups, 172 

“mixed bag” communities, and/or elemental pool sizes) connectivity of microbial drivers and 173 

biogeochemical outcomes in predictive models at a particular level of resolution (Fig. 1, 3, 4). 174 
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Most of the aforementioned biogeochemical models also include some aspects of mineral-OM 175 

interactions and/or soil hydrologic properties.  176 

Despite their coarse representation of microbial processes, biogeochemical models with 177 

explicit microbial dynamics represent an improvement over seminal biogeochemical models 178 

(Wieder et al. 2013). This has led to soil microbiology research aimed at improving predictions 179 

of SOM decomposition through microbial genomics. For instance, Stone et al. (2021) recently 180 

demonstrated that the efficiency of microbial SOM decomposition co-varies with taxonomy and 181 

soil nutrient status. Other efforts include the prediction of microbial carbon use efficiency from 182 

microbial metagenomes (Saifuddin et al. 2019), microbial function under warming (Guo et al. 183 

2020), and SOM decomposition from genome-derived microbial traits (Malik et al. 2020; Wang 184 

& Allison 2021) –– all of which emerge from decades of work in microbial ecology aiming to 185 

understand the role of microbiome composition in SOM decomposition (Graham et al. 2016). 186 

State-of-science models in both biogeochemistry and microbiology arise out of a need to move 187 

beyond pool-based models towards continuous relationships between microbial metabolism and 188 

SOM decomposition and persistence (Tang & Riley 2020; Waring et al. 2020), but they rely on 189 

different underlying frameworks such that there are few common concepts, parameters, and 190 

equations with which to connect biogeochemical and microbial models.  191 

Ecological stoichiometry (i.e., the role of elemental composition in regulating ecological 192 

interactions, Sterner & Elser 2002; Van de Waal et al. 2018) is a useful framework for cross-193 

scale and cross-domain integration. While many biogeochemical models are built on the 194 

principles of ecological stoichiometry, they are largely absent from microbial models. Ecological 195 

stoichiometry uses the elemental (e.g., C:H:N:O:P:S) imbalance between organisms and their 196 

substrates to predict that nutrient limitations universally control biological activity (Elser et al. 197 
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2000; Elser et al. 1996; Sterner 1995). It has been leveraged to decipher overarching patterns in 198 

the processes governing SOM decomposition (Billings & Ballantyne IV 2013; Sinsabaugh et al. 199 

2013; Sinsabaugh & Shah 2011) and is the guiding framework for decades of biogeochemical 200 

investigations that spawned process-based models.  201 

Biogeochemical modelling research has begun to explore the usage of ecological 202 

stoichiometry across a broad range of scales. At the largest scale (pool models), a recent update 203 

to the CENTURY model (Parton 1996) demonstrates increased accuracy from a tighter coupling 204 

of C and N dynamics (Berardi et al. 2020). At higher molecular resolution, Buchkowski et al. 205 

(2019) have improved predictions of SOM decomposition by more explicitly accounting for the 206 

stoichiometries of microbial biomass and SOM. Fatichi et al. (2019) have proposed direct 207 

representation of microbial communities involved in coupled SOM and nutrient cycling, an 208 

approach that could not only aid in increasing the accuracy of SOM decomposition predictions 209 

but also become a useful tool for empiricists to interpret multidimensional microbial data.  210 

By using an ecological stoichiometry framework to combine new microbiological and 211 

computational tools with biogeochemistry, we have an unexploited opportunity to combine 212 

predictive models across measurement scales and to better understand global patterns in 213 

microbial SOM decomposition. The use of top-down (ecosystem to molecular) and bottom-up 214 

(molecular to ecosystem) information exchange guided by ecological stoichiometry can 215 

iteratively (1) refine the objectives of high molecular resolution investigations and (2) specify a 216 

limited set of dynamics for representation in large-scale models through omics-enabled reaction 217 

networks (Fig. 4). Top-down approaches leverage bulk biogeochemical pool sizes to identify 218 

nutrient limitation(s) that then guide parameters selection and calibration of reduced complexity 219 

models. Bottom-up approaches use stoichiometric principles to guide the analysis and 220 
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interpretation of large molecular datasets by establishing predictive rules that are translatable 221 

across scales. We propose that coupling these methods can specifically improve representations 222 

of SOM decomposition within the soil organic layer that ultimately regulate C transport and 223 

stabilization in mineral horizons. By using ecological stoichiometry as a conceptual and 224 

modelling framework to transfer knowledge across scales and couple existing models, we have 225 

the potential to develop a new generation of reduced complexity omics-enabled models. 226 

 227 

Ecological Stoichiometry as a Guiding Framework in Soil Organic Matter Decomposition. 228 

Microbial (i.e., fungal, bacterial, archaeal, and viral) degradation of chemically diverse 229 

SOM is reliant on broader organismal and soil stoichiometry (Buchkowski et al. 2015; 230 

Buchkowski et al. 2019; van Groenigen et al. 2006). Nutrient availabilities in soil determine the 231 

metabolic pathways (and their efficiencies) and substrates that are used during SOM 232 

decomposition (Ge et al. 2020; Sinsabaugh et al. 2016; Wei et al. 2020). In turn, microbial 233 

decomposition and necromass products fuel a cycle of SOM decomposition, formation, and 234 

stabilization. Much belowground nitrogen (N) and sulfur (S) is stored within organic matter that 235 

is mineralized by soil microbial communities (Freney 1986; Jenkinson 1990; Kirkby et al. 2011). 236 

While phosphorus (P) availability is often associated with mineral weathering, the decomposition 237 

of organic matter is a key source of P in many ecosystems (Heuck et al. 2015; Margalef et al. 238 

2017). Microbial decomposition increases the bioavailability of plant inputs and SOM by 239 

cleaving polymeric compounds into simple C substrates that can be directly assimilated by 240 

microorganisms. This process is often catalyzed by extracellular enzymes that release nutrients 241 

from organic matter, connecting C, N, S, and P cycling (Allison et al. 2014). Viral predation can 242 

also influence these dynamics by lysing specific clades of microorganisms and by influencing 243 
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organic matter accessibility to microorganisms (Kuzyakov & Mason-Jones 2018; Weinbauer 244 

2004; Wilhelm & Suttle 1999). Global patterns of mechanisms governing SOM formation and 245 

cycling and the specific environmental conditions under which certain metabolic pathways are 246 

favored by microbial communities are active areas of research.  247 

Identifying parameters that regulate decomposition across different ecosystems is 248 

challenging because heterogeneity in nutrient statuses, substrate energetics, mineral and 249 

hydrologic properties, and microbial communities can lead to different apparent controls in 250 

different soils (Milcu et al. 2011; Sullivan et al. 2014). In some cases, rates of decomposition are 251 

linked to microbial adjustments in the acquistion of specific elements in response to differences 252 

between microbial biomass and substrate stoichiometries (i.e., nutrient limitations, Billings & 253 

Ballantyne IV 2013; Billings & Ziegler 2008; Frost et al. 2005; Manzoni 2017; Manzoni et al. 254 

2008; Spohn 2016; Sterner & Elser 2002). This research is rooted in the paradigm that organisms 255 

exhibit stoichiometric homeostasis in which they maintain stable biomass elemental ratios 256 

regardless of substrate stoichiometry. It leads to the prediction that nutrient limitations 257 

universally regulate biological activity (Redfield 1958; Spohn 2016). Specifically, the relative 258 

strength of the relationship between microbial metabolisms involved in N, S, or P acquisition and 259 

SOM decomposition should be strongest in soils with the lowest underlying proportion of that 260 

element. Indeed, the stoichiometry of microbial biomass features relatively little global variation 261 

(60:7:1 C:N:P) (Cleveland & Liptzin 2007) and substrate stoichiometries are highly variable 262 

(Frost et al. 2005; Manzoni 2017; Manzoni et al. 2008; Spohn 2016; Sterner & Elser 2002), 263 

supporting a dynamic in which microorganisms must adapt to account for soil nutrient 264 

concentrations.  265 
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The dependency of SOM decomposition on soil nutrients has been investigated most 266 

frequently using a suite of biogeochemical techniques in observational or fertilization studies 267 

such as CO2 flux, mass loss, bulk chemistry (e.g., C:N), microbial biomass measurements, and/or 268 

potential enzyme activity measurements (Sullivan et al. 2014). Each of these approaches 269 

provides indirect evidence for nutrient-regulated microbial decomposition using comparatively 270 

low molecular resolution. Additionally, the majority of researchers quanitfy total or coarsely-271 

defined lumped C pools with minimal characterization of specific SOM compound classes or 272 

their stoichiometry. For instance, the classical pool and flux model focuses on three or four 273 

operationally defined C pools that are connected by biological drivers of decomposition, namely 274 

extracellular enzymes (Abramoff et al. 2018). As such, current estimates of nutrient limitations 275 

on SOM decomposition vary widely (Cleveland et al. 2006; Grandy et al. 2008; Kirkby et al. 276 

2013; Kirkby et al. 2014; Sullivan et al. 2014; Takriti et al. 2018), and the majority of research 277 

has focused on a few elements, generally on linkages between C and N cycling (Cleveland et al. 278 

2006; Grandy et al. 2008; Khan et al. 2016; Kirkby et al. 2013; Kirkby et al. 2014). 279 

Microbial potential enzyme activity remains the primary tool in biogeochemical research 280 

for measuring the decomposition potential of specific compound classes in SOM pools. 281 

Extracellular enzymes catalyze the depolymerization of complex SOM compounds into simpler 282 

molecules for direct uptake and are ubiqutous in soils (Allison et al. 2010). The standard suite of 283 

enzyme assays target organic substrates including proteins, carbohydrates, amino sugars, organic 284 

phosphates, and lignins (Allison et al. 2007; Burns 1982; Sinsabaugh & Shah 2011). However, 285 

several microbially-mediated steps in SOM decomposition––notably those catalyzed by phenol 286 

oxidases, peroxidases, and sulfatases which are more constrained by methodological limitations 287 

in enzyme activity assays––are under investigated than others (e.g., widely-assayed NAG, BG, 288 
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phosphatases). Additionally, while the ratios of enzyme activities have been used to assess 289 

nutrient limitations (Grandy et al. 2008; Hill et al. 2014; Jing et al. 2020; Moorhead et al. 2013; 290 

Sinsabaugh et al. 2008), these assays can be influenced by pH and substrate availability and only 291 

provide potential rates. They are low molecular resolution compared to many omics-based 292 

apporaches because they target chemical bonds contained by classes of SOM rather than specific 293 

molecules, and they can have long turnover times that decouple them from SOM cycling at a 294 

specific point in time (Schimel et al. 2017).  295 

Microbial investigations into nutrient-regulated SOM decomposition have traditionally 296 

used a complementary set of tools, revealing differences in metabolic strategies to maintain 297 

stoichiometric homeostasis using lumped traits (e.g. community-level variation between bacteria 298 

and fungi or copiotrophic and oligotrophic metabolisms, Elser et al. 2003; Fierer et al. 2007; 299 

Strickland & Rousk 2010). Changes in microbial heterotrophy has also been suggested to vary 300 

microbial preferences for C vs. N globally, an inference drawn from primarily biogeochemical 301 

data (Taylor & Townsend 2010). Understanding how changes in metabolic strategies of 302 

individual microorganisms respond to changes in substrate stoichiometry scale to a microbial 303 

community’s elemental use efficiency and capacity for decomposition is a key unknown in 304 

process-based modelling. 305 

Omics-based characterization of microbial communities (i.e., metagenomic, 306 

metatranscriptomic, metaproteomic, and metabolomic) and other high molecular resolution 307 

approaches (e.g., chemical probes) provide direct means to evaluate how stoichiometry regulates 308 

the ecology of decomposition. These approaches have been highlighted as emerging tools in 309 

ecological stoichiometry but are not yet widely implemented (Van de Waal et al. 2018). 310 

Microbial genes and their expression patterns can reveal the genetic potential (genes), expression 311 



 16 

(transcripts), and translation (proteins) of specific enzymes involved in decomposition and more 312 

directly evaluate if biological N, S, and P acquisition vary predictably with SOM stoichiometry. 313 

While these modern microbial approaches have their own limitations (e.g., data annotation and 314 

discrepancies in turnover time when compared to rates), they provide a more complete 315 

representation of biogeochemical cycles than enzyme potential assays.  316 

Several potential analysis targets for stoichiometric regulation of SOM decomposition 317 

have been identified in omics pipelines. For example, Finn et al. (2020) and Wilhelm et al. 318 

(2019) proposed lists of relevant Kyoto Encyclopedia of Genes and Genomes (KEGG) 319 

Orthologies and Carbohydrate-Active enzyme database (CAZy) annotations. These contain 320 

enzymes involved in the decomposition of organic C as well as N, S, P, and iron cycles, 321 

including commonly measured enzymes. They span many classes of enzymes involved in soil C 322 

and nutrient cycling, including those targeting cellulose, hemi-celluloses, lignin, cellobiose, 323 

mineral and organic N, mineral and organic P, and mineral and organic S. These provide a 324 

tangible and comprehensive set of microbial genes, transcripts, proteins, and metabolites that is 325 

consistent with biogeochemical methods used to investigate SOM decomposition. New 326 

annotations for molecular markers involved in SOM decomposition continue to be discovered, 327 

and our ability for molecular resolution into stoichiometry-based processes, if viewed within a 328 

consistent framework to biogeochemical applications, can help illuminate patterns where 329 

biogeochemical models lack mechanistic resolution. 330 

 331 

Opportunities for Ecological Stoichiometry and High-Resolution Measurements in SOM 332 

Decomposition Modelling. 333 
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Stoichiometric relationships underlie the kinetics of SOM decomposition (for instance, 334 

through nutrient limitations) and therefore are essential to developing and incorporating omics-335 

enabled models into ecosystem scale models. The enormous amount of soil microbial and 336 

chemical diversity provided by new molecular data types complicates these efforts (Jansson & 337 

Hofmockel 2018) such that most current SOM decomposition models cannot yet account for 338 

cutting-edge molecular approaches to represent detailed microbial processes. Additionally, there 339 

is a need to move beyond models that separate SOM by chemical, physical, and functional 340 

properties (e.g., pool-based models) to more fluid relationships between microorganisms and 341 

SOM decomposition (Abramoff et al. 2018; Tang & Riley 2020; Waring et al. 2020). Microbial 342 

data mining approaches have made incremental advances to this effort, but remaining obstacles 343 

underline an opportunity for broader use of ecological frameworks, such as stoichiometric 344 

theory, to guide targeted investigations particularly with respect to unprotected pools of SOM 345 

(Fig. 2). This approach can help determine which pathways to include in any metabolic model 346 

and further scale high molecular resolution predictions to soil ecosystems (Zakem et al. 2020). 347 

Below, we highlight opportunities for ecological stoichiometry to inform the development and 348 

merging of high-resolution models such as omics-enabled reaction networks with 349 

biogeochemical models at larger scales (Fig. 4). 350 

State-of-science models already implicitly use ecological stoichiometry to unify 351 

microbiology and biogeochemistry at intermediate scales, as they constrain rates of SOM 352 

decomposition with parameters that represent nutrient availability, stoichiometries of organic 353 

substrates or microbial biomass, and carbon and nutrient use efficiencies [e.g., MEND (Wang et 354 

al. 2020a; Wang et al. 2015), RESOM (Tang & Riley 2015), and MIMICS-CN (Kyker-Snowman 355 

et al. 2020)]. These models arise from biogeochemical research and are based on C pools with 356 
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lumped characteristics. However, they generally include two elements at most, in part due to 357 

computational barriers to representing all processes in all elemental cycles as well as their 358 

interconnectivity (Abramoff et al. 2018; Moorhead et al. 2012; Sulman et al. 2019; Wang et al. 359 

2015; Wieder et al. 2015).  360 

A small set of coarse parameters is often used to denote microbial processes within state-361 

of-science biogeochemical models, in particular C and nutrient use efficiencies (CUE, NUE) that 362 

describe C and nutrient conversion into microbial biomass (Allison et al. 2010; Cleveland & 363 

Liptzin 2007; Geyer et al. 2016; Min et al. 2016; Sihi et al. 2016; Sinsabaugh et al. 2013; 364 

Sinsabaugh et al. 2016; Wang et al. 2015; Wieder et al. 2014). CUE and NUE incorporate the 365 

principles of ecological stoichiometry into microbial-explicit biogeochemical models by serving 366 

as proxies for generalized microbial activity. They are most often estimated from empirical 367 

measurements of organic matter stoichiometry and/or microbial biomass, or from the ratios of C- 368 

vs. nutrient-acquring enzymes (Manzoni et al. 2012; Sinsabaugh et al. 2016). Under nutrient 369 

limitation, microorganisms reduce their C uptake, acquire nutrients, and/or respire or excrete 370 

excess C as enzymes or metabolites such that C assimilation into biomass often declines 371 

(Anderson et al. 2005; Del Giorgio & Cole 1998; Manzoni 2017; Manzoni et al. 2017; Manzoni 372 

et al. 2008; Middelboe & Søndergaard 1993; Milcu et al. 2011; Mooshammer et al. 2014b; Smith 373 

& Prairie 2004; Sterner & Elser 2002). Thus, CUE typically decreases when nutrients are 374 

limiting. In contrast, when nutrients exist in excess, microorganisms adjust their uptake or rate of 375 

respiration/excretion to decrease NUE (Milcu et al. 2011; Mooshammer et al. 2014a).  376 

The balance of stoichiometric impacts on decomposition is difficult to predict due in part 377 

to microbial interactions (i.e., stoichiometry influences individual behavoir rather than 378 

community-level behavoir that ultimately regulates decomposition, Manzoni 2017; Manzoni et 379 
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al. 2012; Sterner & Elser 2002), highlighting an opportunity for improvement through omics-380 

enabled research. There is also large variation in the relationship of microbial CUE and NUE to 381 

SOM decomposition due to spatial and temporal changes in resource availability, microbial 382 

community structure, and soil physical properties (Frey et al. 2013; Herron et al. 2009; Malik et 383 

al. 2018; Manzoni et al. 2012; Qiao et al. 2019; Sinsabaugh et al. 2013; Sinsabaugh et al. 2016). 384 

Biogeochemical models have shown that small changes in CUE can have large impacts on SOM 385 

decomposition (Li et al. 2014; Six et al. 2006; Wieder et al. 2013), offering an intriguing 386 

possibility for model improvement through detailed representations of nutrient-regulated 387 

microbial metabolic pathways to develop scalable omics-enable reaction networks. 388 

At the finest molecular resolution where microbial information is best-suited (Fig. 3), 389 

there is a limited set of modelling approaches that currently predict rates of SOM decomposition, 390 

largely through by representing genomic and/or metabolic processes. Omics-enabled metabolic 391 

models, in particular, infer function from molecular data types by placing annotations within the 392 

context of a cell’s biochemical abilities to consume substrates, grow, and produce energy 393 

(Cuevas et al. 2016). They are capable of including thousands of genes, metabolites, 394 

transcriptomes, proteomes, and associated reactions (Lieven et al. 2020; Seaver et al. 2020). 395 

However, they are limited by a set of biochemical reactions selected a priori that define the 396 

possible functions of microorganisms and provide a structure in which to root functional 397 

annotations (Seaver et al. 2020). In tandem, flux balance analysis is widely used within omics-398 

enabled models to predict fluxes through the reactions in a metabolic network (Cuevas et al. 399 

2016; Orth et al. 2010). These omics-enabled models can also be coupled to other methods of 400 

decoding high-resolution molecular data, such as thermodynamic theory (Garayburu-Caruso et 401 
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al. 2020; Song et al. 2020), deep learning (Zampieri et al. 2019), or network modelling (Kessell 402 

et al. 2020; McClure et al. 2020) to further extend their applicability.  403 

We see opportunity for ecology stoichiometry to provide this framework by guiding 404 

representations of microbial metabolism in biogeochemical models, particularly where 405 

stoichiometric regulation already exists in the unprotected or biologically-available SOM pools 406 

of many microbial-explicit biogeochemical models (e.g., MEND-CN, MIMICS-CN), and as a 407 

complement to abiotic controls in mineral soil (Fig. 4). Ecological stoichiometry influences the 408 

behavior of individual microorganisms, as they act to maintain stoichiometric balance through 409 

adjusting growth rate or biomass stoichiometry and/or mining or excreting nutrients. This 410 

understanding could be incorporated into individual-scale models by adjusting active metabolic 411 

processes based on environmental nutrient context, for instance through metabolic flux analysis. 412 

Increasing in scale towards trait-based models (e.g., Malik et al. 2020; Wang & Allison 2021), 413 

ecological stoichiometry operates by impacting the growth rates of organisms with particular 414 

traits – for example, microorganisms with specific nutrient acquisition pathways, r- and K- life 415 

strategies, stress tolerance, or other competitive advantages. Incorporation of stoichiometric 416 

principles such as substrate stoichiometry and/or environmental nutrient status at this scale can 417 

guide an individual’s expressed metabolisms in the context of other microorganisms, as well as 418 

the interactions of their metabolites and extracellular enzymes, and provides a more 419 

computationally favorable model structure. In turn, these omics-enabled representations can 420 

provide resolution into SOM cycling that currently aggregates microbial activity via lumped 421 

SOM pools and complement existing representations of mineral-sorption processes (Fig. 4). 422 

Ecological stoichiometry can also aid in merging models from microbiology and 423 

biogeochemistry by constraining the need for detailed representations of specific SOM 424 
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decomposition pathways based on environmental context. In a bottom-up approach, ecological 425 

stoichiometry provides an overarching hypothesis and sets a priori expections for pathways of 426 

interest to assist in the interpretation of omics measurements (Fig. 4). Using either hypothesis-427 

driven experiments or observational data from ecological networks, data mining efforts could 428 

focus on nutrient acquisition metabolic pathways (e.g., peptidase-, phosphatase-, and sulfatase-429 

including metabolic pathways) in order of hypothesized nutrient limitations in order to compress 430 

a multi-omic data set of nearly any size to a manageable amount of data. Data from multiple 431 

sources across ecoregions can be leveraged in this way to move towards transferrable principles 432 

of SOM decomposition. Metabolic pathways with the most predictive power of SOM 433 

decomposition (inferred from transcripts, proteins, and metabolites mapping to metabolic 434 

pathways) then guide the portions of intermediate-scale models in which greater resolution of 435 

these pathways could lead to more accurate predictions. This could result in inclusion and/or 436 

calibration of specific portions of SOM pools that are most tightly coupled to decomposition 437 

rates [e.g., protein or necromass pools] or of specific metabolic pathways instead of lower 438 

resolution measurements such as CUE and NUE. Dynamically activating omics-enabled reaction 439 

networks for a specific nutrient status could provide the maximum benefit of high molecular 440 

resolution while being computationally tractable. In turn, parameters and rate estimates made at 441 

the intermediate scale can then influence the relative importance of variables in low molecular 442 

resolution models such as CUE/NUE, bacterial:fungal biomass, and/or biomass C:N:S:P. 443 

In parallel, top-down approaches use coarsest measurement scale (e.g., bulk 444 

biogeochemistry) to first identify nutrient limitation(s) that then guide model development at 445 

higher molecular resolutions. Patterns in nutrient concentrations and pool sizes can inform the 446 

selection of limited high-resolution parameters for inclusion in reduced complexity models 447 
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thereby optimizing added value from molecular techniques. For instance, soil nutrient status at a 448 

given point in time can be inferred from bulk measurements of soil biogeochemistry and nutrient 449 

amendment experiments, and subsequently used to define a set of reactions that should most 450 

strongly impact rates of SOM decomposition. Examples might include representing organic N 451 

cycles (or amino acid metabolisms therein) for N limitation, microbial biomass recycling 452 

(necromass decomposition) for P limitation, and/or organosulfatases for S limitation––or 453 

combinations therein in the case of nutrient co-limitation––in omics-enabled reaction networks 454 

(Fig. 4). Outcomes from models with enhanced representation of specific SOM decomposition 455 

pathways can then further point to specific microbial genes/transcripts/proteins in pathways 456 

associated with the rate limiting step in SOM decomposition (if biological). Using this approach, 457 

we can narrow down molecular data to specific microbial metabolisms or omics markers of 458 

interest to build omics-enabled models including only the most relevant parameters that are 459 

scalable to the level of soil ecosystems. This approach reduces the computational cost of high 460 

resolution reaction networks by only representing portions of a soil ecosystem that most strongly 461 

impact SOM decomposition in detail. 462 

When used in combination, the result of these iterative approaches is a new suite of 463 

models that represent a limited set of microbial metabolisms, guided by stoichiometric principles 464 

and high-resolution molecular measurements, that are computationally feasible and more 465 

accurately predict SOM decomposition, termed ‘omics-enabled biogeochemical models’ (Fig. 4). 466 

Such models address a major challenge to the next generation of predictive models––deriving 467 

omics-enabled reaction networks that can improve assessments of soil C storage and emissions 468 

across molecular-to-ecosystem scales. 469 

 470 



 23 

Opportunities afforded by investments in new molecular and computational technologies 471 

The power of ecological stoichiometry to guide model development across scales of 472 

biological complexity can increase even further when leveraged in combination with new 473 

advances in molecular technologies and machine learning algorithms. Research that 474 

simultaneously investigates microbial roles in C, N, S, and P cycling is rare, and enzyme activity 475 

assays are imprecise relative to omics or probe-based assays. Investments in untargeted 476 

molecular approaches are generating new SOM cycling analyses by allowing detection of active 477 

microbial metabolisms. These are nascent technologies that have the potential to improve our 478 

understanding of SOM decomposition but need greater usage and development to surmount 479 

remaining challenges. 480 

We especially highlight stable isotope probing (SIP, Bernard et al. 2007; Dumont & 481 

Murrell 2005; Pepe-Ranney et al. 2016), new ultrahigh-resolution metabolomics (Tfaily et al. 482 

2017), activity-based protein profiling (ABPP, Killinger et al. 2019), and machine learning as 483 

new classes of technologies deserving of further development and broader consideration. Briefly, 484 

microbial applications of SIP use substrates enriched in heavy isotopes (e.g., 13C, 18O, 15N) 485 

amended to microbial communities to reveal isotope-labeled biomarkers of active microbial 486 

populations (Bernard et al. 2007; Dumont & Murrell 2005; Pepe-Ranney et al. 2016). While SIP 487 

has long been used in biogeochemistry, recent advances are increasing the tractability of SIP 488 

within amplicon profiles, metagenomes, metatranscriptomes, and metaproteomes (Barnett & 489 

Buckley 2020; Jameson et al. 2017; Pepe-Ranney et al. 2016; Wilhelm et al. 2019; Youngblut et 490 

al. 2018a; Youngblut et al. 2018b). In parallelel, ultrahigh-resolution metabolomics, such as 491 

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS, Tfaily et al. 2015; 492 

Tfaily et al. 2017), can illuminate new aspects of SOM chemistry by enabling the determination 493 
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of elemental stoichiometry in thousands of SOM molecules simultaneously (Tfaily et al. 2017). 494 

Formulas assigned via ultrahigh-resolution metabolomics are a promising tool for evaluating 495 

metabolisms influenced by ecological stoichiometry by providing information on molecules with 496 

specific stoichiometries (e.g., C:N ratios of SOM molecules in a standing pool) or changes in 497 

these molecules during the course of experiments. Finally, new targeted approaches can improve 498 

the accuracy of existing enzyme-based approaches. Activity-based protein profiling (ABPP, 499 

Killinger et al. 2019), for example, leverages chemical probes that react irreversibly with protein 500 

families to identify enzymes binding to specific molecules, and when paired with mass 501 

spectrometry-based approaches, can also quantify rates of enzyme production (Killinger et al. 502 

2019). In contrast to enzyme activity assays that reveal potential enzyme rates, ABPP has the 503 

potential to dramatically improve investigations of SOM decomposition by revealing the true 504 

expression of decomposition enzymes; however, it has never been used in soils (Sadler & Wright 505 

2015; Whidbey & Wright 2018; Zegeye et al. 2020).  506 

Even with technological advances, the interpretation of untargeted molecular approaches 507 

is complicated by the inadequate description of metabolic pathways for soil microorganisms in 508 

existing databases and the unsuitability of standard statistical approaches in ecology for 509 

combining multidimensional data types. Unsupervised machine learning is emerging as a tool 510 

both to decipher hidden patterns in complex data and to eliminate the needs for a priori 511 

relationships between genes (e.g., via metabolic pathways or metagenome-assembled genomes) 512 

and for gap filling to infer absent data. There is an enormous diversity of machine learning 513 

algorithms with varying levels of complexity that are well-suited to discern patterns in data 514 

(Rana et al. 2020; Were et al. 2015). Techniques such as K-nearest-neighbor (Peterson 2009), 515 

artificial neural network (ANN, Sarle 1994), support vector machines (SVM, Wang 2005), 516 
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neuro-fuzzy (Nauck et al. 1997), decision tree classifiers (Safavian & Landgrebe 1991), and 517 

random forests (Liaw & Wiener 2002) are most commonly employed in microbiology and 518 

environmental disciplines (e.g., Cai et al. 2019; De Clercq et al. 2019; Dong & Chen 2019; Qdais 519 

et al. 2010; Rahimian Boogar et al. 2019; Thompson et al. 2019; Wang et al. 2020b). Still, we 520 

lack rigorous machine learning investigations in which sampling and experimental designs move 521 

beyond feature identification to translating selected features into meaningful ecological 522 

outcomes. Pairing machine learning with ecological theory for experimental hypothesis testing is 523 

needed to push fundamental biology forward (Rana et al. 2020; Were et al. 2015). Using new 524 

high-resolution molecular data types in spatially- and temporally-distributed sampling, paired 525 

with machine learning, is the gold standard for future research in SOM decomposition and can 526 

offer unprecedented untargeted resolution into the pathways by which microorganisms 527 

decompose SOM (Manzoni et al. 2017; Mooshammer et al. 2014b).  528 

 529 

Conclusions.  530 

 We have made significant advances in understanding global C cycles and now face the 531 

challenge of merging concepts and modelling frameworks from different scientific fields. To 532 

facilitate this effort, we identify substrate chemistry as a linkage point between microbiology and 533 

biogeochemistry, and we propose using ecological stoichiometry as a unifying framework that 534 

can help overcome a major limtation to understanding global SOM decomposition –– 535 

intrepreting the massive amount of data generated by molecular approaches and translating them 536 

to the ecosystem scale. Our hope is that this common foundation can maximize the strengths of 537 

models across scales and environmental contexts, and we encourage better communication 538 

among empiricists and modelers within and across domains. Investing in and deploying new 539 
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technologies in the context of stoichiometric theory provides an untapped and promising avenue 540 

for interpreting the vast amount of data we can now generate and further distilling this 541 

information into a new generation of omics-enabled biogeochemical models. 542 
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Figures. 567 

 568 

Fig 2. Parallel development of processed-based biogeochemical and microbial models across scales of molecular resolution. A 569 

short description of a representative class of models from biogeochemical (left) vs. microbiological (right) research domains is listed 570 

within each box. Model types that bridge between microbial and biogeochemical research domains are in the center column. High 571 

molecular resolution models are on the top row and low molecular resolution models are on the bottom row. Modelling frameworks 572 

that leverage ecological stoichiometry are depicted in red, and opportunities to use these principles to guide multiscale model 573 

development are depicted in blue. We present opportunities for stoichiometry to serve as an underlying framework to integrate state-574 

of-science SOM decomposition models across ecological hierarchies – from individual microorganisms to bulk pools and fluxes – as 575 

well biogeochemical and microbial disciplines. Ecological stoichiometry is implicitly used to guide both biogeochemical and 576 

microbiological models and therefore presents a natural linkage point for assimilating and scaling models from both research domains. 577 
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 578 

Fig. 2. Overview of Factors Regulating Soil Carbon Cycles. (A) Microbial metabolism is the proximate control over bioavailable C 579 

cycling. These controls dominate in unprotected SOM pools in which accessibility is not limited and provide an avenue for 580 

stoichiometry to improve model predictions. (B) Mineral-association and hydrologic variables are also key components of SOM 581 

A

B

C

Reproduced from Robertson et al. (2019)

Reproduced from Jilling et al. (2018)
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cycling, particularly in deeper soil horizons with high mineral content. (C) These conceptualizations are consolidated within the 582 

MEMS framework. In MEMS, SOM is more readily bioavailable in the organic horizon where growth of microbial biomass and to a 583 

lesser extent dissolved organic matter support C flow to and stabilization within mineral horizons. Panels (B) and (C) are reproduced 584 

from Jilling et al. (2018) and Robertson et al. (2019).  585 
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 586 

Fig 3. Representation of state-of-science SOM decomposition models across scales of molecular resolution. At the highest level 587 

of molecular resolution (top), genome-enabled models predict the production and consumption of specific metabolites by specific 588 

microorganisms or groups of microorganisms. This class of models is rooted in fundamental microbiology. At intermediate scales, 589 
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community-scale (mixed-bag) metabolic models and reaction networks have been largely separately developed in microbiology and 590 

biogeochemistry, respectively. Finally, at coarser levels of molecular resolution, biogeochemical models predict SOM decomposition 591 

using nutrient-regulated exchange between lumped SOM pools with specific chemical attributes. 592 

  593 
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 594 

Fig 4. Schematic of opportunities for ecological stoichiometry to guide iterative approaches that generate omics-enabled 595 

biogeochemical models. Ecological stoichiometry can guide a cycle of top-down and bottom-up approaches for more efficient 596 

generation of next generation models. Top-down approaches use nutrient limitations inferred from bulk biogeochemical measurements 597 
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to guide the determination of rate-limiting pathways in SOM decomposition. In turn, rate-limiting pathways can reveal specific 598 

metabolic pathways and/or microorganism for detailed representation in predictive models. Bottom-up approaches use ecological 599 

stoichiometry as a framework for guiding the interpretation of high molecular resolution data streams with the help of new machine 600 

learning algorithms, for example by focusing on metabolic pathways that tend to be involved in nutrient acquisition. Using these 601 

approaches to identify the rate-limiting steps of SOM decomposition can then aid in the parameterization and calibration of larger-602 

scale models by informing the tuning of substrate use efficiencies and/or by revealing pathways for more detailed representation. By 603 

using both approaches iteratively, we can identify specific portions of genome-enabled reaction networks that add predictive power 604 

with detailed representation in large-scale SOM decomposition models. A schematic of iterative top-down and bottom-up approaches 605 

is shown on the left. This leads to the development of a stoichiometry-informed reaction networks (middle) that can be merged into 606 

existing state-of-science SOM decomposition models (right). 607 

  608 
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