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Abstract 14 

1. Automated monitoring of websites that trade wildlife is increasingly necessary to inform 15 

conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can 16 

contain a vast number of advertisements, an unknown proportion of which may be irrelevant to 17 

researchers and practitioners. Given that many of these advertisements have an unstructured text 18 

format, automated identification of relevant listings has not traditionally been possible, nor 19 

attempted. Other scientific disciplines have solved similar problems using machine learning and 20 

natural language processing models, such as text classifiers.  21 

2. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from an 22 

Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k 23 

advertisements). Furthermore, in an attempt to answer the question ‘how much data is required to 24 

have an adequately performing model?’, we conducted a sensitivity analysis by simulating 25 

decreases in sample sizes to measure the subsequent change in model performance. 26 

3. We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant 27 

(ROC AUC ≥ 0.98, F1 score ≥ 0.77). From our sensitivity analysis, we found that text classifiers 28 

required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for 29 

our dataset), providing a reference point for future applications of this sort.  30 

4. Our results suggest that text classification is a viable tool that can be applied to the online trade of 31 

wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary 32 

depending on the advertisements and websites, and will therefore be context dependent. Further 33 

work to integrate other machine learning tools, such as image classification, may provide better 34 

predictive abilities in the context of streamlining data processing for wildlife trade related online 35 

data.   36 
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Introduction 37 

The global wildlife trade is a major concern for biodiversity conservation and biosecurity enforcement 38 

(Smith et al. 2009). Information on the composition and volume of species, and where they are traded, 39 

is highly valuable for informing conservation research and practice (Scheffers et al. 2019). The Internet is 40 

an emerging source of data on the wildlife trade (Siriwat and Nijman 2020; Jarić et al. 2020). 41 

Researchers, NGOs, and government agencies monitor websites that trade wildlife to quantify various 42 

aspects of the trade (e.g., Sung & Fong 2018). Data gathered from the Internet are typically not 43 

immediately ready for analysis (i.e., they are ‘messy’) and must be cleaned or processed to identify the 44 

desired attributes for subsequent analysis (Dobson et al. 2020). This is especially true for classifieds, 45 

forums, and social media sites where human users type their advertisements into an open (or ‘free 46 

form’) text box. Consequently, relevant attributes cannot be extracted automatically (i.e., through web 47 

scraping or computer-based data manipulation) due to non-uniformity across users’ advertisements 48 

(different species names, abbreviations, misspelling, etc.) (Stringham et al. 2020). Likewise, depending 49 

on the website, many online listings (i.e., posts) may contain items or taxa that are irrelevant for a given 50 

research context. For instance, in a pet reptile forum, one can find users trading tanks, food, or other 51 

accessories, which may not be relevant to researchers exploring the trade of live reptiles (e.g., 52 

Stringham and Lockwood 2018). The most common method to extract online wildlife trade data is to 53 

manually inspect each listing and record the desired attributes. Depending on how many listings are 54 

collected, the data cleaning process could represent an enormous amount of time and effort for 55 

researchers. Wildlife-related web data is notorious for its scale: for example, Xu et al. (2018) tracked 56 

around 140k tweets from a two-week period relevant to ivory and pangolin trade.  57 

 58 

Automated methods of data cleaning such as machine-learning techniques and Natural Language 59 

Processing (NLP) tools have potential to streamline the processing of wildlife trade data derived from 60 
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the Internet (Di Minin et al. 2019). A useful but unexplored application is to predict and extract relevant 61 

online listings based on their text, which could save time in manual data processing steps if many 62 

irrelevant listings exist in the dataset. In particular, text classification models relate the words associated 63 

with a particular label, such as ‘relevant’ or ‘irrelevant’, to predict the label of an unknown data point. A 64 

well-known application of text classifiers is filtering spam emails (Guzella and Caminhas 2009). In this 65 

context, a text classification model uses a training dataset of labelled emails (span or not spam) and 66 

trains a model to predict those labels based on their constituent words. The resulting model labels new 67 

incoming emails as spam or not. In the context of wildlife-trade data derived from the Internet, text 68 

classification models have the potential to identify relevant listings and remove irrelevant listings that 69 

do not sell wildlife (i.e., fish tanks, bird cages, food) by using the words in the listings. If shown to be 70 

effective, this could save researchers substantial time in the data cleaning process.  71 

 72 

Here, we examine if text classification models can predict which Internet listings are relevant to wildlife 73 

trade research (for our own specific research purposes; e.g., Toomes et al. 2020). Further, to assist 74 

future implementation of such models, we sought to identify how much data is needed for a text-75 

classification model to perform adequately well. We collected advertisement listings from a popular 76 

Australian classifieds website where people trade their pet birds and accessories (e.g., bird cages or bird 77 

toys). Bird trade is largely unregulated in Australia (but see Woolnough et al. 2020) and is highly diverse 78 

with a large number of both native and alien species; with potential conservation and biosecurity 79 

consequences (Vall-llosera & Cassey 2017). We observed three major categories of advertisements that 80 

were irrelevant to our research objectives: (i) ‘junk’ listings (not trading birds); (ii) wanted 81 

advertisements (requesting a bird); and (iii) the sale of domestic poultry – e.g., gamebirds, waterfowl, 82 

and pigeons (non-target wildlife taxa). We manually labelled around 16.5k listings and tested the 83 

efficacy of three commonly used text classification models at determining which listings were relevant 84 
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versus irrelevant. Next, we systematically removed records from our dataset and recorded the change in 85 

model performance. Our results imply that text classification can be an incredibly useful time-saver 86 

when cleaning data on the wildlife trade, which is structurally (textually) similar to the data we explore 87 

here.  88 

Materials and Methods 89 

Data collection and data curation 90 

We collected data from a popular Australian classifieds website daily over the course of five months (5 91 

July 2019 to 5 December 2019). All information collected from the website was publicly available. We 92 

received ethics approval from The University of Adelaide (ethics number: H-2020-184) to collect this 93 

data and have anonymized the name of the website as good ethical practice (Hinsely et al. 2016). On the 94 

website, people can post advertisements (i.e., listings) of items/animals they are trading. From each 95 

listing, we collected: (i) the title; (ii) text description; (iii) date; and, (iv) images (if provided). The title and 96 

text description fields are open text boxes where the user can type whatever they desire up to a 97 

character limit. We collected a total of 66,704 unique listings. Given the large number of unique listings 98 

collected, and the substantial resources required to manually clean the data, we labelled a random 99 

subset of around 25% of the listings (n = 16,509). This took approximately 103 hours to label (at an 100 

average rate of 161 listings per hour). Four different authors were labelers (SM, KH, AT, OS), and we did 101 

not overlap labelling, although this is preferred practice (e.g. see Sheng et al. 2008).  102 

For each listing, we manually labelled the taxa (e.g., species) being traded based on the title, the text, 103 

and the pictures provided in the listing. Some listings contained more than one species being traded. We 104 

identified the listing to the most specific taxonomic rank as possible (species or subspecies), but 105 

occasionally not enough information was provided and the listing was identified to genus, family, order, 106 
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or class (i.e., bird). We resolved taxa names and obtained upper-level taxonomy using the Global 107 

Biodiversity Information Facility database (GBIF 2020). For each listing, we recorded if the user was 108 

requesting a bird species (i.e., a wanted advertisement), except in the case of domestic poultry species 109 

(see below). We labelled listings not trading a live bird as ‘junk’ (i.e., bird accessory such as cage or bird 110 

food).  111 

Preparing text for text classification models 112 

We considered all text written by the user (title and text description) for our analyses. To prepare or 113 

‘clean’ the text for the NLP text classification models, we followed standard NLP text cleaning 114 

procedures (Silge and Robinson 2017) and removed special characters (emojis, dollar signs, numbers, 115 

etc.), removed all punctuation, converted text to lowercase, and removed all numbers. Next, we 116 

removed all stop words found in the following lexicons: SMART, snowball, and onix. We did not remove 117 

the stop words: “want”, “wants”, “wanting”, or “wanted”, so we could distinguish wanted 118 

advertisements. We stemmed each word using the Snowball stemmer. For the text classifier models, we 119 

tokenized the text to be unigrams (i.e., one word) and did not consider further n-grams. Text cleaning 120 

was performed in the statistical software R version (R Core Team 2020) using the following packages: 121 

stringr (Wickham 2019), dplyr (Wickham et al. 2020), tidytext (Silge & Robinson 2016), and corpus (Perry 122 

2020).  123 

To test the classification of irrelevant listings (see ‘Text classification models’ below), we applied three 124 

separate labels for each listing. The first label was for ‘junk’ listings, where a live bird was not being 125 

traded (e.g., bird cage). The second label was for ‘wanted’ listings where a user was requesting a bird 126 

species and not selling one. The final label was for taxa that we considered non-target for our purposes 127 

(i.e., farm, poultry, or domesticated species). We called this label ‘domestic poultry’ and applied it to 128 

listings that were selling birds in the taxonomic orders of Anseriformes (waterfowl) and Galliformes 129 
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(gamebirds) or trading domestic pigeons (Columba livia domestica). For text classification models, we 130 

removed listings categorized as more than one label (i.e., ‘domestic poultry’ and ‘wanted’). Further, for 131 

the ‘wanted’ label, we removed listings if eggs were being advertised, as we did not simultaneously 132 

record if egg advertisements were also labeled as ‘wanted’. This resulted in a sample size (number of 133 

listings used for text classification models) of 16,475 for ‘domestic poultry’, 16,446 for ‘junk’, and 13,751 134 

for ‘wanted’.  135 

Text classification models 136 

To classify irrelevant listings, we used three common supervised text classifiers: Logistic Regression, 137 

Multinomial Naive Bayes, and Random Forest. At a basic level, each classifier considers each word (i.e., 138 

gram) and their frequency as a covariate (i.e., ‘feature’) (Bird et al. 2009). However, each classifier varies 139 

in the algorithm used to classify observed listings as relevant or not (Bird et al. 2009). For each classifier, 140 

the order of the words in the listing was unaccounted, thus earning the name ‘bag of words’ classifier. 141 

We ran each model for each of the three labels mentioned above. We used 10-fold cross validation to 142 

train the model and evaluate predictions. We used the cross-validated macro-average of the following 143 

metrics to evaluate the performance of each model: receiver operating characteristic (ROC) curve and 144 

its area under the curve (ROC AUC), precision-recall curve and its area under the curve (PR ROC), 145 

precision, recall, negative predictive value (NPV), specificity, and F1 score (see Appendix S1 for more 146 

information evaluation metrics). We extracted the top features (e.g., covariates) for each model. Text 147 

classification models were performed in Python using the sci-kit learn library (Pedregosa et al. 2011), 148 

while plotting was conducted in R using ggplot2 (Wickham 2016).  149 
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Sensitivity analysis: degradation of model performance with diminishing sample size 150 

To test the sensitivity of model performance to changes in sample size, we implemented the text 151 

classification model with iteratively smaller sample sizes. We systematically decreased the sample size 152 

of the training set by 500 records at a time, removing at most 15k records (c. 91% of entire dataset). We 153 

repeated this for each label and used 10-fold cross validation. To account for the variability in model 154 

performance due to cross-validation, we repeated the text classification model for 100 iterations, for 155 

each sample size explored. We recorded 10-fold cross validation statistics across each fold and model 156 

iteration (1,000 values in total for each sample size). For this sensitivity analysis, we only considered the 157 

logistic regression classifier and used the F1 value to evaluate model performance. We recorded the 158 

maximum training set sample size at which the F1 score was 99% of its maximum value (i.e., the F1 159 

score without reducing sample size).  160 

Results 161 

We manually categorized 16,509 listings, of which 15.0% (n=2,473) were labeled as ‘junk’, 21.9% 162 

(n=3,615) were labeled as ‘domestic poultry’, 4.8% (n=787) were labelled as ‘wanted’ advertisements, 163 

and the remaining (c. 58%) were ‘for sale’ advertisements of relevant bird taxa.  164 

 165 

The text classifiers performed extremely well for the ‘domestic poultry’ label (Figure 1; Appendix S2), 166 

with a cross-validated average ROC AUC of >0.99, Precision-Recall AUC of ≥0.97, and F1 score of >0.95 167 

for all text classifiers (Figures 1-3). The text classifiers for the ‘junk’ label also performed very well, with 168 

marginally lower metric values compared to ‘domestic poultry’ (Figure 1). Further, all other metrics 169 

evaluated suggested that the text classification models performed very well for these two labels (Figures 170 

1-3; Appendix S2; see Appendix S3 for confusion matrices). The text classification models for the 171 

‘wanted’ advertisement label performed less well, however, the Logistic Regression and Random Forest 172 
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classifiers for this label performed moderately well and each was much better than chance with a ROC 173 

AUC > 0.98, Precision-Recall AUC > 0.88, and F1 score > 0.77. Overall, the ‘wanted’ classifiers were not as 174 

good at predicting positive outcomes (e.g., if a listing is ‘wanted’), yet did not struggle with predicting 175 

negative outcomes (Specificity = 0.99, and Negative Predictive Value = 0.99 for Logistic Regression 176 

classifier). In terms of relative performance between the classifiers, the Logistic Regression and Random 177 

Forest classifiers slightly outperformed the Naive Bayes Classifier; however, overall, their performances 178 

were comparable (Figure 1-3).  179 

 180 

The top features for each label aligned with what should be expected and were similar across all text 181 

classifiers (Figure 4). For the ‘junk’ label, grams such as “condit” (i.e., condition), “cage”, “birdcag” (i.e., 182 

birdcage) were the top features. For the ‘domestic poultry’ label, grams such as “pigeon”, “rooster”, and 183 

“chicken” were the top features. Finally, for the ‘wanted’ label, grams such as “want”, “buy”, “wtb” (an 184 

acronym for ‘want to buy’), and “unwant” (i.e. “unwanted”) were the top features.  185 

 186 

As we reduced the sample size of the training set, we observed a non-linear decrease in model 187 

performance, where the F1 score initially declined gradually and then at an increasing rate at lower 188 

sample sizes (Figure 5). There were differences in this decline in performance among labels. The 189 

classifier for the ‘domestic poultry’ label realized 99% of the full model F1 score at c. 4.8k records (29% 190 

of dataset). For the ‘junk’ label, this was c. 9.3k records and c. 6.3k records for the ‘wanted’ label (57% 191 

and 45%, respectively). Stated another way, for the ‘domestic poultry’ label, the addition of c. 11k 192 

labelled records from our manual data labelling only increased the model F1 score by 0.01. For ‘junk’ 193 

and ‘wanted’, this value was c. 7.1k listings and c. 7.5k listings, respectively.  194 

 195 
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Discussion 196 

Text classification can be a highly accurate method to extract relevant listings of wildlife found on the 197 

Internet. In particular, for listings trading non-target taxa and listings trading bird accessories (e.g., bird 198 

cages), text classification models were able to classify these listings with a very high degree of accuracy. 199 

Although the performance of the model varied between labels, our results suggest that this technique 200 

can be used to substantially lower the number of wildlife listings needed to be manually inspected, thus 201 

saving considerable time and resources. Further, we provide clarity around the question of ‘how much 202 

data is needed to guarantee an adequately performing model?’. Of the more than 16k listings we 203 

manually labelled, our results suggest that, at most, only 9k listings were needed, although this number 204 

varied by label.  205 

 206 

Text classification models are commonplace in other disciplines and industries, which work heavily with 207 

text data (e.g., Guzella & Caminhas 2009), yet have not been applied to data collected on the wildlife 208 

traded occurring on the Internet. Importantly, from our dataset, around 60% of the listings were 209 

relevant (for our purposes), representing a substantial amount of time and effort that would otherwise 210 

be spent on manually removing irrelevant data. For the website we explored, we showed that text 211 

classifiers predicted with great accuracy the advertisements that were not selling wildlife or selling non-212 

target wildlife. In particular, text classification models performed the best for identifying listings trading 213 

non-target taxa (e.g., farm and domestic bird species). This is promising as a time saving tool because 214 

sometimes the most commonly traded taxa are the ones of least interest to researchers (i.e., pigeons 215 

and chickens; in our example). In contrast, the text classifiers had more difficulty distinguishing ‘wanted’ 216 

advertisements (where a user was requesting a bird) yet was still much better than chance. This 217 

suggests that the words people used in wanted advertisements have some overlap with those words 218 

used in non-wanted advertisements (e.g., names of species), and thus yields lower predictive abilities. 219 



11 
 

Importantly, we demonstrate that the model performance will likely not improve with more data 220 

because we observed a plateau of model performance after around 6k listings for wanted 221 

advertisements (45% of sample size). Therefore, even if we manually labelled many more listings, the 222 

model performance is unlikely to increase. This highlights an important point that model performance is 223 

a function of the underlying data itself (i.e., text) and not of the lack of data (once an adequate sample 224 

size is achieved).  225 

 226 

How much data is required for an adequately performing text classification model? Our results show 227 

that this number will vary by what is being classified. For this study, we cleaned a substantial number of 228 

listings (c. 16k) yet found that model performance marginally increased after 5k to 9k records (31% to 229 

56% of total effort). Thus, for other researchers who may not have the resources to invest this much 230 

effort, or are looking for a more efficient way to curate messy online data, our results provide guidance 231 

on how much data is needed before text classification can be used. We recommend establishing 232 

computer code to test the model performance and then repeatedly check the model performance at 233 

regular intervals (e.g., every 1k records cleaned). Ultimately, the labelled dataset will need to 234 

encapsulate the variation of words (i.e., vocabulary) used for a particular label for the text classifier to 235 

perform well. For instance, for the ‘junk’ label, the model performance plateaued at around 5k more 236 

records than it did for other labels. We hypothesize the words that Internet users write for the listings 237 

that fall under the ‘junk’ label has more variation (i.e., more words) and thus, we needed a larger sample 238 

size of labelled listings to account for that variation.  239 

 240 

An important limitation of text classification (and other machine learning tools) is that they are highly 241 

context dependent (Lambda et al. 2019). Our specific classifiers were developed based on the text of 242 

birds being traded online in Australia and will likely be less useful for birds being traded in other 243 
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countries and almost entirely useless if looking at other taxa (e.g., fish or plants) or in another language. 244 

The reason for this lack of generalization is because words used, and their frequency, will vary under 245 

different contexts. For instance, when looking at the trade of aquarium fish, a common irrelevant 246 

advertisement may be the sale of a fish tank, something that is not found when trading birds. We 247 

recommend that researchers consider each context separately when using these tools. Since manual 248 

data processing is likely always required to analyze the data, these tools can be tested throughout the 249 

cleaning stage to see if applicable.  250 

 251 

Besides extracting relevant advertisements, text classifiers have the potential to identify the species 252 

being traded in online advertisements. Our results suggest that this will be possible for commonly 253 

traded taxa, with large amounts of data. For instance, in our study, advertisements for a group of 254 

species (waterfowl, gamebirds, and pigeons) comprised around 3.6k listings (22% of dataset) and were 255 

highly distinguishable using the text classifiers. The same kinds of models can be used to identify 256 

individual species of interest; however, text classifiers (like all machine learning techniques) require a 257 

large volume of data to perform well (Di Minin et al. 2019). In many cases, individual species of interest 258 

may not have enough advertisements to build adequate text classifiers. Thus, alternative methods such 259 

as matching species names (scientific, common, or trade names) to the text of advertisements using a 260 

fuzzy string-matching model (e.g., Levenshtein distance) may yield better results. In fact, if consistent 261 

patterns are used by users (e.g., the same species name is used by many users), string matching may 262 

yield just as good or better results than text classifiers. While our study relied exclusively on the text of 263 

the advertisement, there are other attributes of an Internet listing that can be considered for automated 264 

cleaning. For instance, a related study used metadata attributes of online listings (e.g., the number of 265 

views and the price) to classify illegal sales of elephant ivory (Hernandez-Castro & Roberts 2015). In 266 

cases with no or limited text provided (e.g., only a photo is posted), machine learning techniques such as 267 
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image classification could assist in the classification of species or the product traded (Norouzzadeh et al. 268 

2018). Integrating text classification with the aforementioned models may improve predictive ability, 269 

and we recommend this as a future area of research and development for the wildlife trade related 270 

online data.  271 

 272 

Given that a substantial proportion of online listings may not be relevant to wildlife trade research (e.g., 273 

40% irrelevant for our dataset), text classification methods can substantially decrease the amount of 274 

time spent processing raw data. Here, we demonstrate that text classification can be viable tool to 275 

identify irrelevant listings. When considering data on the scale of ‘big data’ of tens to hundreds of 276 

thousands of online advertisements (e.g. Olden et al 2020), text classifiers have the potential to save 277 

tens to hundreds of hours of curation effort. We recommend future application of text classifiers and 278 

testing other machine learning and natural language processing tools when cleaning messy data 279 

collected from the Internet on wildlife trade. 280 

Data Availability 281 

Data and code for text classification are available from the figshare repository at 282 

https://doi.org/10.6084/m9.figshare.14032742 and from GitHub at 283 

https://github.com/ocstringham/text_classification_wildlife_trade/.  284 
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Figure 1.  377 

Model evaluation metrics (rows) across 10 cross-validation folds using different text classifiers evaluated 378 

for three different labels (columns). See Appendix S1 for more information and calculation of the 379 

evaluation metrics and Appendix S2 for exact metric values.   380 
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381 

Figure 2.  382 

Receiver operating characteristic curves and the area under the curve (ROC AUC). Three different text 383 

classifiers (columns) were tested across three different labels (rows). For each panel, each line 384 

represents one cross-validation fold and the solid black line represents the average across all cross-385 

validation folds. Average AUC (area under curve) values are reported with standard deviation.   386 
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 387 

Figure 3.  388 

Precision recall curves and the area under the curve (PR AUC). Three different text classifiers (columns) 389 

were tested across three different labels (rows). For each panel, each line represents one cross-390 

validation fold and the solid black line represents the average across all cross-validation folds. Average 391 

AUC (area under curve) values are reported with standard deviation.  392 
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 393 

Figure 4. 394 

Word clouds of top words (i.e., features or grams) for each label (rows) and classifier (columns). The size 395 

of the word corresponds to importance, where larger words indicate higher importance. Note that 396 

words are stemmed (e.g., condition is stemmed to condit).  397 
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 398 

Figure 5.  399 

The effects of reducing sample size on text-classifier model performance. Top row: the F1 score 400 

evaluated at decreasing sample size (training set) values. Ribbons represent the 95% quantile range 401 

from 100 iterations of 10-fold cross validation logistic regression text classification, repeated for each 402 

specified label (‘domestic poultry’, ‘junk’, and ‘wanted’). Bottom row: the proportion of the maximum 403 

F1 score, evaluated at each sample size, for each label. Only the median value was considered. The red 404 

horizontal line represents 0.99 of the maximum F1 score.  405 
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Appendix S1: Definitions of metrics used 410 

Confusion matrix derived metrics 411 

We evaluated several commonly used machine learning diagnostic metrics derived from confusion 412 

matrix values (Appendix S3): true positives (TP), false negatives (FN), true negatives (TN), and false 413 

positives (FP) (Fielding and Bell 1997). Precision is the proportion of correctly predicted positives 414 

compared to all predicted positives. Recall is the proportion of correctly predicted positives compared to 415 

all observed positives. The Negative predictive value is the proportion of correctly predicted negatives 416 

compared to all predicted negatives. Finally, the Specificity is the proportion of correctly predicted 417 

negatives compared to all observed negatives. Mathematically, the metrics are defined (Fielding and 418 

Bell 1997) as follows:  419 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 420 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 421 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝐹𝑁 +  𝑇𝑁
 422 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 +  𝑇𝑁
 423 

Further, the F1 score, is defined as the harmonic mean of precision and recall, mathematically:   424 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 425 

 426 

Receiver operating characteristic (ROC) curve 427 

The ROC curve shows the performance of a classification model at varying classification thresholds 428 

(Fewcett 2006). The curve plots two metrics: False positive rate (i.e., 1 - Specificity) and True positive 429 

rate (i.e., Recall). For each classification threshold (e.g., from 0.01 to 1.0 by units of 0.01), the false 430 

positive rate and true positive rate are plotted (e.g., main text Figure 2). The area under the curve for 431 
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the ROC curve (ROC AUC) is a measure of the positive predictive ability of the classification model (e.g., 432 

the ability to predict true positives versus false positives), where an ROC AUC of 0.5 represents positive 433 

predictive ability equivalent to chance and an ROC AUC of 1 represents perfect positive predictive 434 

ability.  435 

  436 

Precision-Recall (PR) Curve 437 

Like the ROC curve, the precision-recall (PR) curve also displays the performance of a classification 438 

model at varying classification thresholds. However, for the PR curve, the tradeoff between Precision 439 

and Recall is examined (not the True versus False positive rate examined in ROC curves). The PR curve is 440 

useful when there are imbalanced class sizes (i.e., far fewer positives than negatives) because it does 441 

not consider true positives in its calculation (Sofaer et al. 2018).  442 

 443 
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Appendix S2: Table of model metrics 453 

The macro-averaged values (10-fold cross validated) of model performance metrics for each label-classifier combination.  454 

 455 

Classifier  ROC AUC  PR AUC  F1 score  Precision  Recall  NPV  Specificity    

domestic poultry                  

Logistic Regression  0.996  0.982  0.966  0.969  0.964  0.990  0.991    

Naive Bayes  0.994  0.975  0.958  0.938  0.979  0.994  0.982    

Random Forest  0.997  0.986  0.959  0.969  0.950  0.986  0.991    

junk                  

Logistic Regression  0.954  0.903  0.860  0.902  0.822  0.969  0.984    

Naive Bayes  0.952  0.879  0.857  0.866  0.849  0.973  0.977    

Random Forest  0.960  0.914  0.866  0.931  0.810  0.967  0.989    

wanted                 

Logistic Regression  0.981  0.886  0.815  0.878  0.764  0.986  0.993    

Naive Bayes  0.939  0.579  0.614  0.641  0.600  0.976  0.978    

Random Forest  0.987  0.893  0.775  0.913  0.676  0.981  0.996  

  456 
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Appendix S3: Confusion “matrices” 457 

The median number (10-fold cross validated) of true positives, false negatives, false positives, and true negatives for each label-classifier 458 

combination.  459 

Label Classifier 
True 

positive 

False 

negative 

False 

positive 

True 

negative 

domestic poultry 

Logistic Regression 348 13 11 1272 

Naive Bayes 354 8 22 1262 

Random Forest 344 18 11 1272 

junk 

Logistic Regression 205 42 22 1378 

Naive Bayes 212 34 29 1371 

Random Forest 200 46 14 1386 

wanted  

Logistic Regression 58 20 8 1288 

Naive Bayes 48 30 22 1274 

Random Forest 54 24 4 1292 

 460 


