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Abstract  14 

Most animal species consist of two distinct sexes. At the morphological, physiological, and 15 

behavioural levels the differences between males and females are numerous and dramatic, yet 16 

at the genomic level they are often slight or absent. This disconnect is overcome because simple 17 

genetic differences or environmental signals are able to direct the sex-specific expression of a 18 

shared genome. A canonical picture of how this process works in insects emerged from decades 19 

of work on Drosophila. But recent years have seen an explosion of molecular-genetic and 20 

developmental work on a broad range of insects. Drawing these studies together, we describe 21 

the evolution of sexual dimorphism from a comparative perspective and argue that insect sex 22 

determination and differentiation systems are composites of rapidly evolving and highly 23 

conserved elements. 24 

 25 
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Introduction 26 

Anisogamy is the definitive sex difference. The bimodality in gamete size it describes 27 

represents the starting point of a cascade of evolutionary pressures that have generated 28 

remarkable divergence in the morphology, physiology, and behaviour of the sexes [1]. But 29 

sexual dimorphism presents a paradox: how can a genome largely shared between the sexes 30 

give rise to such different forms? A powerful resolution is via sex-specific expression of shared 31 

genes. In the latter part of the 20th century, experiments in the fruit fly Drosophila melanogaster 32 

helped construct a canonical picture of the mechanisms through which this is achieved in 33 

insects. In this review, we discuss how recent discoveries at each stage of sex determination 34 

and differentiation both challenge and expand upon that canon.  35 

 36 

The canonical view of insect sex determination and differentiation 37 

In the canonical Drosophila sexual differentiation pathway [reviewed by 2,3], sex is largely 38 

defined at the level of the individual cell. Cell autonomy hinges on the ability of two autosomal 39 

transcription factors to produce sex-specific isoforms. Key among these factors is doublesex 40 

(dsx), which functions in a wide range of somatic tissues; the other, fruitless (fru), is mainly 41 

involved in sex-specific differentiation of the nervous system. The male and female isoforms 42 

of Dsx share a common DNA-binding domain but possess sex-specific C-termini. Thus, the 43 

two isoforms can have sex-biased [e.g. 4] or even opposite [e.g. 5] effects on the expression of 44 

their target genes.  45 

In the canonical pathway, male isoforms of dsx and fru are produced by default, with 46 

female-specific isoforms requiring the splicing factor transformer (tra) and its partner 47 

transformer-2 (tra-2). Although tra-2 is active in the soma of both sexes, functional Tra protein 48 

is only produced in females. Female-specific splicing of tra is activated by Sex lethal (Sxl), a 49 

sex-determining master switch that also controls dosage compensation via its regulation of 50 
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male-specific lethal 2 (msl-2). Sxl expression is activated by the dosage of several X-linked 51 

regulatory proteins, which in turn depends on the number of X-chromosomes [6]. 52 

Consequently, while D. melanogaster has X and Y chromosomes, it is not the presence of Y 53 

that specifies maleness, but rather the number of X’s – one in males, and two in females (Fig. 54 

1). 55 

 56 

Challenging the canon: rapid evolution of primary sex signals  57 

Sex determination systems diversify rapidly among species [7]. Insects are no exception. 58 

Haplodiploid honeybees use zygosity at the sex-determining locus, booklice paternal genome 59 

elimination, and butterflies ZW chromosome systems with females as the heterogametic sex 60 

[8,9]. The speed and relative freedom with which sex determining signals evolve has been best 61 

studied in Diptera, where species are known to have gained and lost heteromorphic sex 62 

chromosomes, replaced original sex chromosomes with new ones, incorporated other 63 

chromosomal elements into the original sex chromosome, or transitioned from male to female 64 

heterogamety [10–13]. But it is not the sex chromosomes themselves that define sex, but rather 65 

the sex determining signals they encode. Indeed, evolution of new sex determining signals may 66 

initiate changes in sex chromosome structure as well as switches from old to new sex 67 

chromosomes.  68 

Primary sex-determining signals have evolved many times independently and act via 69 

different mechanisms. For example, Drosophila’s system of measuring X-chromosome dosage 70 

via Sxl appears to be restricted to the Drosophilinae [14,15]. A phylogenetically diverse array 71 

of Dipterans instead use dominant male-determining genes (‘M-factors’), as in the case of the 72 

mosquitos Anopheles gambiae (Yob) and Aedes aegypti (Nix), the Medfly Ceratitis capitata 73 

(MoY), and the housefly Musca domestica (Mdmd) (Fig. 1). These M-factors are all unrelated 74 

to each other, reflecting their independent evolution [16–20]. Other non-homologous M-factors 75 
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no doubt exist in other fly groups [13]. Where closely related species share a homologous M-76 

factor, its sequence can diverge rapidly (e.g. Aedes Nix)[21]. In M. domestica, individuals can 77 

even vary in which chromosome encodes the M-factor – Mdmd has been detected on four of 78 

the six chromosomes (Y, II, III, and V) in different populations [16,22]. In most cases the origin 79 

of M-factors is unknown. An exception is Mdmd, which arose through the duplication and 80 

subsequent neofunctionalization of CWC22 (nucampholin), a spliceosomal factor gene [16]. 81 

Aedes Nix also encodes a potential splicing factor, suggesting this may be a common starting 82 

point for M-factors [18].  83 

A pattern similar to the diversity of unrelated M-factors in Diptera may be found in 84 

Hymenoptera. Although all hymenopterans are haplodiploid, the ploidy signal is mediated by 85 

different genes and via different mechanisms. In honeybees, sex is determined zygotically by 86 

the csd locus, a paralog of tra [23]. But in the wasp Nasonia vitripennis, sex depends on the 87 

maternal imprinting of an unrelated gene, wom [24]. wom is a recently evolved chimeric gene, 88 

not found even in all species of the same family (Pteromalidae), suggesting that the proximate 89 

mechanisms of haplodiploid sex determination may be as varied as in the case of XY 90 

heterogametic systems. Why sex-determining signals diversify so rapidly and the extent to 91 

which the rate of their diversification varies across taxa remain key questions for future work. 92 

 93 

Challenging the canon: translating primary sex signals into the sex-specific splicing of dsx 94 

Downstream, the story is different. Diverse sex determination inputs, from X chromosome 95 

dosage to M-factors to haplodiploidy, converge on the tra-dsx splicing cascade, which is 96 

present in early-branching insect clades like cockroaches and certainly ancestral to the 97 

Holometabola [25]. But even this deeply conserved mechanism is not universal. The entire 98 

order Lepidoptera have lost the tra gene, but maintain sex-specific dsx activity [26]. How, then, 99 

is the sex-specific splicing of dsx achieved? Studies of the silkworm Bombyx mori provide an 100 
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answer. In this species, females are the heterogametic sex, bearing both Z and W chromosomes; 101 

males have two Zs. The Z-chromosome carries the Masculinizer (Masc) gene, which encodes 102 

a CCCH-tandem zinc finger protein that regulates maleness via its control of the sex-specific 103 

splicing of dsx [27,28]. The homologues of Masc in Trilocha varians and Plutella xylostella 104 

are similarly required for sex-specific splicing of dsx, suggesting deep conservation of this 105 

mechanism within Lepidoptera [29,30].  106 

Masc functions by regulating the male-specific transcription of RNA-binding protein 3 107 

(RBP3/Aret), which binds to one of the two dsx exons that are skipped in males and directly 108 

interacts with RBP1/Lark, which binds to the other [31]. The W chromosome encodes a 109 

dominant feminizing factor, a PIWI-interacting RNA (piRNA) produced from the Feminizer 110 

precursor [27]. Fem piRNA guides the assembly of a protein complex that suppresses Masc 111 

expression to promote the female-specific splicing of dsx [32]. piRNAs are thought to 112 

principally function in protecting the germline from transposons, which makes this derived role 113 

in Lepidopteran sex determination surprising. But while the participation of piRNAs appears 114 

novel, gene regulation by small RNAs during sex determination is not. Indeed, miR-1-3p 115 

appears to perform a role in the oriental fruit fly Bactrocera dorsalis that is opposite to that of 116 

Fem in silkworms [33]. miR-1-3p, which is transcribed at high levels in males, transduces an 117 

uncharacterized Y-linked M-factor signal to promote the canonical male-specific splicing of 118 

tra, which in turn converges on the conserved sex-specific splicing of dsx. The mechanistic 119 

simplicity and efficiency with which small RNAs can regulate the expression of their target 120 

genes may make them readily evolvable, and therefore common, intermediaries between 121 

rapidly evolving primary sex determination signals and regulators of dsx splicing. 122 

tra has also not been detected in the genomes of a small number of non-Lepidopteran 123 

insect species, including Aedes, Anopheles, and other mosquitos [26].  If these species have 124 
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lost tra, it remains to be seen how Nix, Yob, and other such M-factors control dsx splicing in 125 

its absence (Fig. 1). 126 

 127 

Challenging the canon: not all insects rely on sex-specific dsx isoforms for sexual 128 

differentiation  129 

dsx is an arthropod-specific paralog from the wider doublesex/mab-3 related (Dmrt) family of 130 

transcription factors [34]. Members of this ancient gene family appear to be the only conserved 131 

element of sexual differentiation pathways across Metazoa [35,36]. Despite this conservation, 132 

using sex-specific isoforms of a Dmrt gene to direct male and female development is an insect 133 

innovation; vertebrates, nematodes, mites, and crustaceans instead use male-specific 134 

transcription of Dmrt genes to direct elements of male-specific development [36–39]. How did 135 

this transition from sex-specific transcription to the canonical sex-specific splicing of dsx 136 

occur?  137 

Recent work suggests two key processes were at play [25]. Firstly, the expansion of dsx 138 

function from a “male gene” that overrides a default female pathway to a bifunctional switch 139 

actively required in both sexes. Male and female dsx isoforms are present as far back in the 140 

insect phylogeny as cockroaches, but outside of the Holometabola the female isoforms appear 141 

dispensable for female differentiation [25,39,40]. Why female isoforms first evolved and how 142 

they later came to play critical functions in female sexual differentiation remains unknown. 143 

Secondly, while dsx function expanded, tra function narrowed. As in the canonical Drosophila 144 

pathway, basal insects such as cockroaches require tra for both female-specific differentiation 145 

and the sex-specific splicing of dsx. But they use tra differently. In these basal groups, tra’s 146 

role in female development is independent of dsx and does not involve the production of sex-147 

specific tra isoforms [25]. Thus, tra appears to have transitioned from controlling female 148 

development via at least partly dsx-independent mechanisms to being a dedicated regulator of 149 
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dsx. The selective forces behind these transitions, as well as any consequences that non-150 

canonical variants of the tra-dsx cascade have for the manifestation of sexual dimorphism, 151 

remain significant outstanding questions.  152 

 153 

Expanding the canon: changes in the expression and targets of dsx underlie the origin 154 

and diversification of sex-specific traits 155 

Two processes are required for the evolution of sexually dimorphic traits in insects, and dsx is 156 

central to both (Fig. 2). One is the establishment of sex-specific identity in a previously 157 

monomorphic tissue. This process is facilitated by the cell-autonomous nature of dsx function: 158 

dsx transcription gives cells the capacity for sex-specific differentiation – but not all cells 159 

transcribe dsx [41–45]. From this sexual mosaicism emerges a prediction about the origin of 160 

new sexually dimorphic traits: by changing which cells express dsx, tissues can acquire (or 161 

lose) sex-specific functions. There is good evidence in support of this: the evolution of novel 162 

male-specific grasping structures in Drosophila legs, and the male-specific scent organs in 163 

Bicyclus butterflies, are both associated with the evolution of new spatial domains of dsx 164 

expression [42,46,47]. Localized upregulation of dsx also precedes the appearance of visible 165 

dimorphism in developing Trypoxylus dichotomus beetle horns, suggesting that the 166 

establishment of sexual identity by dsx early in the development of novel traits is critical to 167 

their dimorphic nature [44]. The evolutionary malleability in the spatiotemporal control of dsx 168 

expression that these studies demonstrate is afforded by modular enhancers. In Drosophila, 169 

several distinct enhancers have been identified that are collectively required for sex-specific 170 

development of leg sensory organs [48].  171 

 Controlling the pattern of dsx expression in time and space lays the foundations for 172 

sexual dimorphism, but not the endpoint. The second process therefore is the establishment of 173 

a repertoire of dsx target genes. Work on the development of dung beetle (Onthophagus) horns 174 
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suggests that this repertoire can expand and shift rapidly [49]. Moreover, it needn’t be the target 175 

genes that change, it can also be the direction of the regulatory effect conferred by dsx. A rare 176 

sex-reversal in the dimorphism of O. sagittarius horns appears to be driven by the two dsx 177 

isoforms swapping regulatory roles relative to the ancestral state: male dsx evolving from 178 

stimulating horn growth to repressing it, and female dsx evolving the reverse [50]. Genes can 179 

be added to or lost from the repertoire of dsx targets by the gain (or loss) of Dsx binding sites 180 

in their enhancers, or by structural changes in Dsx protein domains [51]. For example, 181 

transitions from sexual monomorphism to dimorphism (and vice versa) in the pheromone 182 

profile of Drosophilid flies have been partly driven by gain (and loss) of a Dsx binding site in 183 

the enhancer of the hydrocarbon-processing enzyme desat-F [4]. Because dsx targets may be 184 

co-regulated by other transcription factors, multiple cues alongside sex, such as position and 185 

developmental stage, may be integrated. Male-specific abdominal pigmentation in D. 186 

melanogaster evolved via the gain of a Dsx binding site in the enhancer of bric á brac (bab), 187 

a gene that is also regulated by the position-specifying HOX gene Abd-b [5,52]. Combinatorial 188 

changes in the spacing, polarity, and number of transcription factor binding sites within bab 189 

enhancers are associated with inter- and intra-specific changes in the position and extent of 190 

sex-specific pigmentation across Drosophila species [5,53].  191 

Changes in the targets and regulatory effects of dsx are likely to represent a major 192 

channel through which sexually dimorphic traits diversify. The level of modularity in the 193 

development of a single trait that dsx’s mode of action provides may provide a high level of 194 

evolutionary lability, allowing sub-elements to evolve independently and, crucially, without 195 

disrupting conserved sexual differentiation programs [53,54]. 196 

  197 

 198 

 199 



 9 

Expanding the canon: dsx, a master regulator of sex-limited intraspecific polymorphisms  200 

Due to the modular control of its expression, a broad and evolving set of target genes, and the 201 

ability to switch roles between activator and suppressor, dsx can control wide-ranging 202 

morphological change within as well as between species. Some swallowtail butterflies 203 

(Papilio) have multiple discrete female morphs, some of which mimic the warning coloration 204 

of toxic model species, while the males are monomorphic. The differences between female 205 

morphs of P. polytes are controlled by different dsx alleles, which act as a switch between a 206 

default, male-like colour pattern and different mimetic morphs [55,56]. In P. polytes, the dsx-207 

H allele controls wing coloration by activating “mimetic” genes that include Wnt1 and Wnt6, 208 

and repressing “non-mimetic” genes such as abd-a [57]. dsx mimicry alleles segregate within 209 

multiple Papilio species and show species-specific patterns of genetic differentiation [58–61]. 210 

This differentiation has been interpreted as pointing to independent evolutionary origins of dsx 211 

alleles in the genus Papilio [58,59]. However, recent analysis of a broader set of species has 212 

revealed the presence of multiple, trans-species dsx polymorphisms, suggesting that the 213 

divergence in dsx alleles instead reflects allelic turnover, where alleles from a polymorphic 214 

ancestor are subsequently replaced by their own allelic descendants [60]. Resolving which 215 

force is at play is key to understanding the repeatability of dsx-dependent female-limited 216 

polymorphism. Indeed, evolutionary change in dsx is not the only route to female-limited 217 

mimicry polymorphism, as evidenced by the African mocker swallowtail (Papilio dardanus), 218 

where mimetic phenotypes are controlled by a polyalleic locus that contains the transcription 219 

factor genes engrailed and invective [62,63], and Hypolimnas misippus (Nymphalidae), where 220 

a novel, though unidentified, color patterning locus has been detected [64]. 221 

 222 

 223 

 224 
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Challenging the canon: sexual differentiation affected by hormone signaling 225 

Insects define sexual identity at the level of the individual cell, through cell-autonomous 226 

control of transcription and splicing. However, non-cell-autonomous, systemic hormonal 227 

inputs are increasingly recognized as critical to the development and maintenance of some 228 

dimorphic traits [65,66]. For example, ecdysteroids and their receptors have been implicated 229 

in a variety of sex-specific processes in Drosophila, including ejaculate production, female 230 

post-mating gut growth, and courtship [65,67,68]. Available data currently support two 231 

mechanisms through which hormones can affect sexually dimorphic trait development (Fig. 3). 232 

Firstly, through sex differences in hormone titer (Fig. 3a). At present, the only conclusive 233 

demonstration of this mechanism comes from sex-specific seasonal wing patterns in the 234 

butterfly Bicyclus anynana [69]. Early in development, dry season morphs of both sexes 235 

express the Ecydsone Receptor (EcR) in a similar number of dorsal eyespot cells. Later, the 236 

titer of the hormone 20-hydroxyecdysone diverges between the sexes, inducing a 237 

corresponding divergence in the rate of division of eyespot cells that ultimately generates sex 238 

differences in eyespot size.  239 

The second mechanism is through changes in the sensitivity of a developing tissue to a 240 

fixed hormone titer (Fig. 3b). Sex- and trait-specific sensitivity to insulin/IGF, juvenile 241 

hormone, and ecdysone signalling pathways is variously thought to underlie dimorphic horn 242 

and mandible growth in a number of beetle species [70–74]. Work in the stag beetle 243 

(Cyclommatus metallifer) has shown that sex-specific isoforms of dsx differentially regulate 244 

the sensitivity of mandible cells to juvenile hormone , promoting exaggerated growth in males 245 

and repressing it in females [73]. This illustrates the interplay between cell-autonomous and 246 

hormonal inputs into the development of sexually dimorphic traits. Rather than serving as 247 

alternative ways of generating sexual dimorphism, systemic hormones may act by co-248 
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regulating the target genes of dsx and tra. In other cases, the hormone titers themselves may be 249 

controlled via dsx- and tra-dependent mechanisms in hormone-secreting cells. 250 

 251 

Conclusion 252 

A canonical view of sex determination and differentiation in insects emerged from work on D. 253 

melanogaster. As we broaden our taxonomic sampling, the evolutionary history of insect 254 

sexual development increasingly appears to conform to the developmental hourglass model: 255 

while sex-determining signals and downstream target genes diverge rapidly, doublesex acts as 256 

a conserved linchpin, defining and expanding sex-specific identity into new tissues to dramatic 257 

and beautiful effect. 258 
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 630 

Figure legends 631 

Figure 1. Divergent primary sex determination signals in Diptera converge on sex-specific 632 

doublesex splicing. In the 5 Dipterans shown, sex is specified at the level of the individual cell 633 

by factors associated with sex (or proto-sex) chromosomes. These male- and female-defining 634 

chromosomes vary between species from being highly similar to each other (homomorphic) to 635 

highly divergent (heteromorphic) in morphology and gene content. In D. melanogaster, the 636 

number of X chromosomes determines the dosage of a set of X-linked factors that regulate the 637 

expression state of Sex lethal (Sxl). High dosage (XX) activates Sxl expression, the protein 638 

product of which promotes female-specific splicing of transformer (tra). The resulting female-639 

specific isoform of Transformer protein (TraF) is required for the female-specific splicing of 640 

the transcription factor doublesex (dsx). Maleness is defined by the lower dosage of X-linked 641 

factors, rather than the presence of a Y-chromosome (e.g., X0 individuals are males). Having 642 

a single X chromosome leaves Sxl inactive in males, and the male-specific isoform of 643 

Transformer is produced (TraM). The presence of a premature stop codon renders TraM non-644 

functional, which in turn leads to the production of the male-specific isoform of dsx. Musca 645 

domestica, Ceratitis capitata, Aedes aegypti, and Anopheles gambiae each use independently 646 

evolved (non-homologous) dominant M-factors to determine maleness. These are encoded on 647 
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the Y-chromosome in most cases, but translocations to autosomes (turning them into proto-sex 648 

chromosomes) have been detected in different M. domestica populations. Whether the M-factor 649 

found on chromosome 1 in one population of M. domestica (shown in white) is a derived Mdmd 650 

sequence or an independently evolved M-factor remains unclear. In M. domestica and C. 651 

capitata, the presence of M-factors leads to the production of non-functional TraM and 652 

therefore, as in D. melanogaster, the production of the male-specific isoform of Dsx. No tra 653 

homolog has been found in Ae. aegypti or An. gambiae. Their M-factors, Nix and Yob 654 

respectively, are therefore presumed to determine the male-specific splicing of dsx by an as of 655 

yet unknown, tra-independent mechanism. The male and female isoforms of Dsx share a DNA-656 

binding N-terminus but bear different C-termini, allowing them to regulate downstream target 657 

genes in a sex-specific manner, leading to the development of sex-specific traits. Figure created 658 

using BioRender. 659 

 660 

Figure 2. The origin and diversification of a new sex-specific trait. This schematic describes 661 

a four-part model for the origin and subsequent morphological diversification of a sex-specific 662 

structure, in this case a modified row of bristles (a ‘sex comb’) on the male Drosophila foreleg. 663 

Species 1 displays the ancestral state of monomorphism. Here, developing leg cells do not 664 

express the transcription factor doublesex (dsx) and therefore lack the capacity for sex-specific 665 

differentiation. In species 2, changes in the sequence of the regulatory region controlling dsx 666 

expression enable the binding of position- and stage- determining transcription factors (TF). 667 

These TFs activate dsx expression in a subset of leg cells during a particular developmental 668 

window. dsx is alternatively spliced to give rise to male- and female-specific isoforms (DsxM 669 

and DsxF), which bind to the regulatory regions of target genes via a shared DNA-binding 670 

domain and impart sex-specific effects on target gene expression through sex-specific C-671 

termini. The localized, sex-specific regulation of gene expression that results enables the 672 
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development of a novel structure only in males. In species 3, additional changes in the dsx 673 

enhancers generate changes in the binding of its upstream regulators. This leads to changes in 674 

the spatiotemporal pattern of dsx expression among developing leg cells, which in turn 675 

produces changes in the size and position of the male-specific structure. In species 4, Dsx has 676 

acquired a new downstream target gene due to sequence changes in that gene’s regulatory 677 

region. Incorporation of this new target into the gene regulatory network that controls the 678 

development of the male-specific structure leads to the further morphological diversification. 679 

Figure created using BioRender. 680 

 681 

Figure 3. Hormonal inputs into insect sexual dimorphism. Two principal mechanisms exist 682 

through which hormones can deliver sex-specific effects in insects. (A) Sex differences in 683 

hormone titer. Developing eye spot cells in the butterfly Bicyclus anynana express ecdysone 684 

receptor. The titer of circulating 20-hydroxyecdysone in females leads to a binding threshold 685 

being exceeded, which causes the cells to proliferate and the eyespot to grow. The lower titer 686 

in males fails to exceed the binding threshold and the cells fail to proliferate. What generates 687 

the divergence in hormone titer is unclear, but one potential mechanism is the direct or indirect 688 

regulation of enzymes in the ecdysone biosynthesis pathway by DsxM and/or DsxF. (B) Sex 689 

differences in sensitivity to hormones. Expression of dsx in the developing prepupal mandibles 690 

of the stag beetle Cyclommatus metallifer changes the sensitivity of mandibular cell 691 

proliferation to juvenile hormone. DsxM increases sensitivity, leading to enlarged mandibles in 692 

males. DsxF reduces sensitivity, leading to small mandibles in females. Figure created using 693 

BioRender. 694 
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