
Habitat shapes diversity of gut microbiomes in a wild population of blue tits (Cyanistes 
caeruleus) 

 

Szymon M. Drobniak1,2,3*#, Mariusz Cichoń1 & Magdalena Zagalska-Neubauer4# 

 

1 Institute of Environmental Sciences; Jagiellonian University; ul. Gronostajowa 7, 30-387 
Kraków, Poland 

2 Ecology & Evolution Research Centre; School of Biological, Environmental and Earth 
Sciences; University of New South Wales; 2052 Kensington, NSW, Australia 

3 Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; 
Norbyvägen 18D, 752 36 Uppsala, Sweden 

4 Department of Behavioural Ecology, University of Wrocław, Sienkiewicza 21, 50-335 
Wrocław, Poland 

 

* Corresponsing author; szymek.drobniak@gmail.com 

# Equal contribution  



Introduction 

Bacteria are ubiquitous in the environment and constitute the majority of life on Earth. They 
inhabit not only abiotic environments but also bodies of other living organisms. Being present 
in virtually all tissues that are in contact with the external environment, such bacteria form 
what is called a microbiome: a unique, taxon-specific and highly plastic collection of various 
bacterial, but also fungal, protozoan and viral species that interact synergistically with an 
organism’s physiology and biochemistry (Hird, 2017; Hicks et al., 2018). 

There is ample evidence of the impact microbiome diversity has on individual fitness. A huge 
majority of available published results elaborates on the importance of microorganisms in 
digestion and nutrients assimilation (Hird, 2017). Symbiotic bacteria can also affect and 
modulate components of individual immune response, can affect the general metabolic 
homeostasis of an organism, and finally – they can also modulate individual behaviours 
through links that exist between organs hosting symbiotic bacteria (e.g., gut) and the brain 
(Toivanen et al., 2001; Mazmanian et al., 2005; Cryan & O’Mahony, 2011; Davidson et al., 
2018; Bergamaschi et al., 2020; Cao et al., 2020). These physiology and condition links often 
manifest themselves as differences in microbiotic diversity existing between sexes, age 
classes or developmental stages of individuals within populations, especially if different 
classes of individuals in populations engage in different types of behaviours or occupy 
different ecological niches (Spor et al., 2011). For instance, sex differences likely begin to 
play role already in the prenatal period in mammals, when developing embryos are exposed 
to compounds secreted by adult female microbiome of their mothers (Jašarević et al., 2016). 
This sex specificity is amplified later in life, and currently many sex-specific patterns 
observed in metabolic or psychological disorders prevalence is attributed to, among other 
things, sex differences in microbiomes and microbial reactivity to sex-specific hormonal 
profiles (Spor et al., 2011; Jašarević et al., 2016; Beale et al., 2019). 

Sex is only one of several individual characteristics influencing symbiotic microbial 
communities. Unfortunately, majority of evidence about interspecific differences in 
microbiomes comes from mammals (including humans) and is usually collected in contexts 
strongly linked to biomedical research. Far less is known about microbiome differences in 
wild organisms and wild, unmanaged populations and non-mammalian taxa (Benson, 2016; 
Hird, 2017; Björk et al., 2019). In terms of sexual differentiation, available data suggest the 
existence of varying, taxon-dependent patterns (e.g., age dependent decreases in microbial 
diversity in male gorillas, Pafčo et al. 2019; no sexual microbiome dimorphism in baboons, 
Tung et al. 2015; no significant sexual differentiation in gulls, Noguera et al. 2018; larger 
diversity of oral and faecal microbiota in male great tits, Kropáčková et al. 2017; markedly 
larger abundance and diversity of microbes in breeding males in rufous-collared sparrows, 
Escallón et al. 2019). In most cases the sex more involved in social interactions, or exhibiting 
more active reproductive behaviour, tended to have richer microbiomes. Similarly, evidence 
from wild populations suggests that age groups may differ in microbial diversity, with 
younger individuals often having slightly less diverse microbiomes (Ren et al., 2017; Kohl et 
al., 2019; Pafčo et al., 2019; but see Noguera et al., 2018). 

Relatively the most interesting, but also the scarcest, is evidence for environment-driven 
modification of host microbiomes. Several factors may contribute to this pattern (e.g., 
insufficient or not quantified environmental heterogeneity in many wild microbiome projects, 
insufficient sample sizes collected in wild microbiome studies; Hird 2017). Lack of good 
estimates of environment-dependent microbiome differences is surprising: the flexibility and 



functional diversity of microbiomes may constitute one of important mechanisms conferring 
phenotypic plasticity and enabling fast, genetically unconstrained, modulation of individual 
phenotypes (Kolodny & Schulenburg, 2020). Some studies suggest, that in certain systems 
environmentally-drive microbiome differentiation may play more important role than its 
modulation by sex or age factors (Ren et al., 2017). Indeed, plasticity and microbiome 
malleability may be key to adjusting individual physiologies to conditions varying spatially 
or temporarily (Hicks et al., 2018), and arming individuals with additional physiological 
pathways necessary while individuals migrate and change habitats (Wu et al., 2018). In 
systems where multiple related species occur sympatrically, but inhabit varying ecological 
(e.g., nutritional) niches, microbiomes seem to track this habitat-dependent differentiation 
(e.g., in Darwin finches microbiome diversity and similarity strongly correlates with 
phylogenetic differences between related finch species; Loo et al. 2019). 

In this study we aimed at supplementing the growing body of evidence about factors driving 
microbiome differentiation in wild populations of animals. We collected microbiome profiles 
from over 170 individuals of blue tits inhabiting a wild nest-box population on Gotland 
(Sweden). Blue tits are an important model species in eco-evolutionary studies, and the data 
presented in this paper comes from a long-term monitoring project (with over 20 years of 
continued data collection). In the studied population, we benefited from significant habitat 
heterogeneity experienced by breeding birds: nest-boxes available to blue tits on Gotland are 
located either in fertile, rich deciduous forests with dense understory and diverse food base, 
or in open meadow-like habitats with no understory and sparse one-species tree cover, which 
translates in observably lower diversity of feeding opportunities. We predicted, that in our 
study system younger individuals would be characterised by less diverse microbiomes than 
older (reflecting microbiome development and maturation), that sexes should have similar 
microbiome profiles (as sexes in blue tits have similar mobility, exploratory behaviour and 
diet), and finally – that birds from richer forest habitats would significantly differ in terms of 
microbiome complexity and composition from birds from more open, meadow habitats. We 
also expected, that blue tit microbiomes will be similar to those of the closely related great 
tits (which are composed mostly of Firmicutes and Proteobacteria (Kropáčková et al., 2017; 
Davidson et al., 2019; Bodawatta et al., 2020), contrary to many scavenging and omnivorous 
species, where other bacteria phyla, such as Bacteroidetes, Tenericutes and Actinobcateria 
dominate (Bodawatta et al., 2018; Wu et al., 2018)). 

 

  



Materials and methods 

Field protocol and material  

Microbiological material was collected from adult blue tits of both sexes during the 2018 and 
2019 fieldwork seasons in the wild population of blue tits inhabiting Gotland – a small 
Swedish island in the southern part of the Baltic Sea (57°01’ N; 18°16’ E). In this population 
blue tits breed in wooden nest-boxes distributed uniformly across 23 study plots of varying 
size; density of breeding pairs is uniform across plots of different size (unpublished data). 
Most plots are covered by oak (Quercus robur), ash (Fraxinus excelsior) and poplar (Populus 
sp.) forests, with dense common hazel undergrowth (Corylus avellana). These habitats 
constitute what we refer to in the following sections as “deciduous forest” habitat. Diversity 
of plants and very heterogenous environment (with many water-filled ditches, in-forest 
swamps and small treeless openings) translate into more variable food (winter-moth 
caterpillars feeding on young oak leaves, large numbers of Diptera, Coleoptera and 
Hymenoptera insects; Pitala 2007). Some plots lack the undergrowth and are covered by 
bright, sparse oak forests with wet, rich hay-meadows abundant in orchids and other 
perennial plant. We will refer to this type of habitat as “forest meadows” henceforth. The 
main difference here is in the abundance of different food-sources: in these habitats birds 
likely feed mostly on caterpillars grazing the oak leaves. Due to these differences, on average 
birds start breeding later (measured as egg-laying date) in forest-meadow, when compared in 
pairs of nearby open vs. forest habitats (Supplementary Fig. 1A). In many such pairs of plots, 
chicks have also lower body mass on day 8 (i.e., in the middle of their growing period, 
Supplementary Fig. 1B). In plots where both types of habitats can be observed (Öja, Rudvier, 
Rannarve, Ronnarve) a breeding pair was classified to either of the habitats if all 
neighbouring nest-boxes (i.e. direct vicinity of the focal nest-box) also were assigned to a 
give habitat type. This distinction was needed only in case of two largest plots, due to their 
heterogeneity. Two plots, although entirely classified as deciduous forest (Tuviken and 
Skoge), have large proportions of conifers (pine Pinus sylvestris and spruce Picea abies). For 
this reason in several cases they were excluded in sensitivity analyses to see if this may have 
had an impact on microbial diversity estimates. In the studied population, tits lay almost 
exclusively one clutch per year, starting around the 20th of April. Females lay on average 11 
eggs (range: 5 – 17) and incubate them for 13 days; chicks fledge at the age of 17 – 20 days. 



 

Supplementary Figure 1. Differences in laying date (A) and day 8 nestling mass between 
forest-meadow and deciduous forest plots, in pairs of plots located near each other (each two 
subsequent plots form a pair). 

 Microbiological samples were collected from adults while they were caught to collect 
basic morphological measurements and to ring them. Capture was done either by clip-traps 
mounted inside of a nest-box (i.e., capturing during nestlings’ feeding) or by mist-nets setup 
in the vicinity of a nest-box. All adults were caught at approximately the same stage of nest 
life, i.e., between 14 and 16 days after hatching. Captured adults were sexed (by the presence 
of a brood patch) and aged (by the presence of a distinct moult limit in 1-year old 
individuals), measured for tarsus length, wing length and body weight, and assessed in terms 
of their aggressiveness while handling (two metrics: bird producing a distress call – yes/no; 
bird struggling to escape while handling – on scale from 0-3, 0 = no struggling, 3 = very 
aggressive behaviour, bird difficult to handle). 

 Faeces were collected using a custom-designed method. Briefly, following 
measurements, each individual was placed in card-board box (20 x 20 x 30 cm) lined with hot 
steam-sterilised baking paper. Paper sheets were individual packed in sterile plastic bags to 
avoid unnecessary contamination. Usually within 2-5 minutes the birds would defecate in the 
box. After releasing the bird, faeces were collected using a sterile screwcap microtube 
(Sarstaedt) and transferred to the field laboratory. There, we extracted the bacterial DNA 
using the PowerSoil Extraction kit (Qiagen) following the manufactures protocol. Extracted 
material was frozen in -20C and transported frozen (using a portable car freezer) to the 
Institute of Environmental Sciences in Poland. 

 At multiple stages of field and laboratory work we collected control samples (e.g., 
swabs of the clean baking paper, swabs of the field laboratory paper, swabs of the field 
clothing). We have also performed a couple of extractions without any microbiological 
material (to establish the “microbiome” of the extraction kit and plastics used in all 
procedures). 
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Library preparation and amplicon sequencing 

Analysis of microbial DNA was done using a standard protocol designed for the analysis of 
the 4th variable (V4) region of the bacterial 16S rRNA gene. In the first step we have 
performed a nested PCR, meant to improve representation of different bacterial lineages 
(Ganz et al. 2017). The first PCR amplified a long V3-V4 region of rRNA gene using a set of 
degenerate primers (reverse primer: 1492R, 5’-TACCTTGTTACGACTT; forward primers: a 
generic primer plus a mixture of primers specific for broad groups of bacteria 
Bifidobacteriaceae, Borrelia oraz Chlamydiales, all mixed in proportions 4/1/1/1: 27F-YM 
5’-AGAGTTTGATyMTGGCTCAG; 27F-Bif 5’-AGGGTTCGATTCTGGCTCAG; 27F-Bor 
5’-AGAGTTTGATCCTGGCTTAG; 27F-Chl 5’-AGAATTTGATCTTGGTTCAG). In the 
first PCR 12 μl reaction mix were prepared by adding 5 pM of each primer (oligo F mix and 
1492R), 2.5 μl of DNA sample, 5 μl of 2xPhanta Max Master Mix (Vazyme), and 3.7 μl pure 
sterile water. Conditions for this PCR were as follows: 95°C 3 min, (95°C 30 s, 48°C 30s, 
72°C 45 s) x 28 cycles. PCR product from the first PCR round was used as template in the 
second PCR which was performed with a V4-specific pair of primers 515F (5’-
TGCCAGCmGCCGCGGTAA) and 806R (5’-GGACTAChvGGGTwTCTAAT). The 
primers were merged with a portion of the Illumina sequencing adapters, i.e. consisted of a 
fully complementary primer segment, and partial adapter overhang. In the second PCR 24 μl 
reaction mix consisted of 1.6 μl of the first PCR product, 1 pM of each primer and 12.5 μl of 
KAPA HiFi HotStart Ready Mix (KAPA Biosystems). Conditions of the second PCR were as 
follows:  95°C 3 min, (95°C 30 s, 55°C 30 s, 72°C 30 s) x 22 cycles. Following amplicon 
generation, the Illumina adapters and library preparation workflow was applied according to 
the Illumina 16S Metagenomic Sequencing Library Preparation Guide (Part # 15044223 Rev. 
B). The amplicons were multiplexed with dual-barcode combination for each sample. The 
samples were sequenced in two 300-bp paired end runs on an Illumina MiSeq platform at the 
Jagiellonian University, Kraków, Poland. In total we successfully sequenced 175 samples in 
two MiSeq runs. 

Bioinformatic processing 

Raw sequencing reads were demultiplexed by the MiSeq software and save to paired FASTQ 
files. Sequencing data was cleaned and processed using the QIIME2 (Bolyen et al., 2019) and 
DADA2 (Callahan et al., 2016) pipelines. In the first step we trimmed the sequences based on 
the quality of reads: initial base calls in both forward and reverse reads were of high quality, 
however we decided to remove the distal 20-30 bases in both reads to keep base calls’ quality 
uniformly above 20, which resulted in truncation of forward reads to 250bp, and reverse 
reads to 220bp. Then, the reads were cleaned and filtered using the DADA2 pipeline, which 
clustered sequences into sequence variants, removed chimeres, indel and substitution errors 
and other artefacts. We used default recommended DADA2 settings. 

 Final sequence variants (operational taxonomic units, OTUs) were used to construct 
the full feature table in QIIME2. In order to improve downstream analyses, the feature table 
was then cleaned using several different levels of filtering. First, following a conservative 
approach, we have removed from the feature table all variants identified in control samples 
(samples extracted without the biological material, and PCR reactions using sterile water 
instead of bacterial DNA; please see the reults section for summary of this filtering). Then, 
we used a naïve Bayesian taxonomical classifier trained to the rRNA region and read lengths 



obtained in our experiment. Training was done using the reference taxonomic set from the 
Silva database, version 1.38 (Quast et al., 2013). Following taxonomical clustering of OTUs, 
the feature table was filtered to remove all eukaryotic mitochondrial and chloroplast rRNA 
genes sequences. Finally, we removed all singletons and doubletons (variants identified only 
in 1-2 reads). 

 The final cleaned feature table was used in subsequent analyses to calculate a number 
of alpha diversity metrics (Shannon index, evenness index, Faith’s phylogenetic diversity 
index) and to represent samples in a low-dimensional space through a number of prevalence 
and abundance-based metrics used in exploring beta-diversity (Bray-Curtis distances, 
weighted and unweighted UniFrac distances; for the latter, we have generated a phylogeny of 
all sequences suing the phylogeny plugin in QIIME2). Differential abundance of specific 
taxons across different subsets of the sample set was explored using the ANCOM algorithm 
(Mandal et al., 2015); this analysis was performed on the set further filter to only include 
OTUs representative across multiple individuals in the database (i.e. variants found in at least 
10 individuals). The impact of certain factors (individual sex, age, habitat type, experimental 
plot, year of study) was tested using the adonis plugin in QIIME2, utilising a permutation-
based ANOVA-type test. 

 

  



Results 

Sequencing performance and overall metrics 

Sequencing generated 36659846 raw paired-end reads. 63.4% passed initial quality and error 
filtering, and 23301944 were merged into complete reads. Two samples dropped-out at this 
stage as none of their reads passed the filters. 5200156 reads remained after filtering out the 
chimeras and non-resolvable sequencing errors (range of 42 to 98269 reads per sample, 
median 27027). Remaining samples were clustered into 3743 unique sequence variants 
(OTUs). 

After subsequent filtering steps (removal of singletons and doubletons, removal of samples 
with less than 4000 reads) we ended up with 4709554 reads clustered into 2829 OTUs; 
taxonomic analysis was performed at this stage. Note that all 4 samples removed due to the 
>4000 reads threshold were animal and not control samples. In order to use a conservative 
approach, all sequence variants identified in the control samples (i.e. samples without any 
microbiological material collected at the stage of PCR and DNA extraction, and samples 
collected from the area of the field lab) were considered as contaminants and were removed 
from the animal samples – this resulted in removal of 221 OTUs (17 of which were found in 
all control samples). After this step, and after removal of all sequence variants identified as 
mitochondrial or chloroplast rRNA genes, we ended up with 170 samples containing 2536 
OTUs. 

Alpha rarefaction analysis indicated that all individuals were sequenced to near saturation (1 
sample with final read count < 2000 dropped out at this stage; Fig. 1). All diversity analyses 
were done on samples rarefied to the depth of 1500. 
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Figure 1. Rarefaction analysis. The inset shows in more details the lower curves. Lines are 
smoothed traces, each based on 10 rarefactions per depth. 

 

Alpha diversity 

Sexes did not differ in terms of alpha diversity measures (Shannon’s entropy: Kruskal-Wallis 
H = 0.41, p = 0.52; evenness index: H = 0.002, p = 0.96; Faith’s phylogenetic diversity: H = 
1.67, p =0.19; number of observed OTUs: H = 0.09, p = 0.76). Similarly, there were no 
significant differences between age groups, although older individuals tended to have higher 
Shannon’s diversity index and number of OTUs per individual (1-year old vs. older birds; 
Shannon’s entropy: H = 2.57, p =0.10; evenness index: H = 0.49, p = 0.48; Faith’s PD: H = 
0.06, p = 0.81; number of observed OTUs: H = 2.94, p = 0.08). Forest-meadow habitats had 
significantly lower diversity in terms of Shannon’s entropy (H = 6.21, p = 0.01). The also 
tended to have less observed OTUs and lower phylogenetic diversity, as well as higher 
evenness, although in all cases differences were marginally non-significant (number of 
observed OTUs: H = 2.21, p = 0.13; Faith’s PD: H = 2.02, p = 0.15; evenness: H = 2.19, p = 
0.13). Differences between habitats in Shannon’s index and numbers of observed taxa were 
even more pronounced after removing form analyses two plots (Tuviken and Skoge) 
characterised by significant prevalence of pine and spruce (and hance mixed rather than 
deciduous forests; Shannon’s entropy: H = 7.16, p = 0.007; observed OTUs: H = 3.01, p = 
0.08).  All these results are summarised in Fig. 2. In spite of now large-scale habitat 
differences in alpha-diversity, there was large variation in alpha-diversity metrics between the 
studied plots (Fig. 3A), some of them having significantly different diversity in pairwise plot-
plot comparisons (Fig. 3B). 

 

 



 

Figure 2. Comparisons of alpha-diversity metrics (columns) between habitats, sexes and age 
classes. Boxes indicate inter-quantile ranges, horizontal lines are medians, whiskers mark the 
minimum and maximum ranges, excluding outliers (marked as points). 
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Figure 3. A: comparison of alpha-diversity indices between the studied plots. Plot elements 
identical with Figure 2. Plots that have both forest-medaow and deciduous forest habitats are 
split into two narrower box-plots. B: Heatmap of p-values from comparisons of Faith’s 
phylogenetic diversity in pairs of plots. Dark values indicate more significant difference. 
Significant tests marked with asterisk (** <0.05; * <0.1). 

 

Beta-diversity differences 

Principal coordination analysis based on unweighted and weighted (by abundance) UniFrac 
distances indicated that the forest-meadow and deciduous forest habitats tended to occupy 
slightly different portions of the community diversity scale, which was especially evident in 
case of weighted (i.e., taking into account taxa abundance) UniFrac distances (Table 1 & 2, 
Fig. 4). No sex or age differences were detected, although in case of weighted UniFrac 
distances there was a close-to-significant age-by-sex interaction (Table 1) indicating, that 
sexes may differ from each other in terms of microbial community composition in an age-
dependent matter. The detected habitat differences were robust to between year variation and 
the between replicate variation taking into account the two sequencing rounds. Also, 
removing from the set the two mixed-forest plots did not change the results qualitatively and 
introduced only slight quantitative differences (not shown). 
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Table 1. Permutation-based (999 resamplings) ANOVA table from the adonis plugin, testing 
for beta-diversity differences across several grouping factors, based on unweighted UniFrac 
distances. SS – sum of squared deviations between or within groups. MS – mean SS. 

 df SS MS F P 

Sex 1 0.161 0.161 0.901 0.557 

Age 1 0.199 0.199 1.120 0.270 

Habitat 1 0.374 0.374 2.102 0.010 

Sequencing 
round 1 2.498 2.498 14.029 0.001 

Year 1 0.432 0.432 2.430 0.003 

Sex * Age 1 0.145 0.145 0.815 0.686 

Residuals 153 27.245 0.178   

Total 159 31.055    

 

Table 2. Permutation-based (999 resamplings) ANOVA table from the adonis plugin, testing 
for beta-diversity differences across several grouping factors, based on weighted UniFrac 
distances. SS – sum of squared deviations between or within groups. MS – mean SS. 

 df SS MS F P 

Sex 1 0.070 0.070 0.705 0.686 

Age 1 0.147 0.147 1.489 0.163 

Habitat 1 0.457 0.457 4.627 0.001 

Sequencing 
round 1 0.378 0.378 3.827 0.008 

Year 1 0.256 0.256 2.594 0.017 

Sex * Age 1 0.185 0.185 1.875 0.069 

Residuals 150 15.122 0.098   

Total 156 16.617    

 



 

Figure 4. Principal coordination analysis (PCoA) plots based on unweighted (top row) and 
weighted (bottom row) UniFrac distances. Each point represents one individual sample, 
habitats are coded by colours. Relative size of points represents the Shannon’s entropy index 
of each sample. Plots present bivariate comparisons of the 1st and 2nd, and the 2nd and 3rd PCo 
axes. Ellipses mark 95% confidence ellipses around each subgroup. 

 

Taxonomic differences 

The most dominant bacterial phyla belonged in both the deciduous forest and forest-meadow 
classes to: Proteobacteria (50.5% vs. 70.1% in forest vs. open habitats, respectively), 
Firmicutes (30.5% vs. 12.6%), Actinobacteria (5.5% vs. 2.5%) and Tenericutes (4.8% vs. 
1.9%). There was also a number of unidentified bacterial taxa (~1% in forest habitats, ~5% in 
open habitats). Overall, open forest-meadow habitats showed much larger representation of 
Proteobacteria and Actinobacteria, whereas deciduous forest habitats showed relatively 
larger – compared to forest-meadows – prevalence of Firmicutes (see Figure 5 for details). At 
the OUT genus level, differences between the two habitat types were seen in a few taxa. Five 
most abundant genera were: Diplorickettsia (16.3% vs. 43.6% in deciduous forests vs. forest-
meadows); Streptococcus (18.1% vs. 6.6%); Acinetobacter (10.8% vs. 3.6%); an unclassified 
Bacteria genus (3.1% vs. 11.4%) and Wolbachia (2.2% vs. 10.2%). Additionally, 80% of all 
bacterial genera in deciduous forests comprised also: Hamiltonella, Pseudomonas, 
Carnobacterium, Spiroplasma, Ureaplasma, Anaerococcus, Massilia, Propionibacterium, 
Janthinobacterium, Chryseobacterium, Bacillus, Lactococcus, Lactobacillus. Forest-
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meadows were associated with far less diverse taxa – 80% of its bacterial abundance 
comprised, beside the abovementioned taxa, also Pseudomonas, Hamiltonella and 
Ureaplasma. 

 Differential abundance analysis through the ANCOM pipeline (performed on the core 
set of taxa, i.e., filtering out OTUs found in less than 10% of all sequenced samples, and 
collapsing taxa annotations to the level of family) identified several differentially prevalent 
taxa: Spiroplasmataceae/Tenericutes (biased towards deciduous forest); 
Diplorickettsiaceae/Proteobacteria (biased towards deciduous forest); 
Burkholderiacaea/Proteobacteria (biased towards deciduous forest); Mycoplasmataceae 
(biased towards deciduous forest); Pseudomonadaceae/Proteobacteria (biased towards 
deciduous forest); Moraxellaceae/Proteobacteria (biased towards deciduous forest); 
Pasteurellaceae/Proteobacteria (biased towards forest-meadows); 
Enterobacteriaceae/Proteobacteria (biased towards deciduous forest); Micrococcaceae 
(biased towards deciduous forest); Streptococaceae/Firmicutes (biased towards deciduous 
forest); Lactobacillaceae/Firmicutes (biased towards deciduous forest); 
Aerococcaceae/Firmicutes (biased towards deciduous forest); 
Propionibacteriaceae/Actinobacteria (biased towards deciduous forest). 

 

 

Figure 5. Bacterial phyla identified in the sequenced samples, grouped by the habitat type of 
each adult bird. The ‘Other’ group pools together phyla width very small prevalences.  
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Discussion 

In our study, we present the first descriptive account of microbiome diversity and 
composition in a wild, nest-box population of blue tits from the Swedish island of Gotland. It 
is one of the few such surveys performed in long-term monitored populations with similar 
numbers of individuals surveyed. Our study confirms previous results and general patterns 
seen in wild birds’ microbiota. Although we have not observed any significant between-sex 
or age dependent differences in microbiome composition and diversity, we have detected 
marked differences between experimental plots that host subsets of nest-boxes in the studied 
population. Further analysis indicated, that much of the observed differences could be 
attributed to general habitat differences between the studied plots: individuals breeding in 
locations covered by dense, rich deciduous forests tended to have visibly more diverse 
mircobiomes, with higher Shannon’s entropy values and more observed taxons. When 
represented in a reduced-dimensionality space using UniFrac distances, samples coming from 
the two contrasting habitats occupied disjoint regions of microbial diversity. Differential 
prevalence analysis indicated several microbial families that were present at contrasting 
abundances in the two habitat types. 

In spite of being an important model species in ecological studies, blue tit microbiomes have 
not so far been studied using high-throughput sequencing methods. A number of older studies 
did look into the diversity gut microbes in this species, but in all cases these analyses where 
done using more traditional DNA fingerprinting methods (Lucas & Heeb, 2005; Benskin et 
al., 2015) and identified low numbers of actual OTUs. Thus, it is difficult to compare these 
studies to ours. The closely related great tit (Parus major) was already studied using next-
generation sequencing microbiome typing and results of those studies largely confirm our 
general account of microbiome composition in blue tits. Kropáčková et al., (2017) analysed 
oral and faecal microbiomes from great tits from a Czech population. Bacterial composition 
of faecal samples was similar to this seen in our study, with domination of Proteobacteria 
and Firmicutes, and significant prevalence of Actinobacteria and Tenericutes. At the genus 
level, the dominant bacteria noted in this study were also identified as highly prevalent in our 
population (Ureaplasma, Chryseobacterium, Carnobacterium). Similar microbiome 
compositions were reported for great tits in several other studies (Davidson et al., 2019, 
2020), but population differences may paly role to some extent (e.g., Teyssier et al. (2018) 
reported great tit microbiomes dominated by Firmicutes and Actinobacteria, with only small 
prevalence of Proteobacteria; notably, their analyses were done on fledglings, contrary to our 
study and other cited studies which used at least 1-year old adults). Blue tit microbiomes do 
significantly differ from microbiomes of other bird species (e.g., Darwin’s finches – 
domination of Firmicutes and Actinobacteria (Loo et al., 2019); swan geese – domination of 
Firmicutes (Wu et al., 2018); white ibises – domination of Firmicutes (Murray et al., 2020); 
great bastards – domination of Firmicutes and Bacteroidetes (Liu et al., 2020)), which may 
reflect general differences due to different dietary niches (Waite & Taylor, 2015; Grond et 
al., 2018). 

In our study we did not see any sex or age dependent differences, which agrees with studies 
looking at similar patterns in great tits (Kropáčková et al., 2017; Davidson et al., 2019). 
Teyssier et al. (2018) did report age-related changes in microbiome composition (reduction in 
Proteobacteria abundance and increase in Firmicutes abundance), but that study looked at 
shifts within a short time window in juveniles (from the age of 8 days to 15 days), i.e., in 
period when microbiomes may still be in the assembly phase and far from their final 
composition. 



Habitat differences observed in our study indicate, that habitats closer to the typical habitat of 
blue tits (i.e., a deciduous forest) are linked to larger taxonomic diversity of microbiome 
communities. They also significantly differ in terms of their beta-diversity metrics (i.e., 
bacterial communities in each habitat type are on average more similar to each other than to 
communities in the opposite habitat type). More in-depth analyses are needed to provide 
better understanding of the actual ecological differences between the two described habitats. 
Population wide data indicates that they clearly differ in phenological parameters, and also 
possible in their ability to provide adequate food basis for breeding birds (see Supplementary 
Figure 1 and the Materials and Methods section). Own, unpublished observations indicate, 
that deciduous forest habitats are much more heterogenous, less exposed to predators, and 
support a more diverse array of possible food sources than forest-meadows. Differential 
abundance of some of the detected microbial clades seems to confirm this. Deciduous forest 
habitats yielded much larger abundance of Wolbachia in the tit microbiome. Unfortunately, 
taxonomic analysis could not identify specific species/strains of Wolbachia – but this result 
suggest, that deciduous forest can be more abundant in certain Wolbachia-carrying insects, 
and that this translates into dietary differences in the two opposite habitat types. Evidence, 
that habitat diversity influences blue tit diet was recently presented using taxonomic 
barcoding of faeces material in this species (Shutt et al., 2020). One of their interesting 
observations is an increase, with increasing tree diversity, of Diptera insects as diet 
components in blue tits, with only minor changes in abundances of other insect orders. 
Diptera-specific Wolbachia could therefore be responsible for the observed microbiome 
patterns. Increased prevalence of Spiroplasmataceae (known insect haemolymph parasites) in 
deciduous forest microbiomes also aligns with this hypothesis. 

In terms of the digestive role of bacteria, deciduous forest blue tits had microbiomes with 
higher abundance of Streptococcaceae, Enterobacteriaceae, Propionibacteriaceae and 
Lactobacillaceae – all containing many fermenting bacteria species. Their presence for sure 
facilitates break down of many carbohydrate compounds, but without exact knowledge of 
diets in the two opposing habitats it is difficult to conclude which diet components may be 
responsible for the observed differences. In a recent dietary manipulation experiment, 
supplementing great tits with insects did not selectively affect any of these taxa (Davidson et 
al., 2019), leaving open the question about insect diet composition impact on the fermenting 
bacteria. In general, the link between within-species/genus diet differences is already well 
established in the literature (Davidson et al., 2019; Loo et al., 2019). Experimental 
manipulation of great tit diets by shifting them into more insect-larvae based led to an 
increase in the proportion of Firmicutes and drop in the proportion of Proteobacteria in bird 
microbiomes (Bodawatta et al., 2020) – a trend seen in our study in case of deciduous forest 
birds. Also, a comparative study of several insectivorous and omnivorous species indicated 
that insectivorous species tended to have more Gammaproteobacteria and 
Enterobacteriaceae than omnivorous taxa. Putting our results in the context of the 
abovementioned ones will be possible only when more data on habitat-induces diet 
differences will be available. An important step in determining how much of the observed 
diversity is fixed at the between individual level, and how much of it depends on year-by-
year dietary changes, will require comparing samples from the same individuals breeding in 
different seasons in different types of habitats. 

There were several technical issues that may have affected our results. One of major 
problems in similar microbiome studies, using low microbial biomass DNA extracts, is 
dealing with contaminating bacteria that enter samples during fieldwork, and as part of 
laboratory handling or from laboratory kit microbes (“kitome” and “splashome”) (Edmonds 



& Williams, 2017; Eisenhofer et al., 2019; Hornung et al., 2019). Recommendation varies 
from analysing all identified OTUs together to complete filtering of putative contaminants 
(Eisenhofer et al., 2019). We have applied a conservative approach of dealing with sample 
contamination: we removed all OTUs that were present in negative controls (that is, samples 
extracted without faecal material, samples containing swabs of the field laboratory area and 
PCRs run without extracted bacterial DNA). Majority of contaminants belonged to the genera 
Cutibacter (mostly C. acne) and Staphylococcus, i.e., two major bacterial groups commonly 
seen as opportunistic commensals on human skin and comprised 221 OTUs in total (~8% of 
the original number of all identified OTUs). It is likely that some of the removed taxa may be 
genuine components of bird microbiomes and may have cross-contaminated negative 
controls, or are environmental bacteria genuinely encountered in bird microbiomes 
(Eisenhofer et al., 2019). Nonetheless, low proportion of removed OTUs ensures that this 
approach should not affect our results significantly. Also, since bird microbiomes are likely 
to be different than mammalian ones, our conservative approach should still be robust.  

Another technical issue common in faecal microbiome is interference of common faeces’ 
components with downstream molecular techniques. Insectivorous bird faeces contain large 
amounts of uric acid (general feature of bird faeces), polyphenols (especially important in 
caterpillar-eating birds, where polyphenols come from large amounts of plant material eaten 
by insects) and fat which may decrease the efficiency of amplicon-generating PCR (Schrader 
et al., 2012). The used extraction kit should deal with similar contaminants satisfactorily. 
Still, some of heterogeneity observed between individuals in prevalence of specific OTUs 
may result from random amplification failure. Indeed, earlier studies on a closely related 
species, the great tit, demonstrated that oral microbiome (likely less affected by the PCR 
inhibitors issue) shows much greater microbial diversity than faecal microbiome 
(Kropáčková et al., 2017). To certain extent this surely represents genuine body-region 
variation in microbial communities but establishing real impact of using faecal samples in 
place of, e.g., swabs requires more large-scale studies similar to ours. 

Other confounding factors that might influence our results (such as year and the ID of 
sequencing round) did not impact the significance of observed community composition 
differences. We have identified significant divergence between study years, and between 
sequencing rounds – which could be expected. In the studied population, years typically 
differ substantially from each other in terms of climatic conditions and consequently food 
abundance patterns. Sequencing replicates (i.e., two separate kits used in sequencing each 
half of the included samples) also can be expected to differ as they came from two different 
production batches. Nonetheless, robustness of microbiome sensitivity to those technical 
aspects makes the observed pattern even more unequivocal. 

To conclude, our study represents one of the first large-scale accounts of the microbial 
diversity in faecal gut microbiomes from a wild blue tit population. It demonstrates habitat-
specific differences in microbiomes that may be attributable to general food-base diversity 
and habitat richness. Additional studies are needed to elucidate the actual origin of the 
observed differences, both at the level of the studied species, but also comparatively (i.e., 
whether other species breeding sympatrically with blue tits in the same population show 
similar patterns of microbiome differentiation). 
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