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Abstract: Networks of species interactions underpin numerous ecosystem processes, but com-
prehensively sampling these interactions is difficult. Interactions intrinsically vary across space
and time, and given the number of species that compose ecological communities, it can be tough
to distinguish between a true negative (where two species never interact) from a false negative
(where two species have not been observed interacting even though they actually do). Assess-
ing the likelihood of interactions between species is an imperative for several fields of ecology.
This means that to predict interactions between species—and to describe the structure, vari-
ation, and change of the ecological networks they form—we need to rely on modeling tools.
Here we provide a proof-of-concept, where we show a simple neural-network model makes ac-
curate predictions about species interactions given limited data. We then assess the challenges
and opportunities associated with improving interaction predictions, and provide a conceptual
roadmap forward toward predictive models of ecological networks that is explicitly spatial and
temporal. We conclude with a brief primer on the relevant methods and tools needed to start
building these models, which we hope will guide this research program forward.

1

Introduction

Ecosystems are, in large part, the interactions established within them — organisms interact
with one-another and with their environment, either directly or indirectly. Interactions between
individuals, populations, and species, are assembled in networks of varying complexity, that
drive ecological and evolutionary dynamics, and maintain coexistence, diversity and ecosystem
functioning (Delmas et al. 2018; Landi et al. 2018; Albrecht et al. 2018). A knowledge of the
structure of these species interactions networks underpin our understanding of numerous eco-
logical processes (Pascual and Dunne 2006; Heleno et al. 2014). Yet, even this basic knowledge
of species interactions (like being able to list them, or guess which ones may exist) remains one
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of the most severe biodiversity shortfalls (Hortal et al. 2015), in large part due to the tedious,
time-consuming, and expensive process of collecting species interaction data. Comprehensively
sampling every possible interaction is not feasible given the sheer number of species on Earth,
and the data we can collect about interactions is biased and noisy (de Aguiar et al. 2019). This
is then compounded as species interactions are typically measured as a binary variable (present
or absent) even though it is evident interactions are not all-or-nothing. Species interactions oc-
cur probabilistically due to variation in species abundances in space and time (Poisot, Stouffer,
and Gravel 2015). Different types of interactions vary in their intrinsic predictability (e.g. some
fungal species engage in opportunistic saprotrophy (Smith et al. 2017), obligate parasites are
more deterministic in their interactions than facultative parasites (Poisot et al. 2013; Luong and
Mathot 2019)). In addition to this variance in predictability, networks from different systems
are structured by different mechanisms. Interaction networks are embodied in numerous forms:
host and parasites, plants and pollinators, predators and prey, disease and host, and so on, and
network types may require different approaches and methods for prediction.
Still, like all complex adaptive systems, species interaction networks have entered their “long
now” (Carpenter 2002), where anthropogenic change will have long-term, low-predictability
consequences (Burkle, Marlin, and Knight 2013). Therefore, our field needs a clear roadmap
towards models that enable prediction (for the present) and forecasting (for the future) of species
interactions and the networks they form, which accounts for their spatial and temporal variation
(McCann 2007; Seibold et al. 2018). For example, in disease ecology, predicting potential hosts
of novel disease (recently notably the search for wildlife hosts of betacoronaviruses; Becker et
al. 2020; Wardeh, Baylis, and Blagrove 2021) has received much attention. Network approaches
have been used for the prediction of risk and dynamics of dengue (Zhao et al. 2020), Chagas dis-
ease (Rengifo-Correa et al. 2017), Rickettsiosis (Morand et al. 2020), Leishmaniasis (Stephens
2009), and a myriad infectious diseases in livestock and wildlife (Craft 2015). Additionally,
prediction of interaction networks is a growing imperative for next-generation biodiversity mon-
itoring, requiring a conceptual framework and a flexible set of tools to predict interactions that
is explicitly spatial and temporal in perspective (Edwards et al. 2021; Magioli and Ferraz 2021;
Zhang and He 2021). Developing better models for prediction of these interactions will rely on
integration of data from many sources, and the sources for this data may differ depending on the
type of interaction we wish to predict (Gibb et al. 2021).
Methods for predicting interactions between species exist, but at the moment are limited in that
they are typically based around a single mechanism at a single scale: position in the trophic
niche (Gravel et al. 2013; Petchey et al. 2008), phylogenetic distance (Pomeranz et al. 2018;
Elmasri et al. 2020), functional trait matching (Bartomeus et al. 2016), interaction frequency
(Weinstein and Graham 2017; Vázquez, Morris, and Jordano 2005), or other network properties
(Terry and Lewis 2020; Stock et al. 2017). These approaches are difficult to generalise across
systems as species interaction networks are the product of ecological and evolutionary mecha-
nisms interacting across spatial, temporal and organisational scales. The interwoven nature of
these processes imposes structure on biodiversity data which is invisible when examined only
through the lens of a single scale. Machine learning (ML) methods have enormous potential in
finding this structure (Desjardins-Proulx, Poisot, and Gravel 2019), and have the potential to be
used together with mechanistic models in order to make prediction of ecological dynamics more
robust (Rackauckas et al. 2020).
Here we use a case study to show how machine-learning models (specifically a deep neural
network) can enable prediction of species interactions, whereby we construct a metaweb of
host-parasite interactions across space. We then use this case study to illustrate a roadmap for
improving predictions using open data and machine-learning methods. We then provide a non-
exhaustive primer on the literature on interaction prediction, and identify the tools and methods
most suited for the future of interaction network prediction models, covering the spatial, tempo-
ral, and climatic dimensions of network prediction (Burkle and Alarcon 2011). Adopting more
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predictive approaches to complex ecological systems (like networks) will establish a positive
feedback loop with our understanding of these systems (Houlahan et al. 2017): the tasks of
understanding and predicting are neither separate nor opposed (Maris et al. 2017); instead, ML
tools have the ability to capture a lot of our understanding into working assumptions, and com-
paring predictions to empirical data gives us better insights about how much we ignore about
the systems we model. Although data on species interaction networks are currently limited in
the size and spatial coverage, machine learning approaches have a demonstrated track record of
revealing the “unreasonable effectiveness” of data (Halevy, Norvig, and Pereira 2009); we argue
that with a clear roadmap guiding the use of these methods, the task of predicting the structure
of species interaction networks will become more attainable.

2

A case study: deep learning of spatially sparse host-parasite interac-
tions

The premise of this manuscript is that we can predict interactions between species. In this section
we provide a proof-of-concept, where we use data fromHadfield et al. (2014) describing 51 host-
parasite networks sampled across space. In this data, as in most spatially distributed ecological
networks, not all species co-occur across sites. As a direct consequence, there are pairs of species
that may or may not be able to interact for which we have no data; there, are, further, pairs
of species that may interact, but have only been documented in a single location where the
interaction was not detected. In short, there are ecological reasons to believe that a number of
negative associations in the metaweb (sensu J. Dunne 2006) are false negatives.
Without any species-level information, we resort to using both co-occurrence and known inter-
actions to predict novel interactions. To do this we (i) extract features for each species based on
co-occurrence, (ii) use these features to train a neural network to predict interactions, and (iii)
apply this classifier to the original features to predict possibly missing interactions across the
entire species pool. The outputs of the analysis are presented in fig. 1, and the code to reproduce
it is available at https://osf.io/6jp4b/; the entire example was carried out in Julia 1.6.2
(Bezanson et al. 2017), using the Flux machine learning framework (Innes 2018).
We first aggregate all species into a co-occurrence matrix A which represents whether a given
pair of species (i, j) was observed coexisting across any location. We then transform this co-
occurrence matrixA via probabilistic PCA (Tipping and Bishop 1999) and use the first 15 values
from this PCA as the features vector for each species i. For each pair of (host, parasite) species
(i, j), we then feed the features vectors (vi, vj) into a neural network. The neural network uses
four feed-forward layers (the first RELU, the rest �) with appropriate dropout rates (0.8 for the
first layer, 0.6 for the subsequent ones). This produces an output layer with a single node, which
is the probability-score for interaction between species i and j.
We then train this neural network by dividing the original dataset into testing and training sets
(split 80-20 for training and testing respectively). During the training of this neural network
(using the ADAM optimiser), the 5×104 batches of 64 items used for training were constrained
to have at least 25% of positive interactions, as Poisot, Ouellet, et al. (2021) show slightly
inflating the dataset with positive interactions enables us to counterbalance sampling biases.
Furthermore, setting a minimum threshold of response balance is an established approach for
datasets with strong biases (Lemaître, Nogueira, and Aridas 2017). Validating this model on
the test data shows our model provides highly effective prediction of interactions between pairs
of species not present in the training data (fig. 1). The behaviour of the model was, in addition,
checked by measuring the training and testing loss (using mean squared error) and stopping well
before they diverged.
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Figure 1 Proof-of-Concept: An empirical
metaweb (from Hadfield et al. 2014), i.e. a
list of known possible interactions within a
species pool, is converted into latent features
using probabilistic PCA, then used to train
a deep neural network to predict species in-
teractions. The imputed networks are repre-
sented as their t-distributed stochastic neigh-
bour embedding (tSNE) embedding, and the
colours of nodes are the cluster to which they
are assigned based on a k-means clustering
of the tSNE output. Empirical interactions
are shown in purple, and imputed interac-
tions in grey. Panels A and B represent, re-
spectively, the ROC curve and the precision-
recall curve, with the best classifier (accord-
ing to Youden’s J) represented by a black
dot. The expected performance of a neutral
“random-guessing” classifier is shownwith a
dashed line.
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This case study shows that a simple neural network can be very effective in predicting species
interactions even without additional species-level data. Applying this model to the entire dataset
(including species pairs never observed to co-occur) identified 1546 new possible interactions –
746 (48%) of which were between pairs of species for which no co-occurrence was observed in
the original dataset. This model reaches similar levels of predictive efficacy as previous studies
that use far more species-level data and mechanistic assumptions (Gravel et al. 2013), which
serves to highlight the potential for including external sources of data for improving our predic-
tion of interaction networks even further. For example, Krasnov et al. (2016) collected traits
data for this system that could be added to the model, in addition or in substitution to latent
variables derived from observed interactions.

3

Predicting species interaction networks across space: challenges and
opportunities

In the following sections, we present a conceptual roadmap (fig. 2) linking types of data to de-
sired outcomes, and flowing through broad families of analyses, in order to map out the structure
and composition of species interaction networks. We envisage this roadmap to be one path to-
wards improving our prediction of species interaction networks, and developing spatially explicit
models of network structure. We discuss the challenges and opportunities going forward for this
research agenda, and highlight two specific areas where it can have a strong impact: the tempo-
ral forecasting of species interaction networks structure, and the use of predicted networks for
applied ecology and conservation biology.

3.1. Challenges: constraints on predictions

3.1.1 Ecological network data are scarce and hard to obtain At the moment, any prediction
of species interactions is made difficult by the limited availability of data. Although we have
seen a growth in species occurrence data, this growth is much slower for ecological interactions
because species interactions are challenging to sample comprehensively (Bennett, Evans, and
Powell 2019; Jordano 2016b) and sampling methodology has strong effects on the resulting data
(de Aguiar et al. 2019). In turn, the difficulty of sampling interactions can lead to biases in our
understanding of network structure (de Aguiar et al. 2019). This knowledge gap has motivated
a variety of approaches to deal with interactions in ecological research based on assumptions
that do not always hold, such as the assumption that co-occurrence is equivalent to meaningful
interaction strength, when it is known that co-occurrence is not the only prerequisite for an
interaction to occur (Blanchet, Cazelles, and Gravel 2020). Spatial biases in data coverage are
prevalent at the global scale (with South America, Africa and Asia being under-represented) and
different interaction types show biases towards different biomes (Poisot, Bergeron, et al. 2021).
These “spatial gaps” serve as a limitation to our ability to confidently make predictions when
accounting for real-world environmental conditions, especially in environments for which there
are no analogous data.
Further, empirical estimation of interaction strength is highly prone to bias as existing data are
usually summarised at the taxonomic scale of the species or higher, thereby losing informa-
tion that differentiates the strength in per-individual interactions from the strength of a whole
species interaction (Wells and O’Hara 2013). Empirical estimations of interaction strength are
still crucial (Novak and Wootton 2008), but are a hard task to quantify in natural communities
(Wootton 1997; Sala and Graham 2002; Wootton and Emmerson 2005), especially as the num-
ber of species composing communities increases, compounded by the possibility of higher-order
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Figure 2 A conceptual roadmap highlight-
ing key areas for the prediction of ecologi-
cal networks. Starting with the input of data
from multiple sources, followed by a mod-
elling framework for ecological networks
and the landscape, which are then ultimately
combined to allow for the prediction of spa-
tially explicit networks.
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interactions or non-linear responses in interactions (Wootton and Emmerson 2005). Further,
interaction strength is often variable and context dependent and can be influenced by density-
dependence and spatio-temporal variation in community composition (Wootton and Emmerson
2005).

3.1.2 Powerful predictive tools work better on large data volumes This scarcity of data lim-
its the range of computational tools that can be used by network ecologists. Most deep learning
methods, for instance, are very data expensive. The paucity of data is compounded by a col-
lection of biases in existing datasets. Species interaction data are typically dominated by food
webs, pollination, and host-parasite networks (Ings et al. 2009; Poisot et al. 2020). This could
prove to be a limiting factor when trying to understand or predict networks of underrepresented
interaction types or when trying to integrate networks of different types (Fontaine et al. 2011),
especially given their inherent structural variation (Michalska-Smith and Allesina 2019). This
stresses the need for an integrated, flexible, and data-efficient set of computational tools which
will allow us to predict ecological networks accurately from existing and imperfect datasets, but
also enable us to perform model validation and comparison with more flexibility than existing
tools. We argue that fig. 1 is an example of the promise of these tools even when facing datasets
of small size. When carefully controlling for overfitting, machine learning systems are at least
adequate at generalising. The ability to extract and engineer features also serves to bolster our
predictive power. Although it may be tempting to rely on approaches like bootstrapping to es-
timate the consistency of the predictions, the low data volume, and the fact that we are more
likely to observe interactions between some pairs of species (i.e. those that co-occur a lot, e.g.
Cazelles et al. (2015), and those that reach high abundances, e.g. Vazquez et al. (2009)), intro-
duces a significant risk to train models on pseudo-replicated data. In short, the current lack of
massive datasets must not be an obstacle to prediction; it is an ideal testing ground to understand
how little data is sufficient to obtain actionable predictions, and how much we can rely on data
inflation procedures to reach this minimal amount.

3.1.3 Scaling-up predictions requires scaled-up data We are also currently limited by the
level of biological organisation at which we can describe ecological networks. For instance,
our understanding of individual-based networks (e.g., M. S. Araújo et al. 2008; Tinker et al.
2012) is still in its infancy (Guimarães 2020) and acts as a resolution-limit. Similarly, the res-
olution of environmental (or landscape) data also limits our ability to predict networks at small
scales, although current trends in remote sensing would suggest that this will become less of a
hindrance with time (Makiola et al. 2020). Ecosystems are a quintessential complex-adaptive-
system (Levin 1998) with a myriad of ways in which processes at different spatial, temporal, and
organisational scales can influence and respond to one another. Understanding how the product
of these different processes drive the properties of ecosystems across different scales remains
a central challenge of ecological research, and we should strive to work on methods that will
integrate different empirical “snapshots” of this larger system.

3.2. Opportunities: an emerging ecosystem of open tools and data

3.2.1 Data are becoming more interoperable The acquisition of biodiversity and environ-
mental data has tremendously increased over the past decades thanks to the rise of citizen science
(Dickinson, Zuckerberg, and Bonter 2010) and of novel technology (Stephenson 2020), includ-
ing wireless sensors (Porter et al. 2005), next-generation DNA sequencing (Creer et al. 2016),
and remote sensing (Skidmore and Pettorelli 2015; Lausch et al. 2016). Open access databases,
such as GBIF (for biodiversity data), NCBI (for taxonomic and genomics data), TreeBASE (for
phylogenetics data), CESTE (Jeliazkov et al. 2020) (for metacommunity ecology and species
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traits data), and WorldClim (for bioclimatic data) contain millions of data points that can be in-
tegrated to monitor and model biodiversity at the global scale. For species interactions data, at
the moment Mangal is the most comprehensive open database of published ecological networks
(Poisot et al. 2016), and GloBI is an extensive database of realised and potential species inter-
actions (Poelen, Simons, and Mungall 2014). Developing standard practices in data integration
and quality control (Kissling et al. 2018) and in next-generation biomonitoring (NGB; Maki-
ola et al. 2020) would improve our ability to make reliable predictions of ecosystem properties
on increasing spatial and temporal scales. The advancement of prediction techniques coupled
with a movement towards standardising data collection protocols (e.g. Pérez-Harguindeguy et
al. (2013) for plant functional traits) and metadata (e.g. DarwinCore)—which facilitates inter-
operability and integration of datasets—as well as a growing interest at the government level
(Scholes et al. 2012) paints a positive picture for data access and usability in the coming years.

3.2.2 Machine learning tools are becoming more accessible In turn, this effort is supported
by a thriving ecosystem of data sources and novel tools. Machine learning encompasses a broad
variety of techniques applied with or without human supervision. These techniques can often
be more flexible and perform better than classical statistical methods, and can achieve a very
high level of accuracy in many predictive and classification tasks in a relatively short amount of
time (e.g., Cutler et al. 2007; Krizhevsky, Sutskever, and Hinton 2017). Increasing computing
power combined with recent advances in machine learning techniques and applications shows
promise in ecology and environmental science (see Christin, Hervet, and Lecomte (2019) for
an overview). Moreover, ongoing developments in deep learning are aimed at improvement in
low-data regimes and with unbalanced datasets (Antoniou, Storkey, and Edwards 2018; Chawla
2010). Considering the current biases in network ecology (Poisot et al. 2020) and the scarcity
of data of species interactions, the prediction of ecological networks will undoubtedly benefit
from these improvements. Machine learning methods are emerging as the new standard in com-
putational ecology in general (Olden, Lawler, and Poff 2008; Christin, Hervet, and Lecomte
2019), and in network ecology in particular (Bohan et al. 2017), as long as sufficient, relevant
data are available. As many ecological and evolutionary processes underlie species interactions
and the structure of their ecological networks (e.g., Vazquez et al. 2009; Segar et al. 2020), it
can be difficult to choose relevant variables and model species interactions networks explicitly.
A promising application of machine learning in natural sciences is Scientific-Machine Learn-
ing (SciML), a framework that combines machine learning with mechanistic models (Chuang
and Keiser 2018; Rackauckas et al. 2020). Many studies have used machine learning mod-
els specifically with ecological interactions. Relevant examples include species traits used to
predict interactions and infer trait-matching rules (Desjardins-Proulx et al. 2017; Pichler et al.
2020), automated discovery of food webs (Bohan et al. 2011), reconstruction of ecological net-
works using next-generation sequencing data (Bohan et al. 2017), and network inference from
presence-absence data (Sander, Wootton, and Allesina 2017).

4

A primer on predicting ecological networks

Within the constraints outlined in the previous section, we now provide a primer on the back-
ground concepts necessary to build predictive models of species interaction networks, with a
focus on using machine learning approaches in the modelling process. As fig. 2 illustrates, this
involves a variety of numerical and computational approaches; therefore, rather than an exhaus-
tive summary, we aim to convey a high-level understanding that translates the core concepts into
their application to ecological networks.
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Figure 3 The nested nature of develop-
ing predictive and forecasting models, show-
cases the forward problem and how this re-
lies on a hierarchical structure of the mod-
elling process. The choice of a specific mod-
elling technique and framework, as well as
the data retained to be part of this model, pro-
ceeds directly from our assumptions about
which ecological mechanisms are important
in shaping both extant and future data.

4.1. Models

4.1.1 What is a predictive model? Models are used for many purposes, and the term “model”
itself embodies a wide variety of meanings in scientific discourse. All models can be thought
of as a function, f , that takes a set of inputs x (also called features, descriptors, or indepen-
dent variables) and parameters �, and maps them to predicted output states y (also called label,
response, or dependent variable) based on the input to the model: y = f (x, �).
A given model f can be used for either descriptive or predictive purposes. Many forms of sci-
entific inquiry are based around using models descriptively, a practice also called inference, the
inverse problem, fitting a model, or training a model (Stouffer 2019). In this context, the goal of
using a model is to estimate the parameters, �, that best explain a set of empirical observations,
{x̂, ŷ}. In some cases, these parameter values are themselves of interest (e.g., the strength of
selection, intrinsic growth rate, dispersal distance), but in others cases, the goal is to compare a
set of competing models f1, f2,… to determine which provides the most parsimonious explana-
tion for a dataset. The quantitative representation of “effects” in these models—the influence of
each input on the output—is often assumed to be linear, and within the frequentist world-view,
the goal is often to determine if the coefficient corresponding with an input is non-zero to deter-
mine its “significance” (often different from its ecological relevance; Martínez-Abraín 2008) in
influencing the outcome.
Models designed for inference have utility—descriptive models of networks can reveal under-
lying mechanisms that structure ecological communities, given a proper null model (Connor,
Barberán, and Clauset 2017). However, in order for ecology to develop as a predictive science
(Evans, Norris, and Benton 2012), interest has grown in developing models that are used not
just for description of data, but also for prediction. Predictive models are based in the forward
problem, where the aim is to predict new values of the output y given an input x and our estimate
value of � (Stouffer 2019). Because the forward problem relies on an estimate of �, then, the
problem of inference is nested within the forward problem (fig. 3): working towards a predictive
view of ecological networks will necessarily give us the tools to further our understanding.

4.1.2 What do you need to build a predictive model? To build a predictive model, one needs
the following: first, data, split into features x̂ and labels ŷ (fig. 3). Second, a model f , which
maps features x to labels y as a function of parameters �, i.e. y = f (x, �). Third, a loss function
L(ŷ, y), which describes how far a model’s prediction y is from an empirical value ŷ. Lastly,
priors on parameters, P (�), which describe the modeller’s a priori belief about the value of
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the parameters; rather than making an analysis implicit, specifying priors has the merit of mak-
ing the modeller’s assumptions explicit, which is a most desirable feature when communicating
predictions to stakeholders (Spiegelhalter et al. 2000). Often an important step before fitting
a model is feature engineering: adjusting and reworking the features to better uncover feature-
label relationships (Kuhn and Johnson 2019). This can include projecting the features into a
lower dimensional space, as we did through a probabilistic PCA in the case study, or removing
the covariance structure using a Whitening approach. Then, when a model is fitted (synony-
mous with parameter inference or the inverse problem, see fig. 3), a fitting algorithm attempts to
estimate the values of � that minimises the mean value of loss function L(ŷ, y) for all labels ŷ in
the provided data Y . In a Bayesian approach, this typically rely on drawing candidate parameter
values from priors and applying some form of sampling to generate a posterior estimate of pa-
rameters, P (�|x̂, ŷ). In the training of neural network, this usually involves some form of error
back-propagation across the edges in order to tune their weights, and the biases of each nodes.

4.1.3 How do we validate a predictive model? After we fit a model, we inevitably want to
see how “good” (meaning, “fit for purpose”) it is. This process can be divided into two parts:
1) model selection, where the modeller chooses from a set of possible models and 2) model
assessment, where the modeller determines the performance characteristics of the chosen model
(Hastie, Tibshirani, and Friedman 2009).
In the context of model selection, a naïve initial approach is to simply compute the average error
between themodel’s prediction and the true data we have, and choose themodel with the smallest
error—however this approach inevitably results in overfitting. One approach to avoid overfitting
is using information criteria (e.g., AIC, BIC, MDL) based around the heuristic that good models
maximise the ratio of information provided by the model to the number of parameters it has.
However, when the intended use-case of a model is prediction the relevant form of validation
is predictive accuracy, which should be tested with crossvalidation. Crossvalidation methods
divide the original dataset into two—one which is used to fit the model (called the training
set) and one used to validate its predictive accuracy on the data that it hasn’t “seen” yet (called
the test set) (Bishop 2006). This procedure is often repeated across different test and training
subdivisions of the dataset to determine the uncertainty associated with our measurement due
to our choice of test and training sets (Arlot and Celisse 2010), in the same conceptual vein as
data bootstrapping.
We still have to define what predictive accuracy means in the context of interaction network
prediction. In the proof-of-concept, we used a neural-network to perform binary classification
by predicting the presence/absence of an interaction between any two species. There are two
ways for the model to be right: the model predicts an interaction and there is one (a true positive
(TP)), or the model predicts no interaction and there isn’t one (a true negative (TN)). Similarly,
there are two ways for the model to be wrong: the model predicts an interaction which does not
exist (a false positive (FP)), or the model predicts no interaction but it does exist (a false negative
(FN)).
A naïve initial approach to measure how well a model does is accuracy, i.e. the proportion of
values it got correct. However, consider what we know about interaction networks: they are of-
ten very sparse, with connectance usually below a third. If we build a model that always guesses
there will be no interaction between two species, it will be correct in the majority of cases be-
cause the majority of potential interactions in a network typically do not exist. Therefore this
“empty-matrix” model would always have an accuracy of 1 − C , where C is the observed con-
nectance, which would almost always be greater than 50%. Understanding model performance
within sensitivity-specificity space may be more informative, where sensitivity evaluates how
good the model is at predicting true interactions (True Positive Rate) and specificity refers to
the prediction of true “non-interactions” (True Negative Rate). It must be noted that in ecolog-
ical networks, there is no guarantee that the “non-interactions” (assumed true negatives) in the
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original dataset are indeed true negatives (Jordano 2016a, 2016b). This can result in the posi-
tive/negative values, and the false omission/discovery being artificially worse, and specifically
decrease our confidence in predicted interactions.
In response to the general problem of biases in classifiers, many metrics have been proposed to
measure binary-classifiers see 1, (Gu, Zhu, and Cai 2009; Drummond and Holte 2006) and are
indicative of how well the model performs with regards to some aspect of accuracy, sensitivity,
specificity and/or precision. Ultimately the choice of metric will depend on the intended use of
the model: there is not a single definition of “success,” but rather different interpretation of what
sources of error are acceptable for a given application.

Table 1 Overview of the validation statistics applied to the case study, alongside the criteria indicating a
successful classifier and a guide to interpretation of the values. Taken together, these validation measures
indicate that the model performs well, especially considering that it is trained from a small volume of data.
Name Value Success Description
Random accuracy 0.56 Fraction of correct predictions if the classifier

is random
Accuracy 0.81 → 1 Observed fraction of correct predictions
Balanced accuracy 0.80 → 1 Average fraction of correct positive and

negative predictions
True Positive Rate 0.77 → 1 Fraction of interactions predicted
True Negative Rate 0.83 → 1 Fraction of non-interactions predicted
False Positive Rate 0.16 → 0 Fraction of non-interactions predicted as

interactions
False Negative Rate 0.22 → 0 Fraction of interactions predicted as

non-interactions
ROC-AUC 0.86 → 1 Proximity to a perfect prediction

(ROC-AUC=1)
Youden’s J 0.60 → 1 Informedness of predictions (trust in

individual prediction)
Cohen’s � 0.58 ≥ 0.5

Positive Predictive
Value

0.66 → 1 Confidence in predicted interactions
Negative Predictive
Value

0.89 → 1 Confidence in predicted non-interactions
False Omission
Rate

0.10 → 0 Expected proportion of missed interactions
False Discovery
Rate

0.33 → 0 Expected proportion of wrongly imputed
interactions

In the machine learning literature, a common way of visualising this extensive list of possible
metrics is through the use of ROC (receiver-operating-characteristic; False Positive Rate on
the x-axis, and True Positive Rate on the y-axis) and PR (precision-recall; True-Positive-Rate
on the x-axis, Positive-predictive-value on the y-axis) curves (see fig. 1). These curves are
generated by considering a continuum of thresholds of classifier acceptance, and computing
the values of ROC/PR metrics for each value of the threshold. The area-under-the-curve (AUC)
is then used as a validation metric and are typically called AUC-ROC (Area-Under-the-Curve
Receiver-Operator-Curve) and AUC-PR (Area-Under-the-Curve Precision-Recall) (e.g. ROC-
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AUC in tbl. 1).

4.2. Networks and interactions as predictable objects

4.2.1 Interactions from, and exist within, networks Interactions between species can be con-
ceptualised in a multitude of ways (mutualistic vs. antagonistic, strong vs. weak, symmetric
vs. asymmetric, direct vs. indirect) (Jordano 2016a; Morales-Castilla et al. 2015). What is
common to all definitions of an interaction is that at least one of the species is affected by the
presence of another, either positively or negatively (Morales-Castilla et al. 2015). Networks can
be used to represent a variety of interaction types, including: unipartite networks, where each
species can be linked to other species (these are typically used to represent food webs), bipar-
tite networks where there are two pools of species, and all interactions occur between species
in each pool, are typically used for pairwise interactions (e.g. hosts and parasites), and k-partite
networks, which serve as a way to expand to more than two discrete sets of interacting species
(e.g., some parasitoid webs, seed dispersal networks, and pollination networks (Pocock, Evans,
and Memmott 2012)). These different network types can be leveraged within the modelling pro-
cess and may dictate what is the best approach e.g. using network-based features for k-partite
networks as a means to account for indirect interactions.

4.2.2 Interactions vary in occurrence and intensity Species interaction networks can also be
used as a means to quantify and understand interaction strength. Interaction strength, unlike the
qualitative presence or absence of an interaction, is a continuous measurement which attempts
to quantify the effect of one species on another. This results in weighted networks representing
different patterns of ‘flows’ between nodes – which can be modelled in a variety of ways (Bor-
rett and Scharler 2019). Interaction strength can generally be divided into two main categories
(as suggested by Berlow et al. (2004)): 1) the strength of an interaction between individuals of
each species, or 2) the effect that changes in one species population has on the dynamics of the
other species. It can be measured as the effect over a period of time (in the units of biomass or
energy flux (Barnes et al. 2018; Brown et al. 2004)) or the relative importance of one species on
another (Heleno et al. 2014; Berlow et al. 2004; Wootton and Emmerson 2005). One recurring
observation is that networks are often composed of many weak interactions and few strong inter-
actions (Berlow et al. 2004). The distribution of interaction strength within a network effects its
stability (Neutel 2002; Ruiter, Neutel, and Moore 1995) and functioning (Duffy 2002; José M.
Montoya, Rodríguez, and Hawkins 2003), and serves to benefit multi-species models (Wootton
and Emmerson 2005). Alternatively, understanding flow in modules within networks can aid
in understanding the organisation of networks (Farage et al. 2021; Jose M. Montoya and Solé
2002) or the cascading effects of perturbations (Gaiarsa and Guimarães 2019).
Much like quantifying the occurrence of an interaction, quantifying interaction strength in the
field is challenging. However, in some contexts, interaction strength can be estimated via func-
tional foraging (Portalier et al. 2019), where the primary basis for inferring interaction is forag-
ing behaviour like searching, capture and handling times. In food-webs, metabolic based models
use body mass, metabolic demands, and energy loss to infer energy fluxes between organisms
(Yodzis and Innes 1992; Berlow et al. 2009). In addition, food-web energetics models can be
incorporated at various resolutions for a specific network, ranging from individual-based data to
more lumped data at the species level or trophic group, depending on data availability (Barnes
et al. 2018; Berlow et al. 2009).

4.2.3 Why predict networks and interactions at the same time? Ecological networks are quite
sparse, and larger networks tend to get sparser (MacDonald, Banville, and Poisot 2020); in other
words, although networks are composed of a set of species pairs in interactions, they are also
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former of a much larger set of species pairs that do not interact. If we aim to predict the struc-
ture of networks from the “bottom-up”— by considering each pairwise combination of S dif-
ferent species—we are left with S2 interaction values to estimate, a majority of which will be
0. Instead, we can use our existing understanding of the mechanisms that structure ecological
networks to whittle down the set of feasible adjacency matrices, thereby reducing the amount of
information we must predict, and making the problem of predicting interactions less daunting.
The processes that structure ecological networks do not only occur at the scale of interactions—
there are also processes at the network level which limit what interactions (or how many) are
realistic. The realised structure of a network is the synthesis of the interactions forming the basis
for network structure, and the network structure refining the possible interactions—“Part makes
whole, and whole makes part” (Levins and Lewontin 1987).
Another argument for the joint prediction of networks and interactions is to reduce circularity
and biases in the predictions. As an example, models like linear filtering (Stock et al. 2017) gen-
erate probabilities of non-observed interactions existing, but do so based on measured network
properties. Some recent models make interaction-level predictions (e.g. Gravel et al. 2019);
these are not unlike stacked species distribution models, which are individually fit, but collec-
tively outperformed by joint models or rule-based models (Zurell et al. 2020). By relying on
adequate testing of model performance of biases (i.e. optimising not only accuracy, but pay-
ing attention to measures like false discovery and false omission rates), and developing models
around a feedback loop between network and interaction prediction, it is likely that the quality
of the predicted networks will be greatly improved compared to current models.

4.2.4 What network properties should we use to inform our predictions of interactions?
There are many dimensions of network structure (Delmas et al. 2018), yet there are two argu-
ments to support basing network prediction around a single property: connectance (the ratio of
actual edges to possible edges in the network). First, connectance is ecologically informative—it
relates to resilience to invasion (Baiser, Russell, and Lockwood 2010; Smith-Ramesh, Moore,
and Schmitz 2016), can increase robustness to extinction in food webs (J. Dunne, Williams, and
Martinez 2002), while decreasing it in mutualistic networks (Vieira and Almeida-Neto 2015),
and connectance relates to network stability (Landi et al. 2018). Second, most (if not all) net-
work properties covary with connectance (Poisot and Gravel 2014; J. A. Dunne, Williams, and
Martinez 2002).
Within the network science literature, there are numerous methods for predicting edges based
on network properties (e.g., block models (Yen and Larremore 2020) based on modularity, hi-
erarchical models (Kawakatsu et al. 2021) based on embedding, etc.). However, in the context
of species interaction networks, these properties often covary with connectance. As a result we
suggest that using connectance as the primary property of interest is most likely to be practical
to formulate at the moment. We have models to estimate species richness over space (Jenkins,
Pimm, and Joppa 2013), and because we can predict connectance from species richness alone
(MacDonald, Banville, and Poisot 2020), we can then derive distributions of network properties
from richness estimates, that can serve to penalize further models that formulate their predictions
at the scale of each possible interaction.

4.2.5 How do we predict how species that we have never observed together will interact?
A neutral approach to ecological interactions would assume the probability of an interaction to
mirror the relative abundance of both species, and would be unaffected by trait variation (Poisot,
Stouffer, and Gravel 2015; Pichler et al. 2020); more accurately, a neutral assumption states
that the relative abundances are sufficient to predict the structure of networks, and this view is
rather well supported in empirical and theoretical systems (Canard et al. 2012, 2014). However,
functional-trait based proxies could enable better predictions of ecological interactions (Cirtwill
and Eklöf 2018; Cirtwill et al. 2019; Bartomeus et al. 2016; Bartomeus 2013). Selection
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on functional traits could cause interactions to be conserved at some evolutionary scales, and
therefore predictions of interaction could be informed by phylogenetic analyses (Davies 2021;
Elmasri et al. 2020; Gómez, Verdú, and Perfectti 2010). Phylogenetic matching in bipartite
networks is consistent across scales (Poisot and Stouffer 2018), even in the absence of strong
selective pressure (Coelho, Rodrigues, and Rangel 2017).
A separate family of methods are based on network embedding (as in the proof-of-concept). A
network embedding projects each node of the network into a lower-dimensional latent space.
Previous explorations of the dimensionality of food webs have revealed that a reduced number
of dimensions (7) was sufficient to capture most of their structure (Eklöf et al. 2013); however,
recent quantifications of the complexity of the embedding space of bipartite ecological networks
found a consistent high complexity (Strydom, Dalla Riva, and Poisot 2021), suggesting that
the precise depth of embedding required may vary considerably across systems. Embeddings
enables us to represent the structure of a network, which previously required the S2 dimensions
of an adjacency matrix, with a smaller number of dimensions. The position of each node in this
lower dimensional space is then treated as a latent measurement corresponding to the role of that
species in the network (e.g. Poisot, Ouellet, et al. 2021, where a network of about 1500 species
was most accurately described using 12 dimensions). Species close together in the latent space
should interact with similar set of species (Rossberg et al. 2006; Rohr et al. 2010). However,
these models are sensitive to sampling biases as they are limited to species for which there is
already interaction data, and as a result a methodological breakthrough is needed to extend these
models to species for which there is little or no interaction data.

4.2.6 How do we determine what interaction networks are feasible? For several decades,
ecologists have aimed to understand how networks of many interacting species persist through
time. The diversity-stability paradox, first explored byMay (1974), shows that under a neutral set
of assumptions ecological networks should become decreasingly stable as the number of species
increases. Yet, in the natural world we observe networks of interactions that consist of far more
species than May’s model predicts (Albouy et al. 2019). As a result, understanding what as-
pects of the neutral assumptions of May’s model are incorrect has branched many investigations
into the relationship between ecological network structure and persistence (Allesina and Tang
2012). These assumptions can be split into dynamical assumptions and topological assumptions.
Topologically, we know that ecological networks are not structured randomly. Some properties,
like the aforementioned connectance, are highly predictable (MacDonald, Banville, and Poisot
2020). Generative models of food-webs (based on network embeddings) fit empirical networks
more effectively than random models (Allesina, Alonso, and Pascual 2008). These models have
long used allometry as a single-dimensional niche space—naturally we want to extend this to
traits in general. The second approach to stability is through dynamics. Early models of commu-
nity dynamics rely on the assumption of linear interaction effects, but in recent years models of
bioenergetic community dynamics have shown promise in basing our understanding of energy
flow in food-webs in the understood relationship between allometry and metabolism (Delmas et
al. 2017). An additional consideration is the multidimensional nature of “stability” and “fea-
sibility” (e.g. resilience to environmental change vs extinctions) (Domínguez-García, Dakos,
and Kéfi 2019) and how different disturbances propagate across levels of biological organisa-
tion (Kéfi et al. 2019; Gravel, Massol, and Leibold 2016). Recent approaches such as structural
stability (Saavedra et al. 2017; Ferrera, Pascual-García, and Bastolla 2016) allow to think of
network feasibility in rigorous mathematical terms, which may end up as usable parameters to
penalise network predictions.

4.2.7 What taxonomic scales are suitable for the prediction of species interactions? If we
use different trait-based proxies to predict potential interactions between species the choice of
such proxies should be theoretically linked to the taxonomic and spatial scale we are using in our
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prediction (Wiens 1989). At some scales we can usemorphological traits of co-occurring species
to assess the probability of interaction between them (Bartomeus et al. 2016). On broader tax-
onomic scales we can infer interaction probability through the phylogenetic distance, assuming
that functional traits themselves are conserved (Gómez, Verdú, and Perfectti 2010). In this case,
we can think of the probability that one species will interact with another as the distance between
them in niche-space (Desjardins-Proulx et al. 2017), and this can bemodelled by simulating neu-
tral expectations of trait variation on phylogenetic trees (Davies 2021). At the narrowest scales,
we may be interested in predicting behavioural traits like foraging behaviour (Bartomeus et al.
2016), and at this scale we may need to consider abundance’s effect on the probability of an
encounter (Wells and O’Hara 2013).

4.2.8 What about indirect and higher-order interactions? Although network ecology often
assumes that interactions go strictly from one node to the other, the web of life is made up of a
variety of interactions. Indirect interactions—either higher-order interactions between species,
or interaction strengths that themselves interact— have gained interest in recent years (Golubski
et al. 2016; Golubski and Abrams 2011). One mathematical tool to describe these situations is
hypergraphs: hypergraphs are the generalisation of a graph, allowing a broad yet manageable ap-
proach to complex interactions (Carletti, Fanelli, and Nicoletti 2020), by allowing for particular
interactions to occur beyond a pair of nodes. An additional degree of complexity is introduced
by multi-layer networks (Hutchinson et al. 2019). Multi-layer networks include edges across
“variants” of the networks (timepoints, locations, or environments). These can be particularly
useful to account for the metacommunity structure (Gross et al. 2020), or to understand how dis-
persal can inform conservation action (Albert et al. 2017). Ecological networks are intrinsically
multi-layered (Pilosof et al. 2017). However, prima facie, increasing the dimensionality of the
object we need to predict (the multiple layers rather than a single network) makes the problem
more complicated. Yet, multi-layer approaches improve prediction in social networks (Jalili et
al. 2017; Najari et al. 2019; Yasami and Safaei 2018), and they may prove useful in network
ecology going forward.

4.3. Space Although networks were initially used to describe the interactions within a com-
munity, interest in the last decade has shifted towards understanding their structure and variation
over space (Trøjelsgaard and Olesen 2016; Baiser et al. 2019), and has established network ecol-
ogy as an important emerging component of biogeography and macroecology.

4.3.1 How much do networks vary over space? Networks can vary across space either in their
structural properties (e.g. connectance or degree distribution) or in their composition (identity
of nodes and edges). Interestingly, variation in the structural properties of ecological networks
primarily responds to changes in the size of the network. The number of links in ecological
networks scales with the number of species (MacDonald, Banville, and Poisot 2020; Brose et al.
2004), and connectance and size drive the rest of network structure (Poisot and Gravel 2014; J.
A. Dunne, Williams, and Martinez 2002; Riede et al. 2010). Species turnover in space results
in changes in the composition of ecological networks. But, this is not the only reason network
composition varies (Poisot, Stouffer, and Gravel 2015). Intraspecific variation can result in in-
teraction turnovers without changes in species composition (Bolnick et al. 2011). Similarly,
changes in species abundances can lead to variation in interaction strengths (Canard et al. 2014;
Vázquez et al. 2007). Variation in the abiotic environment and indirect interactions (Golub-
ski et al. 2016) could modify the occurrence and strength of individual interactions. Despite
this, empirical networks tend to share a common backbone (Mora et al. 2018) and functional
composition (Dehling et al. 2020) across space.
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4.3.2 How do we predict what the species pool at a particular location is? As the species
pool forms the basis for network structure, predicting which species are present at a particular
location is essential to predict networks across space. Species distribution models (SDMs) are
increasingly ubiquitous in macroecology— these models predict the range of a species based on
known occurrences and environmental conditions, such as climate and land cover (Guisan and
Thuiller 2005; Elith et al. 2006). Including interactions or co-occurrences in SDMs generally
improves predictive performance (Wisz et al. 2013). Several approaches exist to combine mul-
tiple SDMs: community assemblage at a particular site can be predicted either by combining
independent single-species SDMs (stacked-SDMs, SSDMs) or by directly modelling the entire
species assemblage and multiple species at the same time (joint SDMs, JSDMs) (Norberg et
al. 2019). Building on the JSDM framework, hierarchical modelling of species communities
(Ovaskainen et al. 2017) has the advantage of capturing processes that structure communities.
Spatially Explicit Species Assemblage Modelling (SESAM) constrains SDM predictions using
macro-ecological models (Guisan and Rahbek 2011) — for example, variation in species rich-
ness across space can constrain assemblage predictions (D’Amen et al. 2015).
The next step is to constrain distribution predictions using network properties. This builds on
previous calls to adopt a probabilistic view: a probabilistic species pool (Karger et al. 2016),
and probabilistic interactions through Bayesian networks (Staniczenko et al. 2017). Blanchet,
Cazelles, and Gravel (2020) argue that the probabilistic view avoids confusion between inter-
actions and co-occurrences, but that it requires prior knowledge of interactions. This could
potentially be solved through our framework of predicting networks first, interactions next, and
finally the realised species pool.

4.3.3 How do we combine spatial and network predictions? In order to predict networks
across space, we need to combine multiple models—one which predicts what the species pool
will be at a given location, and one to predict what interaction networks composed from this
species pool are likely to be (see fig. 2). Both of these models contain uncertainty, and when we
combine them the uncertainty from each model should be propagated into the combined model.
The Bayesian paradigm provides a convenient solution to this—if we have a chain of models
where each model feeds into the next, we can sample from the posterior of the input models.
A different approach is ensemble modelling which combines the predictions made by several
models, where each model is predicting the same thing (Parker 2013). Error propagation, an
important step in building any ecological model, describes the effect of the uncertainty of input
variables on the uncertainty of output variables (Draper 1995; Parysow, Gertner, andWestervelt
2000). Benke et al. (2018) identifies two broad approaches to model error propagation: an-
alytically using differential equations or stochastically using Monte-Carlo simulation methods.
Errors induced by the spatial or temporal extrapolation of data also need to be taken into account
when estimating the uncertainty of a model’s output (Peters and Herrick 2004).

4.4. Time

4.4.1 Why should we forecast species interaction networks? Forecasting species interactions
are critical for informing ecosystem management (Harvey et al. 2017) and systematic conserva-
tion prioritisation (Pollock et al. 2020), and for anticipating extinctions and their consequences
(McDonald-Madden et al. 2016; McWilliams et al. 2019). Ecological interactions shape species
distributions at both local and broad spatial scales, and including interactions in SDM models
typically improves predictive performance (M. B. Araújo and Luoto 2007; Wisz et al. 2013;
Pigot and Tobias 2013). However, these tend to rely on approaches involving estimating pair-
wise dependencies based on co-occurrence, using surrogates for biotic-interaction gradients, and
hybridising SDMs with dynamic models (Wisz et al. 2013). Most existing models to predict the
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future distribution of species ignore interactions (Urban et al. 2016). Changes in species ranges
and phenology will inevitably create spatiotemporal mismatches and affect encounter rates be-
tween species (Gilman et al. 2010), which will further shift the distribution of species across
space. New interactions will also appear between species that are not currently co-occurring
(Gilman et al. 2010). Only by forecasting how species will interact can we hope to have an
accurate portrait of how biodiversity will be distributed under the future climate.
Forecasting how climate change will alter biodiversity is also crucial for maximising conserva-
tion outcomes. Improving SDMs through interactions is crucial for conservation, as nearly 30%
of models in SDM studies are used to assess population declines or landscape ability to support
populations (M. B. Araújo et al. 2019). Reliable predictions about how ecological networks
will change over time will give us critical information that could be communicated to decision-
makers and the scientific community about what future environmental risks we are awaiting and
how to mitigate them (Kindsvater et al. 2018). Not only this, but how biodiversity is struc-
tured influences the functioning of the whole ecosystem, community stability and persistence
(Thompson et al. 2012; Stouffer and Bascompte 2010). Will climate change impact the distri-
bution of network properties (e.g. connectance)? If so, which regions or species groups need
special conservation efforts? These overarching questions are yet to be answered (but see Albouy
et al. 2013; Kortsch et al. 2015; Hattab et al. 2016). We believe that the path toward forecasting
ecological networks provides useful guidelines to ultimately better predict how climate change
will affect the different dimensions of biodiversity and ecosystem functioning.

4.4.2 How do we turn a predictive model into a forecasting model? On some scales, em-
pirical time-series encode enough information about ecological processes for machine-learning
approaches to make accurate forecasts. However, there is an intrinsic limit to the predictability
of ecological time-series (Pennekamp et al. 2019). A forecast inherently has a resolution limit
in space, time, and organisation. For example, one could never hope to predict the precise abun-
dance of every species on Earth on every day hundreds of years into the future. There is often
a trade-off between the resolution and horizon of forecast, e.g., a lower resolution forecast, like
primary production will be at a maximum in the summer, is likely to be true much further into
the future than a higher resolution forecast. If we want to forecast the structure of ecological
networks beyond the forecasting horizon of time-series based methods, we need forecasts of our
predictive model’s inputs—a forecast of the distribution of both environmental conditions and
the potential species pool across space (fig. 3).

4.4.3 How can we validate a forecasting model? Often the purpose of building a forecasting
model is to inform present action (Dietze et al. 2018). Yet, the nature of forecasting—trying
to predict the future—is that you can only know if a forecast is “right” once it is too late to
change it. If we want to maximise the chance that reality falls within a forecasting model’s
predictions, there are two directions to approach this problem: the first is to extend model vali-
dation techniques to a forecasting context, and the second is to attempt to maximise the amount
of uncertainty in the forecast without compromising its resolution. Crossvalidation (seeHow do
we validate a predictive model?) can be used to test the efficacy of a forecasting model. Given
a time-series of N observations, a model can iteratively be trained on the first n time-points
of data, and the forecasting model’s accuracy can be evaluated on the remaining time-points it
hasn’t “seen” (Bishop 2006). This enables us to understand both how much temporal data is
required for a model to be robust, and also enables us to explore the forecasting horizon of a
process. Further, this approach can also be applied in the opposite temporal direction— if we
have reliable data from the past, “hindcasting” can also be used to test a forecast’s robustness.
However, these methods inevitably bump into a hard-limitation on what is feasible for a forecast-
ing model. The future is uncertain. Any empirical time-series we use to validate a model was
collected in past conditions that may not persist into the future. Any system we wish to forecast
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will undergo only one of many possible scenarios, yet we can only observe the realised outcome
of the system under the scenario that actually unfolds. It is therefore impossible to assess the
quality of a forecasting model in scenarios that remain hypothetical. If the goal is to maximise
the probability that reality will fall within the forecast’s estimates, forecasts should incorporate
as much uncertainty about the future scenario as possible—one way to do this is ensemble mod-
elling (Parker 2013). However, as we increase the amount of uncertainty we incorporate into a
forecasting model, the resolution of the forecast’s predictions could shrink (Lei and Whitaker
2017), and therefore the modeller should be mindful of the trade-off between resolution and ac-
curacy when developing any forecast. Finally, ensemble models are not guaranteed to give more
accurate results: for example, Becker et al. (2020) noted that the ensemble model outperforms
the best-in-class models, which should be taken as an indication that careful model building and
selection is of the utmost importance when dealing with a problem as complex as the prediction
of species interactions.

5

Conclusion: why should we predict species interaction networks?

Because we almost can, and because we definitely should.
A better understanding of species interactions, and the networks they form, would help unify the
fields of community, network, and spatial ecology; improve the quantification of the functional
relationships between species (Dehling and Stouffer 2018; O’Connor et al. 2020); re-evaluate
metacommunities in light of network structure (Guzman et al. 2019); and enable a new line of
research into the biogeography of species interactions (Massol et al. 2017; Braga et al. 2019)
which incorporates a synthesis of both Eltonian and Grinnellian niche (Gravel et al. 2019). Fur-
ther, the ability to reliably predict and forecast species interactions would inform conservation
efforts for protecting species, communities, and ecosystems. Integration of species interactions
into the assessment of vulnerability to climate change is a needed methodological advance (Fo-
den and Young 2016). International panels draw on models to establish scientific consensus (M.
B. Araújo et al. 2019), and they can be improved through more effective prediction of species
distributions and interactions (Syfert et al. 2014). Further, recent studies argue for a shift in
focus from species to interaction networks for biodiversity conservation to better understand
ecosystem processes (Harvey et al. 2017).
We should invest in network prediction because the right conditions to do so reliably and rapidly,
including forecasting, are beginning to emerge. Given the possible benefits to a variety of eco-
logical disciplines that would result from an increased ability to predict ecological networks and
their structure, we feel strongly that the research agenda we outline here should be picked up
by the community. Although novel technologies are bringing massive amounts of data to some
parts of ecology (primarily environmental DNA and remote sensing, but now more commonly
image analysis and bioacoustics), it is even more important to be intentional about reconciling
data. This involves not only the work of understanding the processes encoded within data, but
also the groundwork of developing pipelines to bridge the ever-expanding gap between “high-
throughput” and “low-throughput” sampling methods. An overall increase in the volume of data
will not result in an increase of our predictive capacity as long as this data increase is limited
to specific aspects of the problem. In the areas we highlight in fig. 2, many data steps are still
limiting: documenting empirical interactions is natural history work that doesn’t lend itself to
systematic automation; expert knowledge is by design a social process that may be slightly ac-
celerated by text mining and natural language processing (but is not yet, or not routinely or at
scale). These limitations are affecting our ability to reconstruct networks.
But the tools to which we feed these data, incomplete as they may be, are gradually getting bet-
ter; that is, they can do predictions faster, they handle uncertainty and propagate it well, and
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they can accomodate data volumes that are lower than we may expect (Pichler et al. 2020). It is
clear attempting to predict the structure of ecological networks at any scale is a methodological
and ecological challenge; yet it will result in qualitative changes in our understanding of com-
plex adaptive systems, as well as changes to our ability to leverage information about network
structure for conservation decision. It is perhaps even more important to forecast the structure
of ecological networks because it is commonly neglected as a facet of biodiversity that can (and
should) be managed. In fact, none of the Aichi targets mention biostructure or its protection, de-
spite this being recognised as an important task (McCann 2007), either implicitly or explicitly.
Being able to generate reliable datasets on networks in space or time will make this information
more actionable.
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