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Abstract

As we all know: “Nothing in biology makes sense except in the light
of evolution” (Dobzhansky [9]). Among the challenges of modeling
complex biological systems is to determine the relevant parameters.
Common practice is to extract parameters from the literature, or to
determine them from ongoing experiments, or by collectively fitting
the parameters to the experimental results the model tries to explain.
Doing so ignores, or at least does not exploit, Dobzhansky’s wisdom.
In this perspective paper we argue and demonstrate the importance of
using evolutionary methods to derive relevant parameters. We show
that by doing so we can debug experimental and modeling artifacts.

1 Introduction

The holy grail of systems biology is to match experimental and modeling
results. In pursuing this lofty goal, one should keep in mind that wet ex-
periments and dry in silico modeling face different opportunities and limita-
tions to the challenge of unraveling complex biological systems. A common
heuristic for experiments is to keep conditions as constant as possible, and
limiting the variability of the biological material, e.g. by working with clonal
populations, or preferring males over females in medical research because of
less hormonal variation. This way a simplest “input-output” system is ap-
proached, without accounting for the (variable) state, i.e. considering an
< I,O,Ω > dynamical system (defined in terms of a set of inputs (I), a set
of outputs (O) and a function linking input and output (Ω)) instead a full
< I,O, S,Ω,Σ > dynamical system, in which in addition the internal state
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(S) and internal state changes (Σ) are considered. In contrast, modeling
approaches do focus on state changes of the system and use either the full
system specification < I,O, S,Ω,Σ > or simplify it to < S,Σ > considering
fixed external conditions (no input beyond initial condition) and observing
state changes as outputs.

In silico modeling requires full specification of processes and parameters.
An often used heuristic is to compose a very simple model, in which it is
possible to survey the full parameter space. This way the result takes the
form: “the observed in vivo or in vitro behavior is possible within the pro-
posed model”. In such simple models the parameters are often composites
of potentially measurably quantities, and often not validated beyond the
fact that they produce the observed behavior. On the other hand, large
scale models try to integrate measurements of many different experiments,
often having to add “reasonable” values for unknown parameters, and de-
termine whether these parameters and inferred interactions incorporated in
the model indeed produce particular experimental results.

In both cases, one should keep in mind the warning signal put up by
James Watson (as quoted by Francis Crick 1988, pp 59-60 [3] )“no good
model ever accounted for all the facts, since some data was bound to be
misleading if not plain wrong. A theory that did fit all the data would have
been “carpentered” to do so and would thus be open to suspicion”.

The relevance of this warning signal is preeminently exposed in the his-
tory of the study of the lactose operon (lac operon). Both models and
experiments agreed for a long time that the lac operon coded for a bistable
switch, e.g. [13, 10, 14], although this notion was challenged early on on
theoretical grounds by Savageau [18]. This conclusion is now on theoretical
and experimental grounds falsified, e.g. [26, 24, 31, 14, 19, 17, 1]. Here
we will relate how evolutionary systems theory contributed to this reversed
conclusion.

2 Case study: the lac Operon and Bistability

We will use the lac operon to illustrate the power of evolutionary modeling
to understand the “how and why” of a particular well studied regulatory
circuit. To this end we will review an earlier published model and results
[26, 24], emphasizing the methodology, from a conceptual as well as from
a “hands on” point of view. For details of the model, quantitative results
and mathematical analysis the reader is referred to the original publications
[26, 24].
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2.1 Background: “State of the Art”

The lac operon has been seen for many years as the prototype example of a
bistable switch. Indeed the very concept of gene regulation was discovered
by Jacob and Monod [11] by the observation of population heterogeneity
and hysteresis when E. coli was grown at different concentrations of an
inducer. An artificial, not metabolized, inducer was used, in order to be
able to create constant conditions for the experiment. These and subsequent
experimental results were soon supported by a simple theoretical model,
showing that the positive feedback loop of the import of an inducer on the
internal inducer concentration was sufficient to explain the bistability [13].
This model is taught in many “introduction to biological modeling” courses.
Such a so called “mini model” shows that for some parameters the model
can account for the observed behavior, and therewith that such a positive
feedback is potentially sufficient to explain the observations. For such a
compact mini model there are only a few parameters, these parameters can
be fitted to match the experimental results, but cannot be measured in a
model-independent way.

Subsequent experimental results elucidated many details of the structure
of lac operon and its regulation by a combination of the inducer (lactose or
an artificial substitute (IPTG or TMG)) and the preferred resource glucose
(see scheme in Figure 1). A short hand description being the lac operon
is an AND gate: it is ON when there is lactose and no glucose and OFF
otherwise.

Subsequent large scale modeling (e.g. [29, 30]), incorporated this accu-
mulated experimental knowledge. Consequently these models contain many
parameters, which were taken from the literature or estimated as ‘reason-
able’. Also these models concluded that yes indeed the lac operon of E. coli
encodes a bistable switch. However close scrutiny of the parameters used
revealed large differences between those used in different models. Moreover
some parameters were adjusted in order to ensure bistability.

Finally, the notion that the lac operon encoded a bistable switch was
also reinforced by an evolutionary mini model which showed bistability to
be advantageous (e.g. [22]).

Although the agreement between models, experiments and optimization
consideration may seem conclusive, the parameter uncertainties, and their
adjustments to match experimental outcomes suggest that we should heed
Watson’s warning quoted above.

Our research was triggered by a then recent paper of Setty et. al. [21]
which reported direct measurements of the transcription rate of the operon
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(by coupling a GFP reporter to the operon) for many combinations of the
artificial inducer IPTG and cAMP (high cAMP concentrations correspond
to low glucose concentration, see scheme of the lactose operon in Figure 1).
The resulting promoter function is not a simple AND gate (ON for high
inducer and high cAMP (i.e. low glucose) and OFF otherwise, but shows
distinct (non zero) expression levels for respectively low inducer high cAMP,
low inducer low cAMP and low inducer low cAMP (see Figure 3b).

They fitted the data to a phenomenological promoter function (see Fig-
ure 1) and obtained a good fit. However they also showed that this function
is quite sensitive to its parameters. They concluded that “the promoter
is selected to perform an elaborate computation in setting the transcription
rate” [21].

We wondered if we could understand the form of the promoter function
from an evolutionary point of view. i.e.

1. should we expect such a promoter function to evolve given the known
and or hypothesized details of the metabolic pathways involved, and

2. what is the functionality that is in fact being selected?

To answer these questions we used an evolutionary systems biology ap-
proach.

3 Eco-evolutionary Model of the lac Operon

We constructed a multilevel agent based eco-evolutionary model. The model
includes the within cell physiological dynamics related to the lac operon, cell
growth and reproduction and competition between cells in a spatial explicit
environment, which is modified by the cell metabolism (see Figure 1).

The model for cell level physiological dynamics is adapted from the model
of Wong et. al. [29], using their parameter values. However the promoter
function of Setty et. al. [21] was incorporated, and its parameters were
subjected to evolution. The rationale for using fixed parameters for all
processes except those of the promoter function was that we wanted to study
how the promoter function evolved, given constraints set by the rest of the
system. Important for example are the relatively slow protein dynamics.

Thus the model includes the following components (Figure 1):

• A promoter function. We used the same (phenomenological) function
that Setty et. al. [21] used to (successfully) fit their experimental
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Figure 1: Overview of the model, which includes the intracellular as will as
the intercellular interactions. On the left the intracellular metabolism and
gene regulation related to lactose and glucose utilization is shown as im-
plemented in the model. Expression of the lac operon is regulated by the
concentration of allolactose (A) and cAMP (C). Allolactose is derived from
lactose, and cAMP is inhibited by the influx of glucose in the cell. The ex-
pression of the operon is needed for the production of allolactose. It codes
for the pump to get lactose into the cell, as well as the enzyme enzyme β
Galactosidase which transforms lactose to allolactose. Because allolactose
induces the lac operon, by inhibiting LacI (which inhibits the operon), and
needs the expression of the operon to be produced, there is a positive feedback
loop which might lead to bistability. Upper left the form of the promoter
function, dependent on allolactose (A) and cAMP (C) is given as fitted to
experimental data by [21]. The V parameters are functions the following
physiological parameters: RNA-polymerase and its dissociation constant for
binding to the free promoter site (a) and to the site when occupied by CRP
(the cAMP associated transcription factor) (b), as well its transcription rate
dependent on the site occupancy (α and β), the “leakage” of the promoter
(γ), i.e. its expression when not induced, the concentration of LacI and its
dissociation constant (c) and the CRP concentration and its dissociation
constant (d). It are these more physiological parameters which are subject
to mutation and selection in the model, see main text. Finally lower right
the “ecosystem” is depicted, showing the local variation of the external con-
centration of glucose and lactose, and the presence of the cells at arbitrary
point in time. For details see [26].
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data (see Figure 1). The parameters of the function were subject
to evolution, i.e. subjected to mutation and selection. Importantly,
after initial trials in which “nothing happened” (i.e. no evolutionary
adaptation was observed), we realized we should not use the dimen-
sion (parameter) reduction used to simplify the model fitting, but the
underlying binding reactions instead. This increases the number of
parameters from the 7 shown in Figure 1, to 11 more physiological
parameters (see the legend of Figure 1). Thus we create a redundant
genotype to phenotype (GP) mapping. Such a redundant GP mapping
has been shown to strongly improve evolutionary search. (For a recent
extensive review on the role of GP maps in evolution see [12]).

• Intracellular molecular interactions, including protein expression and
degradation, transport into the cell of lactose and glucose, and ATP
production, as modeled by [29]. In addition, the cells grow as function
of ATP production, causing dilution of the protein concentrations.
When a cell reaches a certain predefined size it can divide.

• Ecology: the cells are embedded on a spatial grid. Resources, i.e.
lactose and glucose flux into the medium and are taken up by the
cells. The cells compete for the resources as well as empty grid cells.
Cells divide after reaching a certain size and die with a probability
which depends on the global cell density .

The aim of this evolutionary model is to alleviate the “parameter curse”,
inherent in detailed models. Paradoxically, but unavoidably, extra (semi-
arbitrary) parameters have to be set in the evolutionary model. In this
case for example the cost (in terms of ATP) of protein expression, and the
definition of the environment in which the evolution takes place. The lat-
ter involves relative changes in external and internal resource concentration
when resources are consumed, as well as the temporal changes of the influx
of the resources into the environment. Fortunately, for the environmental
parameters we could use an ‘adequacy’ criterion, i.e. in order to select for
the full operon function all combinations of concentrations of glucose and
lactose as well as the resulting internal concentrations of allolactose and
cAMP should be regularly encountered by the cells. As these concentration
are not directly imposed, but result from the consumption and metabolism,
we tuned the timing and amount of influx of glucose and lactose in such a
way that this requirement is met (see Figure 2 for the resulting coverage of
the state space).
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a b

Figure 2: Coverage of the state space, i.e. the conditions the cells experience
over time. On the left the external conditions, i.e. the concentrations of glu-
cose and lactose, encountered. On the right the realized internal conditions
which directly impact on the expression of the lac operon, i.e. the concen-
trations of cAMP and allocatose. Because of the dynamics of the model all
these concentrations can not be directly manipulated as input, but are the
result of the model dynamics. Glucose and lactose were influxed in indepen-
dently Poisson distributed blocks of certain duration and concentration. We
tuned frequency and amount of influx in such a way that all circumstances
were encountered regularly, as shown in the pictures.
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3.1 Analysis of the Eco-evolutionary Dynamics of the Model

Darwin distinguished “natural selection” from “artificial selection”, where
the latter referred to selection by breeders for certain properties preferred
by them. The above described eco-evolutionary model of the lac operon
(artificial as it is) incorporates in this sense “natural selection”: no a priori
fitness criterion is defined. Instead the environmental conditions are con-
stantly shifting, not only due to fluctuating external influx of glucose and
lactose, but importantly also through the current population of cells and the
variation of the promoter functions of neighboring cells which defines their
uptake of the resources, and therefore the local resource conditions. (Indeed
recent experiments have shown the importance of micro-scale gradients in
the functioning and evolution of bacterial colonies [6, 27]). These local con-
ditions determine the immediate fitness. Long term integration of immediate
fitness will determine, in the long run, what evolves. This is indeed what
evolution is about. However it makes life harder for the modeler, because
there is not one obvious observable (fitness) to evaluate whether or not the
model is actual evolving something. As shown in Figure 3a,b, looking at
changes in the parameter values over time is hardly informative, although
looking at the change over time of some selected phenotypic features indi-
cates something beyond neutral drift might be happening. However further
analysis and experiments with the model are needed to establish this, as
discussed in section 4.4.

There is at all times plenty of variation in the population. To get a more
detailed understanding of what is evolving, we extracted the last common
ancestor of the population at the end of the simulation. This cell obviously
was most successful in producing surviving offspring, thus, in hindsight,
being per definition the fittest. This works quite well (as shown below), but
one should keep in mind that the success of the last common ancestor could
be caused simply by chance, or importantly by later occurring mutations.
Several independent evolutionary runs were performed. To select the ‘best’
evolved promoter function, we pairwise competed the last common ancestors
of the various runs and selected the one which won most often. This best
promoter function is depicted in Figure 4 alongside the promoter function of
Setty et. al. [21] as fitted to their measured data. The similarity is striking,
especially realizing that no fitting was involved in setting up the model.

So far so good: apparently the shape of the promoter function as deter-
mined in the experiment, with the “fine tuned parameter values” noted by
[21], is explained by the “natural selection” in our eco-evolutionary model,
given the background metabolic processes as modeled previously [29]. But
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a

b

Figure 3: First observations on the evolutionary dynamics of the model. a
The evolution through time of individual parameters does not show any clear
trend. b We depict the evolution over time of some phenotypic features over
time, namely the promoter activity the evolving promoter function would
have when encountering the 4 extremes of high and low cAMP and allolac-
tose concentration (although the circumstances in which it finds itself are
different). The phenotypic features show a somewhat clearer evolutionary
trend, although also does not convincingly show that anything other then
drift occurs.
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Figure 4: Similarity of the shape of the promoter function of best evolved
common ancestor (b) with the promoter function of Setty et. al. [21], see
panel a. Shown is the activity in the state space as experienced by the cells
(compare Figure 3), which is not the same in both cases.

why? We can now study its behavior in different external resource concen-
trations. The results are given in Figure 5a for various concentration of
external lactose, either with high or low glucose concentrations. In contrast
to the common expectation that the natural promoter function of the lac
operon of E. coli codes for a bistable switch, the promoter function evolved in
our eco-evolutionary model does not, despite its similarity to the measured
promoter function. What is wrong?

3.2 Internal validation of the model

It turns out that nothing is wrong with the model, and that, indeed, the lac
operon of E. coli does not encode a functional bistable switch. This insight
is first of all obtained from the model itself. Realizing that experiments were
almost always done with artificial inducers (IPTG or TMG), which are not
metabolized, we tested our promoter function by stimulating it with IPTG,
adjusting the model accordingly. As seen in Figure 5b, the model with the
evolved promoter function, in that case recovers a strong bistable switch,
both for low and for high concentrations of external glucose. The difference
in behavior is due to the fact that artificial inducers are not metabolized,
whereas lactose is. This is in fact the advantage of using these artificial
inducers in experiments, as it allows to control the conditions. However
because they are not metabolized the positive feedback loop is strength-
ened, causing bistability under a much wider set of circumstances than is
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Figure 5: Best evolved promoter function does not code for a bistable switch
in its natural environment and the model, i.e. when it is induced by lactose
(a). However when studied with an artificial inducer (IPTG) as commonly
done in the lab, it does code for a bistable switch (b). Solid line low glucose
concentration, dotted line for high glucose concentration.

the case for lactose, which is metabolized [8]. In other words we conclude
that the common notion that the lac operon is coding a bistable switch is
an experimental artifact, derived from the preference to do experiments in
controlled conditions. As mentioned above, in our eco-evolutionary model,
as in nature, conditions are extremely non-controlled.

3.3 Experimental Validation of the Model Results

Currently the consensus opinion has shifted away from considering the lac
operon as a bistable switch. Although the model results described above, in
my opinion support this conclusion strongly, the communis opinio is based
on more recent, more conventional system biology experiments as well as
wet evolutionary experiments. Strikingly, the paper entitled ”Multistability
in the lactose utilization network of Escherichia coli” mentions in passing
in the supplementary material “During induction with lactose, as opposed
to IPTG, TMG.......the steady state distribution after 4 hours of growth is
always uni-modal, and we never observe hysteresis”[14]. Strikingly, despite
its title, this paper is frequently cited as evidence for the gradual response
instead of bistability .

A combined experimental and modeling paper [31] confirmed in their
carefully parameterized model that the lac operon is not bistable. However
they showed in the model and in experiments that over-expression of LacI,
(the repressor of the operon which is repressed by the inducer (allolactose
or artificial inducer)) does induce bistability. In fact their results show that
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the wild type promoter function is only just not bistable. Similarly, in our
model we see that over evolutionary time some individuals of the variable
population do show bistability for lactose. Moreover, we see that when, as
we did, evolution starts off with a bistable promoter it evolves away from
bistability by increasing the default expression of the operon without induc-
tion (the γ parameter (see Figure 3a top panel)). Note that decreasing LacI
expression implies less repression of the operon, and therewith an increase
of leakage (i.e. γ). Indeed we showed analytically that the occurrence of
bistability (i.e. a Hopf bifurcation) depends primarily on a low enough value
of γ [26]. These results suggest that long term evolution avoids bistability,
but minimizes the (costly) expression of the operon when not induced as
much as possible without becoming bistable.

Interesting, LacI is in fact itself also regulated by the lac operon [20].
This auto-regulation leads to a further smoothing of the response. An other
indication that avoidance of bistability is an evolved feature.

Also interesting are the results of the evolutionary experiments of Quan
et. al. [16]. They evolved E. coli cells on 4 different media: only glucose,
only lactose, glucose and lactose, and alternating glucose and lactose, and
studied the bistability of the evolved lac-operons, using artificial inducer
(TMG). Even with artificial inducer, they only observed bistability consis-
tently in the glucose only medium, and in a subset of cases in the lactose
only medium. These results, counter-intuitive as they may seem at first
sight, can be understood in terms of the above discussion. On glucose only
medium, the operon should never be expressed. Therefore the ‘leakage’ ex-
pression without inducer should be low. When this is low enough, bistability
is even seen with lactose as inducer (see also Figure 6b).

Conversely, if they evolved on lactose only, the operon should be active
all the time. Whether or not it is bistable under other circumstances is
irrelevant. Hence in some replicates it remains bistable for artificial inducer
as it was the initial wildtype, and in other cases bistability is lost by neu-
tral evolution. In the other two cases a graded response is observed even
for TMG. In contrast to our eco-evolutionary model, where we tuned the
parameters so that all environmental conditions were experienced regularly,
these evolutionary experiments severely limited the environmental condi-
tions experienced by the cells. Therefore the cells adapted quickly to the
subset of conditions encountered. Likewise when we varied the environmen-
tal conditions or internal parameters (e.g. cost of gene expression) and only
a subset of conditions occurred, different promoter functions evolved [26].

Finally I mention the study of Afroz et. al. [1], who studied bistability for
a number of carbon-sources. They report no bistability for the lac operon,
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but do find bistability for others, e.g. L-arabinose. It would be interesting to
see whether the modeling methodology we used here, would for L-arabinose
indeed predict bistability.

3.4 Why avoid Bistability?

The theoretical and experimental results discussed so far show that bista-
bility is evolutionary avoided. But why? When some phenotypic feature
evolves this does not automatically imply that it has an adaptive benefit,
as it my be produced by neutral drift. Indeed neutral drift can generically
lead to well defined, apparently non random phenomena which are attrac-
tors of the stochastic dynamical system defined by the mutational operators
employed, a striking example of which is shown in [2]. The fact that an
evolutionary model and empirical data converge to the same outcome, as
is the case in both [2] and the this model, also does not preclude a neu-
tral explanation. For example, the avoidance of bistability simply could be
due to the fact that a larger part of parameter space generates a graded
response, rather than bistability, which is indeed so for the natural system
with lactose as inducer, whereas the parameter space leading to bistability
is much larger in the case of artificial inducer (as shown here and argued
in [18, 19]. Apart from neutral drift, an other non-adaptive explanation of
an evolved phenotypic feature might be that it is a side-effect of the pos-
itive selection acting on an apparently unrelated feature, when the same
mutations affects both. The above mentioned bistability of the lac operon
when evolved on glucose medium is a nice example of this. Important for
the discussion here is that whether or not the studied feature is generated
by adaptive or neutral evolution, or as side-effect, does not affect the main
conclusion of this paper, i.e. that an evolutionary perspective is very helpful
to debug matching theoretical and experimental results.

In the present case we see a clearly adaptive signature in the outcome.
First of all competition experiments mentioned above clearly show the fit-
ness advantage of the evolved promoter function, in the type of environment
in which it evolved (but note that in competition experiments the environ-
ment unavoidably differs from the native environment because of the pres-
ence of the competitor). An other indication of the adaptive relevance op
the evolved promoter function is, that under different environmental cir-
cumstances, clearly different promoter functions evolve, as discussed above
in this model as well as in experiments [16].

Moreover we can pinpoint why a sufficiently high value of γ and there-
with the avoidance of bistability gives an evolutionary advantage. In Figure
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6a we show the onset of mRNA and protein production when external lactose
becomes available. For promoters with very low activity when no external
lactose is available the delays are very long, in fact longer than the aver-
age division time of E. coli. Obviously such long delays are detrimental.
Cells which avoid such delays consume the external lactose earlier, leav-
ing less resource for cells with longer delays. Slow protein dynamics plays
an important role in these long delays. This underscores the importance of
using the large scale parameterized model for the cell metabolism in our eco-
evolutionary model. Note that bistability, and therewith hysteresis, would
even further aggravate the delays. We conclude that it is the transient, non
equilibrium situation which determines the long term evolutionary outcome.

In contrast an earlier evolutionary model ‘explained’ the advantages of
bistability [22]. In their minimodel instantaneous switching was assumed.
In addition their model was stochastic. Bistability ensured heterogeneity
in the population, so that some cells were pre-adapted to a changing envi-
ronment. This raises the question whether it is the lack of stochasticity in
gene expression in our model which prevents evolution to exploit the advan-
tages of bistability. We modified the model to incorporate stochastic gene
expression [24] and conducted a similar set of experiments in the stochas-
tic model. Figure 6b shows that the stochastic model evolved even farther
away from bistability by increasing the expression in the absence of lac-
tose (i.e. γ). Indeed, again the explanation is in terms of delays, which are
even more severe in the stochastic model [24]. Moreover the stochasticity
only marginally increases the heterogeneity of the population, relative to the
genetic and environmental heterogeneity prevalent in the eco-evolutionary
model [24]. Likewise through metagenomic analysis, extreme heterogeneity
is commonly observed in natural bacterial populations at a micro-scale, e.g.
[15, 28].

4 Discussion

The evolutionary systems biology approach discussed in this paper proved to
be surprisingly powerful. We showed that the measured promoter function
[21] was evolutionary favored, which was our original aim. The modeling
was moreover rich in “results++”, i.e. in unexpected novel insights. Fore-
most the insight that the assumption of bistability of the lac operon, which
was supported by experiments, mini models, large scale models and evo-
lutionary optimization models, is in fact incorrect. How could this false
notion be sustained for so many years? The need of well defined conditions
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Figure 6: a Delay in activation of the lac-operon when external lactose be-
comes available, dependent on un-induced activity level: delays longer than
average division time of E. coli for un-induced values compatible with bista-
bility. b Evolved promoter activity dependent on internal allolactose in var-
ious replicates. Dotted line: initial bistable promoter. Dashed and solid line
evolved promoters in respectively the deterministic and the stochastic model.
The stochastic model evolves even farther from bistability by increased un-
induced expression.

in experiments, and therewith the use of artificial inducer, clearly was the
primary cause, combined with the construction of models, and the setting of
parameters such that the model results match the experimental results. In
contrast we used an unsupervised modeling approach, and observed a strik-
ing match to some experimental results, namely the shape of the promoter
function together with the totally unexpected evolutionary trend away from
bistability. Moreover we could determine that bistability was avoided in
order to avoid delays in activation, and therewith gain a competitive edge.
Our results also indicate that examining mono-morphic, clonal, populations
in experiments or models may lead to artifacts, in the sense that it does not
reflect what happens in natural populations.

Having argued that the lac operon does not encode a bistable switch, we
should reflect on what we mean with such a statement. Bacteria, including
E. coli, adapt to a prevailing environment very quickly, as shown in evolu-
tionary experiments e.g. those of Quan [16] discussed above, and stressed
by e.g. [7]. This we also see in our model: if the environment switches too
fast regulation is largely lost, as only an average environment is experienced
by the cells. As an other example, when cost of protein expression is set
very high, bistability may evolve, but occurs at very high glucose concen-
trations, which were very seldom if ever encountered. In such a case, like in
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the glucose only environment of Quan [16] bistability occurs as a side effect
which does not harm the system. Thus, indeed as stated by Setty et. al. the
promoter function can be fine tuned easily. It is therefor even more remark-
able that, given that a full set of environmental conditions is encountered
(which is not the case in the above mentioned examples) evolution of wild
type E. coli, and the model converge to an unequivocal solution.

In the eco-evolutionary model discussed here, we only evolved some of
the large number of parameter values which needed to be specified, and for
which the experimental evidence is not unequivocal. However, because of
the evolution of the parameters determining the phenomena of interest their
precise value might not matter too much, and certainly were not tuned/fitted
for the results obtained. In that sense the parameter curse which encumbers
large scale models was somewhat alleviated. In any case enough to debug
the results obtained from models in which parameters were fitted, or tuned
to match the experimental results.

Finally I like to note that the general approach advocated here, i.e. non-
supervised, multilevel eco-evolutionary modeling can be generalized beyond
evolving parameters in a fixed model structure as done here. Giving the
models many degrees of freedoms to adjust model structure, we have re-
peatedly seen surprising convergence to biological systems, leading to novel
insights in their functioning as well as novel insights in evolution itself, e.g.
[25, 4, 5, 23].
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