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(Introduction) 24 

Recently, Song et al. (2020) conducted a simulation study using different methods to deal with 25 

non-independence resulting from effect sizes originating from the same paper – a common 26 

occurrence in ecological meta-analyses. The main methods that were of interest in their 27 

simulations were: 1) a standard random-effects model used in combination with a weighted 28 

average effect size for each paper (i.e., a two-step method), 2) a standard random-effects model 29 

after randomly choosing one effect size per paper, 3) a multilevel (hierarchical) meta-analysis 30 

model, modelling paper identity as a random factor, and 4) a meta-analysis making use of a 31 

robust variance estimation method. Based on their simulation results, they recommend that meta-32 

analysts should either use the two-step method, which involves taking a weighted paper mean 33 

followed by analysis with a random-effects model, or the robust variance estimation method. 34 

 35 

Song et al.’s simulation results are an important and valuable contribution to the ecological 36 

community. However, we disagree with their primary recommendation of calculating a weighted 37 

average effect size for each study within a paper for two reasons. First, as we have stated 38 

elsewhere (Nakagawa & Santos 2012, Noble et al. 2017), we recommend the use of multilevel 39 

meta-analytic models because of improved power and the ability to answer richer biological 40 

questions about the drivers underlying variation in published effects. Second, we do not 41 

recommend the use of the two-step method with a weighted paper mean because other types of 42 

within-study non-independence often co-occur that need to be considered but that are not 43 

completely dealt with by Song et al. (2020)’s simulation. We fully agree that a robust variance 44 

estimation method is useful, but from Song et al. (2020) paper it would appear to be limited in 45 
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applicability. However, we show that this method can easily be extended to multilevel meta-46 

analysis, making the best of both worlds. 47 

 48 

In this Comment, we overview a previous simulation study with different conclusions to that of 49 

Song et al. (2020) and put forward a strong case for why we need to make use of multilevel 50 

meta-analysis in the field of ecology. We discuss how the results of this previous simulation, 51 

along with our updated simulation results from Song et al. (2020), make different conclusions 52 

that show multilevel meta-analysis can perform well when non-independence exists. In our 53 

simulations, we demonstrate how a number of additional methods can provide solutions for any 54 

increase in Type I error when fitting multilevel meta-analysis models (an issue noted by Song et 55 

al., 2020). 56 

 57 

Similar Simulations, Different Conclusions 58 

Moeyaert et al. (2017) conducted a similar simulation study to Song et al. (2020) with some 59 

minor differences. First, Moeyaert et al. (2017) did not include a condition involving randomly 60 

choosing one effect per paper and used the standardized mean difference (aka Cohen’s d or 61 

Hedges’ g) as their effect size, instead of the log response ratio used by Song et al. (2020) 62 

(Hedges et al. 1999). Second, Moeyaert et al. (2017) did not model different correlations within 63 

papers (they referred to papers as studies) and heteroscedasticity among papers (different 64 

between-paper variances). Finally, Moeyaert et al. (2017) used PROC GLM in SAS 9.3 (SAS 65 

Institute Inc, 2011-2014) while Song et al. used R’s metafor (Viechtbauer 2010) and robumeta 66 

(Fisher et al. 2017) for multilevel meta-analysis and robust variance estimation, respectively. 67 

 68 
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Like Song et al. (2020), Moeyaert et al. (2017) found that all of the three methods examined 69 

produced unbiased estimates of the overall (meta-analytic) mean. A striking difference was that 70 

in Moeyaert et al. (2017), multilevel meta-analyses performed as well as a robust variance 71 

estimation method in terms of 95% confidence interval (CI) coverage. In contrast, Song et al. 72 

(2020) reported consistently higher Type I error rates (i.e., greater than 5%) for multilevel meta-73 

analyses. The highest Type I error rate of multi-level meta-analysis models achieved across all 74 

scenarios was about 8.2% [Mean (Median) Error Rates: 6.42% (6.42%)], which seems marginal 75 

in absolute terms, but relative to the nominal rate of 5% constitutes an increase of 64%. Further, 76 

Moeyaert et al. (2017) noted that when effect sizes from the same studies are not correlated, the 77 

two-step method with a weighted paper mean provided confidence intervals that were too wide 78 

(inefficient), which was also the case in Song et al.’s simulation. Based on their results, 79 

Moeyaert et al. (2017) recommend both multilevel meta-analysis and robust variance estimation 80 

methods but advised against the averaging method. 81 

 82 

The differences in recommendations between Moeyaert et al. (2017) and Song et al. (2020) may 83 

have originated from a well-known issue in linear mixed-effects models, of which multilevel 84 

meta-analysis is a special type (Nakagawa & Santos 2012); that is, for linear mixed-effects 85 

(multilevel) models, it is difficult to determine the appropriate degrees of freedom, which is 86 

required for CI calculations. The SAS procedure used by Moeyaert et al. (2017) implements a 87 

method for calculating the degrees of freedom that is more appropriate for smaller sample sizes, 88 

while R’s metafor used by Song et al. (2020) is yet to do so (at the moment, it simply sets the 89 

degrees of freedom equal to the total number of effect sizes minus 1). Indeed, Song et al. (2020) 90 

suspected this shortcoming by stating “this issue is addressed by adjusting the degrees of 91 
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freedom... ”, but did not explore the possible corrections. If this is the issue, there are several 92 

solutions that already exist to correct Type I error rates toward the nominal value. Another 93 

potential cause of the difference between Song et al. (2020) and Moeyaert et al. (2017) is that the 94 

former modeled heteroscedasticity among papers, while the latter did not. Here, we expand Song 95 

et al. (2020)’s simulations to show how currently available tools can resolve many of the issues 96 

they identified without the need to resort to averaging methods. Before doing so, we would first 97 

like to review the reasons for why, in the past, we have strongly recommend the use of 98 

multilevel/hierarchical meta-analytic models over a method that averages multiple effect sizes 99 

per paper. 100 

 101 

Why Multilevel/Hierarchical Models over Averaging? 102 

Nakagawa and Santos (2012) recommended the use of the following meta-analytic model for 103 

datasets which can include effect sizes across different species as well as different papers: 104 

𝑦! = 𝜇 + 𝑎" + 𝑠" + 𝑝# + 𝑒! +𝑚! ,																																														(1) 105 

where: 106 

A. yi is the ith effect size (i = 1, …, Neffect-size; the number of effect sizes), 107 

B. 𝜇 is the meta-analytic mean, 108 

C. ak is the phylogenetic effect for the kth species (k = 1, …, Nspecies), which is distributed 109 

with N(0, 𝜎$%A), where A is a correlation matrix derived from a phylogenetic tree for 110 

species included in a meta-analysis, 111 

D. sk is the non-phylogenetic (species) effect for the kth species, distributed according to 112 

N(0, 𝜎&%), 113 

E. pj is the jth paper effect (j = 1, …, Npaper), distributed according to N(0, 𝜎'%), 114 
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F. ei is the ith effect-size specific effect, distributed according to N(0, 𝜎(%), and 115 

G. mi is the ith sampling error effect, distributed according to 𝑁(0, 𝜎!%) where 𝜎!% is the 116 

sampling error variance for the ith effect size (note when sampling errors are correlated, a 117 

variance-covariance matrix can replace 𝜎!%; see below).  118 

 119 

Although Song et al. (2012) did not mention phylogenetic non-independence (shown in Equation 120 

1), this issue commonly arises in ecological meta-analysis, and is similar in manner to non-121 

independence due to effects being derived from the same source paper. What is more, it is often 122 

important to appropriately take phylogeny into consideration in a meta-analysis (Chamberlain et 123 

al. 2012). If we follow the logic of averaging, and we want to avoid using multilevel meta-124 

analysis, we need to average per species. Nakagawa and Santos (2012) put forward three main 125 

arguments against averaging (similar arguments were independently put forward by Cheung 126 

2014): 1) the potential loss of statistical power and needlessly large standard errors for the 127 

overall effect, 2) the loss of information resulting from not being able to estimate within-paper 128 

(within-study) variance, and 3) perhaps most importantly, not being able to estimate ecologically 129 

important moderator effects given that aggregation will reduce the information content 130 

dramatically (i.e. removes within-species variation in estimated effects). 131 

 132 

Both simulation studies suggest the first argument may not apply unless correlations among 133 

effect sizes are close to zero. Importantly, Song et al. (2012) discuss two scenarios where 134 

dependence among effect sizes could arise: 1) “because they were observed in the same 135 

experiment or may have been based on the same subjects” and 2) “even if they arose from 136 

separate experiments because experiments likely share common methods, contexts, or other 137 
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characteristics that influence the effect size”. However, Song et al. (2020) only focused on the 138 

latter scenario in their simulation not for the former. For the former, where sampling errors are 139 

correlated, we need to use the following formula (Borenstein et al. 2009) to obtain a sampling 140 

error variance (or a sampling standard error) to accompany a weighted mean, rather than the 141 

fixed-effect model used by Song et al. (2012): 142 

var3
1
𝑛5𝑦!

)

!*+

6 = 7
1
𝑛8

%

95𝜎!%
)

!*+

+5𝑟!,;𝜎!%𝜎,%
)

!-,

<																																			(2), 143 

where yi is the ith effect size (i = 1, …, n and g = 1, …, n, where n is the number of effect size 144 

within a paper to be combined), 𝜎!% and 𝜎,% are the sampling error variances for yi and yg, and rig 145 

is the correlation between the sampling errors of yi and yg  (note that one can use the function, 146 

aggregate in metafor to calculate a weighted mean and accompanying sampling variance as in 147 

Equation 2). We believe that both types of non-independence frequently co-occur and need to be 148 

accounted for. For the multilevel meta-analysis, we can model the variance-covariance matrix of 149 

the sampling errors for the former type of non-independence as well as model a random effect 150 

for paper, although rig is often not known and needs to be assumed (detailed in Noble et al. 2017; 151 

see also, Lajeunesse, 2009; 2011. Further, beyond these two types of multilevel meta-analytic 152 

models we can model different sources of non-independence (e.g., phylogenetic relatedness and 153 

species relatedness not due to phylogeny; see Equation 1) simultaneously and flexibly, although 154 

more data is required for more complex models (Nakagawa and Santos 2012). 155 

 156 

The loss of information is a more serious issue, especially the loss of moderator information. The 157 

high heterogeneity observed in ecological meta-analyses (Senior et al. 2016) often implies that 158 

ecologists must use meta-regression models, which use moderators (or ‘predictors’) to explain 159 
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variation among effect sizes. In many cases, meta-regression models are likely to be more useful 160 

and informative in ecology than simple meta-analytic models (Gurevitch et al. 2017). Indeed, 161 

meta-regression can provide us with review- or synthesis-generated evidence which cannot be 162 

obtained via single studies (Nakagawa et al. 2017). If we extend Song et al. (2020)’s 163 

recommendation of not using multilevel meta-analyses to ‘multilevel meta-regression’, this 164 

would severely limit our ability to test moderator effects. For example, it is common to obtain 165 

separate effect sizes for males and females from one paper. If we aggregate these effect sizes per 166 

paper then we would not be able to test sex-specific effects, which runs counter to recent 167 

movements to test ubiquitous sex effects (Tannenbaum et al. 2019; Zajitschek et al. 2020). 168 

 169 

Solutions for Type I Errors in Multilevel Meta-analysis without the Need for Averaging 170 

Alongside the methods (referred to as Methods 1-5) used by Song et al. (2020), we explored four 171 

further methods that are known to overcome the slight excess in Type I error rates observed 172 

when using multi-level meta-analytic models. Our simulations reproduced the simulations by 173 

Song et al. (2020) but added: 1) a simple correction to the degrees of freedom used to calculate 174 

the overall effect size confidence intervals. This involved simply using one less than the total 175 

number of papers instead of the typical degrees of freedom that uses the total number of effect 176 

sizes (i.e., df = total papers – 1); 2) a Satterthwaite approximation to the effective degrees of 177 

freedom, which is commonly applied in the linear mixed effect model literature (Satterthwaite, 178 

1946); 3) a second cluster-robust estimation method implemented in the clubSandwich package 179 

in R (Pustejovsky, 2020) that uses a bias-reduced linearization method (Pustejovsky and Tipton, 180 

2018). The R package clubSandwich uses a similar robust-variance estimation method as 181 

robumeta (Fisher et al. 2017) used in Song et al. (2020), but can be applied to metafor’s rma.mv 182 
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model objects; and 4) a Bayesian modelling approach that uses an MCMC algorithm (using the 183 

R package MCMCglmm – Hadfield, 2010), instead of restricted maximum likelihood (REML) 184 

estimation, as MCMC algorithms are known to have robust coverage, albeit are slightly 185 

conservative with small sample sizes (Pappalardo et al. 2020). We also explored other modelling 186 

approaches, but present these four as they are simple solutions that can be easily implemented. 187 

We focus exclusively on coverage / error rates given that bias was unaffected by the different 188 

modelling approaches in Song et al. (2020)’s simulations. For each method (the five existing 189 

methods from Song et al. 2020) plus the four new approaches we describe above, we ran 5,000 190 

iterations across all the scenarios detailed in Song et al. (2020). An updated set of scripts from 191 

Song et al. (2020), including a coding correction, that implements these new methods can be 192 

found at https://(Fisher et al. 2017).  193 

 194 

Our new simulation results (Figure 1) show that the four proposed solutions perform quite well 195 

across all the scenarios described by Song et al. (2020). The overall performance of each method 196 

for each specific simulation scenario is provided in Figure 1B, which reproduces Figure 3 197 

(Experiment 1 and 2) from Song et al. (2020). Overall, the simple approaches we implemented 198 

corrected the excess in Type I error rates in the multi-level meta-analytic models implemented in 199 

metafor (Figure 1A). In particular, Bayesian methods, while having inflated Type II error under 200 

small sample situations, perform extremely well across a variety of conditions (Figure 1A and 201 

B), with average Type I error rates converging on the 5% level but being slightly conservative 202 

overall [Mean (SD) = 4.82% (0.0053)]. A Satterthwaite approximation to the effective degrees of 203 

freedom also performs quite well under a variety of conditions as expected [Figure 1A & B – 204 

5.02% (0.0046)]; even the simplest degrees of freedom correction that uses total papers minus 205 
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one performs quite well [Figure 1A & B – 5.39% (0.0059]. Considering these results above, and 206 

the ease of implementation, we recommend fitting a multilevel model with a robust variance 207 

estimator because it can easily be applied to multilevel-meta-analytic models in metafor. Also, 208 

one can certainly use Bayesian modelling, as long as the dataset is large enough (e.g., > 100 209 

effect sizes). A step-by-step guide to implement both of these methods can be found at 210 

https://github.com/daniel1noble/ecology_comment.  211 

 212 

Conclusion 213 

We appreciate the thorough simulations conducted by Song et al. (2020) in an attempt to better 214 

understand the ways in which meta-analysts can overcome one of the most common challenges 215 

of meta-analysis; dealing with non-independent effect sizes. While we agree with their 216 

recommendation of using robust variance estimation methods (with caveats), we disagree with 217 

their recommendation that averaging effect sizes within studies is a solution. While we recognise 218 

that there may be times when averaging effect sizes is easier (e.g., when there are very few 219 

studies with repeated effects), one most likely needs to use Equation 2 above, not the method of 220 

averaging suggested by Song et al. (2020). Regardless, averaging effect sizes within studies 221 

comes with a number of significant disadvantages that include: 1) not being able to control for 222 

additional sources of non-independence, such as phylogenetic non-independence, which will be 223 

commonplace in ecological meta-analyses and 2) not being able to understand the drivers of 224 

effect size heterogeneity given that moderator information, which could be included in meta-225 

regression models, is lost. As we have shown, there are a number of very simple, and easily 226 

implemented solutions to correct any inflated Type I error rates to their nominal level. Indeed, 227 

even robust variance estimators can readily be incorporated into multilevel meta-analytic models, 228 
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which we recommend ecologists employ. Ignoring these elements prevents meta-analysts from 229 

answering a richer set of biologically relevant questions about the drivers underlying effect size 230 

variability. As such, we argue strongly against averaging effect sizes within a paper whenever 231 

possible.  232 

 233 
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Figure captions  291 

 292 

Figure 1 – A) Density distribution of average Type I error rates (%) across all 51 scenarios 293 

simulated by Song et al. (2020). The first four methods reproduce Song et al. (2020)’s 294 

simulations and include: “One” = Choosing a single effect size; “AV” = two-step method 295 

that averages effects within a study; “MLM” = Multi-level meta-analytic model; “RVE” 296 

= Robust variance estimation method with robumeta. In addition to these, we 297 

implemented four new methods to correct the slight increase in Type I error rates for the 298 

MLM method. These included: “CS” = club sandwich robust variance estimation; 299 

“Papers_df” = degrees of freedom equal to the total number of papers minus one to adjust 300 

confidence intervals from MLM; “SW_df” = Satterthwaite degrees of freedom to adjust 301 

the confidence intervals of the MLM, and “Bayes” = Bayesian estimation methods. See 302 

details in text. Raw error rates across all simulated scenarios described by Song et al. 303 

(2020) are depicted by black points. Grey dashed line represents the nominal 5% error 304 

rate. Note that the method ignoring non-independence is not included here (see Figure 305 

S1). B) Average Type I error rates (%) across a sub-sample of scenarios simulated by 306 

Song et al. (2020). Note that the sub-sample of simulation scenarios matches those 307 

presented in Song et al. (2020) and does not include all 51 simulation scenarios presented 308 

in panel A. Colors match methods described in panel A, except we also present the 309 

original Method 1 as denoted in black, which completely ignores non-independence. 310 

 311 

  312 
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