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ABSTRACT 1 

Citizen science platforms are quickly accumulating hundreds of millions of biodiversity 2 

observations around the world annually. Quantifying and correcting for the implicit and explicit 3 

biases in citizen science datasets remains an important first step before these data are used to 4 

address ecological questions and monitor biodiversity. One source of potential bias among 5 

datasets is the difference between those citizen science programs that collect opportunistic 6 

observations and those that have semi-structured or structured protocols for submitting 7 

observations. To quantify biases in an unstructured citizen science platform, we contrasted bird 8 

observations from the iNaturalist platform with that from a semi-structured citizen science 9 

platform — eBird — for the continental United States. We tested whether four traits of species 10 

(color, group size, body size, and commonness) predicted whether a species was over-11 

represented in the opportunistic dataset. We found strong evidence that large-bodied birds were 12 

over-represented in the opportunistic citizen science dataset; moderate evidence that common 13 

species were over-represented in the opportunistic data; moderate evidence that species in large 14 

groups were over-represented; and no evidence that colorful species were over-represented in 15 

opportunistic citizen science data. Our results suggest that biases exist in opportunistic citizen 16 

science datasets, likely as a result of the detectability of a species and the inherent recording 17 

process. Future research in this space should continue to focus on quantifying and documenting 18 

biases in citizen science data, and understanding how these biases differ among unstructured, 19 

semi-structured, and structured citizen science platforms. 20 

 21 
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INTRODUCTION 24 

Citizen science, or community science, — the involvement of volunteers in scientific endeavors 25 

— is increasingly seen as a cost-effective method for biodiversity monitoring and research. 26 

Accordingly, the quantity and diversity of citizen science projects in the ecological and 27 

environmental sciences is increasing 1. Such projects are quickly accumulating hundreds of 28 

millions of biodiversity observations around the world annually 2,3 expanding the spatial and 29 

temporal scope of our understanding in ecology, conservation, and natural resource management 30 

4,5. Citizen science projects vary widely in their scope, design, and intent 6,7,8. Projects can range 31 

from unstructured (e.g., little training needed to participate and contribute 32 

opportunistic/incidental observations) to semi-structured (e.g., with minimal workflows and 33 

guidelines, but additional data collected with each observation can be included) to structured 34 

(e.g., prescribed sampling in space and time by mostly trained and experienced volunteers). The 35 

level of structure consequently influences the overall data quality of a particular project 9,10.  36 

 37 

Data quality from citizen science projects has been questioned 11, 12, and such concerns can act as 38 

a barrier to the widespread use of citizen science data in ecology and conservation 13. These 39 

concerns arise because citizen science data can be biased temporally, spatially, and/or 40 

taxonomically. Temporally, many citizen science datasets are biased because participants 41 

frequently sample on weekends 14 or disproportionately during specific times of the year such as 42 

spring migration for birds 15. Spatially, there is often a disproportionate number of sightings from 43 

areas with large human populations 16, areas with more accessibility 17, regions with high 44 

biodiversity that attract observers 18, and regions of the world with higher socioeconomic status 45 

19. Taxonomic biases also exist as some taxa receive orders of magnitude more citizen science 46 
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observations than other taxa, evidenced by the fact that birds represent a disproportionate amount 47 

of data in the Global Biodiversity Information Facility 2. Even within citizen science projects 48 

focused on specific taxa, there can be strong taxonomic biases towards particularly charismatic 49 

species or those that are readily identified 20, 21. Such biases are not restricted to citizen science 50 

datasets, however, and many of the same biases are also present in professionally-collected data 51 

22, such as those associated with museum specimens 23. 52 

 53 

Despite potential biases in citizen science datasets, contrasts of data from volunteer participants 54 

to those contributed by professional scientists have shown that citizen science programs can 55 

provide reliable data 12, 24. For example, mark-recapture models of whale sharks are reliable 56 

whether using sightings reported by the public or by experienced researchers 25, and volunteers 57 

perform comparably with professionals in identifying and monitoring invasive plant species 26. 58 

Moreover, recent research has demonstrated the validity of using citizen science data for 59 

ecological questions such as estimating species distributions 27, 28, 29, managing habitat for 60 

conservation 30, estimating species richness 31, monitoring pollination services 32, and quantifying 61 

population trends 33, 34. These approaches are improved when using statistical solutions to 62 

account for known biases and noise in citizen science data 3, 35, 36.  63 

 64 

In addition to being an excellent resource for professional scientists to better understand 65 

ecological questions, citizen science projects are beneficial for society by encouraging increased 66 

engagement of the general public with science 37, 38. Many citizen science projects provide 67 

learning opportunities for their volunteers. For example, participants in citizen science projects 68 

have increased their knowledge about invasive weeds 39, 40, 41, increased their knowledge of bird 69 
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biology and behavior 42, and even enhanced their conservation awareness and sense of place 42, 70 

43. The ecological advances derived from citizen science data, combined with the important role 71 

it plays in community engagement with science, suggests that citizen science data will continue 72 

to play an important role in ecological and conservation research in the future 2, 4, 38, 44. However, 73 

what motivates volunteers to participate in science, and contribute observations, has important 74 

implications for the quality of the data obtained 45, particularly if there are biases towards certain 75 

species, places, or times of sampling. 76 

 77 

To ensure the continued and expanded use of citizen science data in ecology and conservation, it 78 

is important to document and understand the different biases present in citizen science datasets. 79 

Importantly, the degree of bias in a particular dataset will be influenced by the level of structure 80 

of that citizen science project. For example, unstructured projects (e.g., iNaturalist, 81 

www.inaturalist.org) or semi-structured projects (e.g., eBird, www.ebird.org) will generally be 82 

more spatially biased than structured projects that have pre-defined spatial sampling locations 83 

(e.g., Breeding Bird Surveys). Or, a citizen science project that collects incidental presence-only 84 

data, such as iNaturalist, is likely more susceptible to individual observer preferences compared 85 

with a semi-structured or structured project that requires all species encountered to be recorded 86 

by the observers. Charismatic species 21 can be over-represented in citizen science data because 87 

observers are more likely to record species that they, or society, consider more interesting or 88 

relevant 46. Similarly, rare species are more likely to be the subject of conservation monitoring or 89 

more likely to be actively searched for by amateur naturalists 47, 48 and thus can be over-90 

represented in biodiversity datasets. In contrast, in some citizen science projects, abundant 91 

species can form a disproportionate number of records (e.g., 49) because species’ abundance and 92 
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ease of identification can lead to an increase in the number of records by casual observers 50. 93 

Inherently linked with observer preferences are issues of differences in species detectability 50, 94 

and the ease of making the observations. Therefore, species traits (e.g., body size, color, group 95 

size) may have an additive effect, influencing both the detectability of a species 51, 52, 53, and in 96 

turn, the likelihood of a species being submitted to an opportunistic citizen science database. 97 

 98 

Quantifying the implicit and explicit biases in citizen science datasets can help (1) researchers 99 

using these data to better account for biases when drawing ecological conclusions, (2) the design 100 

and implementation of future citizen science projects, and (3) understand what species or regions 101 

may need data collection from professional scientists by understanding the ‘limits’ of citizen 102 

science projects 19. Here, we quantify biases in bird observation data from an unstructured, 103 

opportunistic citizen science project — iNaturalist — with that from a semi-structured one — 104 

eBird. We restricted our comparison to birds because (1) birds are among the most popular taxa 105 

with the non-scientific public, ensuring large sample sizes in both citizen science projects, and 106 

(2) data on the species traits that may influence the likelihood of opportunistic observations are 107 

readily available for birds. We assessed the over-representation or under-representation of bird 108 

species’ observations in the unstructured opportunistic citizen science project compared to the 109 

semi-structured project (see Figure 1). We then tested the following predictions: that (1) more 110 

colorful species; (2) larger species; (3) species with the ‘least concern’ IUCN status; and (4) 111 

more gregarious species (i.e., with larger group sizes) are over-represented in the opportunistic 112 

citizen science dataset (iNaturalist) in contrast to the semi-structured citizen science dataset 113 

(eBird). Our analysis highlights the importance of considering species’ traits when using citizen 114 

science data in ecological research. 115 



7 

 

 116 

METHODS 117 

We made comparisons between iNaturalist (www.inaturalist.org) — an opportunistic 118 

unstructured citizen science project — and eBird (www.ebird.org) — a semi-structured citizen 119 

science project 15, 54.  120 

 121 

iNaturalist citizen science data. iNaturalist is a multi-taxon citizen science project hosted by the 122 

California Academy of Sciences. It is an opportunistic citizen science project where volunteers 123 

contribute photos or sound recordings through a smart-phone or web-portal. Photos are then 124 

identified to the lowest possible taxonomic resolution using a community identification process, 125 

and once two-thirds of observers confirm the species-level identification of an organism it is 126 

considered “research grade”. Observations that are research grade are then uploaded to the 127 

Global Biodiversity Information Facility. We downloaded iNaturalist observations from the 128 

Global Biodiversity Information Facility for the contiguous United States 55 for the period from 129 

January 2010 to May 2019, on December 3rd, 2019. For more details on the iNaturalist 130 

methodology, see here: https://www.inaturalist.org/pages/getting+started.  131 

 132 

eBird citizen science data. eBird is one of the most successful citizen science projects in the 133 

world, with almost 1 billion bird observations globally. It was launched in 2002 by the Cornell 134 

Lab of Ornithology and focuses on collecting reliable data on the distributions and relative 135 

abundance of birds throughout the world 54. It is a semi-structured project where volunteers 136 

submit ‘checklists’ of all species seen and/or heard on birding outings. These checklists provide 137 

the ability to infer absences in the dataset for any species not recorded. Observers can submit 138 

http://www.inaturalist.org/
http://www.ebird.org/
https://www.inaturalist.org/pages/getting+started
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checklists at any time and place of their choosing, with no set protocols in place such as how 139 

long or how far to search. However, observers are asked to indicate the duration of and distance 140 

travelled during the birding outing when submitting their checklist. Filters are set — based on 141 

spatiotemporal coordinates — which restrict the species and their associated counts that can be 142 

submitted without approval from a regional expert reviewer 56. We used the eBird basic dataset 143 

(version ebd_May-2019) and restricted our analysis to data from the contiguous United States for 144 

the period from January 2010 to May 2019. We also restricted the data used to those of the best 145 

‘quality’ by excluding incomplete checklists, checklists that were incidental or historical, which 146 

travelled >5 km, lasted <5 min, and lasted >240 min, minimizing the leverage of outliers on 147 

analyses 57, 58.  148 

 149 

Filtering and aggregating the citizen science datasets. Although both datasets are global in 150 

scope, we restricted our analysis to the contiguous United States as both of these citizen science 151 

projects initiated in the United States, and thus the data are most numerous from there. For 152 

comparisons, we aggregated data at the state level. This was done to account for differences that 153 

may exist throughout the entirety of the United States including differences in user behavior and 154 

the species pools that differ geographically. For each state, the eBird and iNaturalist data were 155 

summarized, providing a list of species for each state, including the percent of total eBird 156 

checklists that a species occurred on or the percent of total observations a species accounted for, 157 

respectively. In addition, the total number of observations in that state were summarized for both 158 

eBird and iNaturalist.  159 

 160 
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We used the eBird Clements taxonomy (version 2018) and all species from iNaturalist were 161 

matched with this taxonomy. A total of 1,030 species was initially collated from the eBird 162 

checklists, but many of these only occurred one or a few times — possibly representing 163 

misidentifications that had not yet been fixed by local reviewers or escaped and exotic birds 164 

which are incorporated in the eBird dataset but not considered part of the local avifauna or of 165 

interest to our analysis here. To account for these biases, we removed species that were on <1% 166 

of eBird checklists for a given state; trimming the eBird observations to the ‘core’ suite of 167 

species that occur in a state (sensu 57). After trimming the species and harmonizing the taxonomy 168 

with iNaturalist, there were 507 species present and considered in our main analyses presented 169 

throughout the results. Although our results here are presented using the 1% cutoff level, we 170 

tested the sensitivity of this cutoff level and found comparable results across 0, 0.5, 1, and 1.5% 171 

cutoffs.  172 

 173 

Species-specific trait data 174 

We tested whether four predictor variables (see Figure 1) would explain the over- or under-175 

representation of bird species in the opportunistic citizen science data. For each species, we used 176 

a proxy for their commonness/abundance, categorized according to IUCN status, taken from 177 

HBW BirdLife international checklist version 3 (http://datazone.birdlife.org/species/taxonomy). 178 

This variable was treated as an ordinal variable in our models (see below) and encompassed 179 

Least Concern, Vulnerable, and Near Threatened species. The three species recorded as 180 

endangered were removed from this analysis due to a lack of power at this level with so few 181 

observations. For each species we used the continuous predictor variables of (1) body size; (2) 182 

color; and (3) average group size. Body sizes (adult body mass in grams) were taken from the 183 

http://datazone.birdlife.org/species/taxonomy
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amniote life history database compiled by 59 and were log-transformed to meet normality 184 

assumptions. Color was taken from 60 and was extracted as RGB values for six patches per 185 

species. To define a continuum of color where the brightest/most colorful (and likely most 186 

detectable species) had the highest value we combined both the ‘distance from brown’ and the 187 

‘brightness’ of a species for the data from 60. Distance from brown was defined as the maximum 188 

Euclidian distance in the cubic RGB color space from brown (R = 102, B = 68, G = 0) from 189 

either the upper or lower breast patch of a species. Brightness was defined as the maximum 190 

relative luminance (i.e., 0.2126R + 0.7152G + 0.0722B) from either the upper or lower breast 191 

patch of a species. These two variables were combined and scaled from 0 to 1 for all species in 60 192 

and this value was used as our measure of color. Group size — an approximation of the 193 

gregariousness of a species — was taken from eBird as the average number of reported 194 

individuals among all checklists where a species was reported, across all data.  195 

 196 

Statistical analysis 197 

For the species traits we ran (1) separate models for every trait and (2) a global model with all 198 

traits included. This was done because there was much missing data for species’ traits and in 199 

order to obtain maximum power for each trait, we wanted to fit individual models. For example, 200 

of the original 1,030 species detected from eBird we had body size data for 84% of species 201 

whereas for color we only had data for 44% of species. This approach allowed us to test both the 202 

independent relationships (i.e., each predictor separately against the response variable) and the 203 

relationship of a predictor given the other predictor variables (i.e., all predictors against the 204 

response variable simultaneously). 205 

 206 
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In all instances, the response variable was the residual from a log-log linear model fit between 207 

the eBird observations and the iNaturalist observations for a given species. In this instance, a 208 

species with a high (i.e., positive) residual would be over-represented in iNaturalist relative to 209 

eBird, whereas a species with a low (i.e., negative) residual would be under-represented in 210 

iNaturalist (Figure 1) relative to eBird. Each model fitted was stratified by state, accounting for 211 

differences in (1) the number of observers in a state, (2) the different relative abundance of a 212 

species throughout the United States, and (3) any other intrinsic differences that might exist 213 

among states that was not of inherent interest in our analysis. Table 1 summarizes the average 214 

sample size for the respective models fit among predictor variables. To confirm the robustness of 215 

our results at an individual state level, we ran a linear mixed effect model where the response 216 

variable was the residuals from a log-log linear model fit between the eBird observations and the 217 

iNaturalist observations for a given species, the predictor variables were the respective traits, and 218 

the random effect was state. Again, the models varied in sample size among predictor variables 219 

(see Table 1). 220 

 221 

Data analysis and availability 222 

All analyses were carried out in R software 61 and relied heavily on the tidyverse workflow 62. 223 

Mixed-effects models were fitted using the lme4 package 63 and p-values were extracted using 224 

the lmerTest package 64. Data and code to reproduce these analyses are available in a GitHub 225 

repository (https://github.com/coreytcallaghan/inaturalist_preferences) and will be permanently 226 

archived in a Zenodo repository upon acceptance of this article. 227 

 228 

RESULTS 229 

https://github.com/coreytcallaghan/inaturalist_preferences
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A total of 507 species across the United States was included in our analysis. These species 230 

comprised a total of 255,727,592 eBird and 1,107,224 iNaturalist observations. At the state level, 231 

the number of eBird checklists and the number of iNaturalist observations were strongly 232 

correlated (Figure 2a; R2 = 0.58, p-value < 0.001). Similarly, at the species level, the total 233 

number of iNaturalist observations and eBird observations for a given species was strongly 234 

correlated (Figure 2b; R2 = 0.9), and for both datasets the number of observations per species 235 

was positively-skewed (Figure S1). We also found that the percent of eBird checklists a species 236 

was found on and the percent of total iNaturalist observations a species comprised was strongly 237 

correlated among states (Figure S2), suggesting that species are sampled to a similar extent in 238 

opportunistic and semi-structured citizen science projects. 239 

 240 

Our analyses showed that larger species were more likely to be over-represented in the 241 

opportunistic citizen science dataset, with the residuals from the contrast between datasets 242 

strongly associated with body size (Figure 3, estimate = 0.11, t = 31.59, p < 0.001). We found no 243 

evidence that more colorful birds were over-represented in opportunistic citizen science data 244 

(estimate = -0.01, t = -0.413, p = 0.68) and moderate evidence that gregarious species were over-245 

represented in opportunistic citizen science data (estimate=0.033, t=6.118, p < 0.001). There was 246 

some evidence that species which are of least concern (with IUCN status treated as an ordinal 247 

variable) were more commonly found in the opportunistic citizen science data (Figure 3; Figure 248 

S3, estimate = 0.078, t = 7.73, p < 0.001). The results from these individual linear models ran at 249 

the state level were confirmed by linear mixed models with state as a random effect. When 250 

considering all traits simultaneously in a linear mixed-effects model, the above patterns remained 251 

broadly similar (Figure 4). 252 
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 253 

DISCUSSION 254 

We compared two popular citizen science platforms throughout the continental United States and 255 

found that there was strong agreement between the relative number of observations of a species 256 

in iNaturalist and eBird, albeit there were about 200 times more observations in eBird than 257 

iNaturalist. This suggests that species are observed at similar rates in both citizen science 258 

projects — i.e., the inherent processes driving observation in both opportunistic and semi-259 

structured citizen science projects are similar. Nevertheless, in support of our predictions (Figure 260 

1) we found strong evidence that large-bodied birds are over-represented in the opportunistic 261 

citizen science dataset compared with the semi-structured dataset. We also found moderate 262 

evidence that common species were over-represented in the opportunistic data, and weak 263 

evidence that species in large flocks were over-represented. In contrast to our prediction, 264 

however, we found no evidence that brightly-colored species were over-represented in 265 

opportunistic citizen science data. 266 

 267 

Our finding that large-bodied birds were over-represented in an opportunistic citizen science 268 

dataset is probably because larger-bodied birds are more detectable 53, 65. Thus, smaller-bodied 269 

taxa are under-represented in citizen science data 66, 67, 68, but this may not be the case for other 270 

taxa such as mammals 69. However, it is difficult to know whether this is an inherent preference 271 

shown by users of the opportunistic citizen science data, or if this comes about as part of the 272 

recording process (e.g., species’ detectability; 50). Species detectability is complex and can be 273 

linked to a species’ mobility or habitat preferences of the species themselves; for example, large-274 

bodied wading birds generally occurring in open wetlands are more easily detected than small-275 
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bodied songbirds generally occurring in dense forest understory. For amphibians and reptiles, 276 

climatic niches are not fully sampled by citizen science datasets due in part to life history and 277 

habitat sampling biases 29. Moreover, in order for an observer to make a record in iNaturalist, 278 

usually a photo is uploaded (although sound recordings are also accepted). Because a photo is 279 

needed, the detectability process is two-fold — first, it needs to be detected, and second, it needs 280 

to be photographed, which is likely easier for many large-bodied birds. Longer lenses, often 281 

restricted to serious photographers, may be needed to photograph smaller-bodied birds whereas 282 

smartphones can usually capture a sufficient image of a larger-bodied bird. The bias towards 283 

large-bodied birds in the opportunistic data is probably a result of detectability and the ability to 284 

capture a photograph 53. This process is similar in insects, for example, which are generally 285 

small, but larger insects (e.g., butterflies) are both easier to observe, photograph, and identify — 286 

making it likely that the biases we found in birds generalize to insects as well. Indeed, a study of 287 

bugs and beetles found that smaller species are typically less represented in citizen science data 288 

68. Importantly, because this represents a form of systematic bias, it is likely easier to model this 289 

bias as we know that this data is not missing at random (e.g., 70) and thus body size should be 290 

included in various modelling processes when using opportunistic citizen science data (e.g., 67).  291 

 292 

Similar to body size, we found that birds which occur in larger groups (i.e., flocks) and those that 293 

are of least concern are over-represented in the opportunistic dataset. This, again, may be 294 

inherently linked to the recording process, rather than a specific bias or preference of the 295 

observers themselves. This is because common birds, that occur in large flocks, are more likely 296 

to be seen and thus submitted to the opportunistic citizen science data 65. A larger flock will 297 

likely also provide more opportunities to capture a photograph than when observing a single 298 
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individual, as has been illustrated in the detectability of animals from aerial surveys by 299 

professionals 71. One explanation for the least concern birds being over-represented in 300 

iNaturalist is user behavior — eBird data are more likely to be derived from avid birdwatchers 301 

(e.g., those that search out uncommon birds and keep serious lists) compared with iNaturalist 302 

data which may be derived from more recreational birdwatchers that focus on ‘backyard’ 303 

species. Another important distinction between iNaturalist and eBird is how identifications are 304 

made. In eBird, most identifications are made acoustically, whereas a photo is generally required 305 

for iNaturalist. Most traits analyzed here are related to visual encounter/identification, thus 306 

potentially explaining the differences found between the opportunistic iNaturalist and the semi-307 

structured eBird data.  308 

 309 

The lack of signal of the colorfulness of a species in predicting over-representation in iNaturalist 310 

could suggest that iNaturalist users are not limited by ‘attractiveness/aesthetics’ but mostly by 311 

detectability, as discussed above (Figure 4). Quantifying the influence of color on detectability 312 

remains a challenge (e.g., 72). In contrast to our results, 68 found that more colorful insect species 313 

are more commonly reported, as well as more patterned and morphologically interesting species. 314 

This may suggest, at least in the case of insects, that contributors are selecting subjects based on 315 

their visual aesthetics, not just their detectability. The discrepancies between our results and that 316 

of 68 suggest that the influence of traits may vary between different taxa, making it important to 317 

explore these relationships for a range of organisms rather than extrapolating the results of birds, 318 

or bugs and beetles, to other groups.  319 

 320 
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While citizen science data are undoubtedly valuable for ecology and conservation 4, 73, 74, there 321 

remain limits to the use of citizen science datasets 13, 75. The ability to sample remote regions, for 322 

example, will likely remain a limitation in citizen science data, and this has been well-recognized 323 

17. Quantifying the limits of citizen science datasets for use in ecology and conservation remains 324 

an important step for the future widespread use of citizen science data in ecology and 325 

conservation. Data-integration — where noisy citizen science data are integrated with 326 

professionally-curated datasets — will likely be increasingly important in the future use of 327 

citizen science data 76, 77. By knowing the biases present in citizen science data, experts can 328 

preferentially generate data that maximize the integration process, for example by collecting data 329 

from remote regions. Further, professional scientists should use limited funding to target species 330 

that are likely to be under-represented in citizen science datasets — i.e., rare, small-bodied, 331 

species.  332 

 333 

Ultimately, citizen science data will continue to perform, at least in part, a substantial role in the 334 

future of ecology and conservation research 44. Understanding, documenting, and quantifying the 335 

biases associated with these data remains an important first step before the widespread use of 336 

these data in answering ecological questions and biodiversity monitoring 5. Our results highlight 337 

that for birds, semi-structured eBird out-samples opportunistic iNaturalist data, but the number of 338 

observations recorded per species are strongly correlated between the two platforms. When 339 

looking at the differences in this relationship, it is clear that biases exist, likely due to the biases 340 

in the opportunistic iNaturalist data. We note that we compared the opportunistic dataset to a 341 

semi-structured dataset, and the semi-structured dataset does not necessarily represent the 342 

“truth”. The biases found here, could also be present when comparing a semi-structured dataset 343 
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to true density or abundance of birds in the landscape. To better understand these differences, 344 

future research in this space should continue to focus on quantifying and documenting biases in 345 

citizen science data, and understanding how these biases change from unstructured to semi-346 

structured to structured citizen science platforms. Nevertheless, our results demonstrate the 347 

importance of using species-specific traits, when modelling citizen science datasets 27, 29, 52, 78, 79, 348 

80. 349 
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FIGURES 564 

 565 

 566 
Figure 1. A conceptual figure depicting the methods used in our analysis. We used the residual 567 

from the relationship between the number of eBird observations (i.e., semi-structured citizen 568 

science observations) and iNaturalist observations (i.e., opportunistic citizen science 569 

observations) to quantify the over- or under-representation of a species in opportunistic citizen 570 

science data. We predicted that species which were over-represented in opportunistic iNaturalist 571 

data would be larger in size, occur more frequently in large flocks, be brighter in color, and be 572 

categorized as Least Concern IUCN status (a proxy for commonness). 573 
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574 
Figure 2. a) The relationship between the total number of eBird checklists and total number of 575 

iNaturalist observations for 49 states, including the District of Columbia. There was strong 576 

evidence that these variables were correlated (R2=0.58, p-value <0.001) suggesting that sampling 577 

between datasets is correlated among states. b) The relationship between the number of 578 

observations for a species from eBird (x-axis) and the number of observations for a species from 579 

iNaturalist (y-axis) for only eBird species which were found on >1% of eBird checklists. 580 
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 581 
Figure 3. The relationship between a) body size of a species, b) flock size, c) color and d) 582 

commonness and the residuals of a linear model fit between iNaturalist and eBird observations 583 

(see Figure 1). These results demonstrate that there is a strong bias of body size in iNaturalist 584 

compared with eBird. Positive values on the y-axis mean over-represented in iNaturalist and 585 

negative values on the y-axis mean under-represented in iNaturalist. Body size and flock size are 586 

represented on a log10 scale. Each line represents a state (N=49). For a-c), the overall 587 

relationship pooling states is represented by the orange fitted line and 95% confidence interval. 588 

 589 
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 590 
Figure 4. Results of a linear mixed effect model where all four variables were considered 591 

simultaneously, and state was a random effect. Strong support was found for body size and flock 592 

size (their 95% confidence interval does not overlap 0), whereas moderate support was found for 593 

IUCN status, and no support was found for color. 594 

 595 
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TABLES 597 

Table 1. A summary of the average number of observations in a model among states and the 598 

standard deviation of the number of observations in a model. The N for the mixed effects models 599 

represents the total number of observations in each model.  600 

State-specific models (N=49) Mixed effects model 

  Mean number of obs SD of obs Number of obs 

Body size 158.02 18.11 7743 

Color 92.69 10.62 4542 

Flock size 177.59 21.44 8702 

IUCN status 155.76 17.78 7629 

All variables     3986 

 601 
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SUPPLEMENTARY FIGURES 

Figure S1. Histograms of the number of observations for a species from both eBird and 

iNaturalist citizen science projects. 
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Figure S2. Among states (each line represents a state; N=49) we found that the percent of eBird 

checklists a species was found on and the percent of all iNaturalist observations a species 

comprised was strongly correlated. 
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Figure S3. Distributions of parameter estimates of our individual models for our four predictor 

variables of interest. The x-axis represents the parameter estimate for a linear model between the 

residuals and the associated predictor variables, and the y-axis represents the number of states 

(i.e., models) which are associated with that histogram bin. 

 

 

 

 

 


