
1 

 

Large-bodied birds are over-represented in unstructured citizen science data 

 

Corey T. Callaghan1,2,3,*, Alistair G. B. Poore2, Max Hofmann1,3, Christopher Roberts2, Henrique 

M. Pereira1,3 

 
1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 

04103 Leipzig, Germany 
2Ecology & Evolution Research Centre; School of Biological, Earth and Environmental 

Sciences; UNSW Sydney; Sydney, NSW 
3Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle 

(Saale), Germany 

 

*Corresponding author: 

email: corey.callaghan@idiv.de 

 

 

 

Note: This is a pre-print and has not undergone full peer-review. 

 

 

 

mailto:corey.callaghan@idiv.de


2 

 

ABSTRACT 1 

Citizen science platforms are quickly accumulating hundreds of millions of biodiversity 2 

observations around the world annually. Quantifying and correcting for the biases in citizen 3 

science datasets remains an important first step before these data are used to address ecological 4 

questions and monitor biodiversity. One source of potential bias among datasets is the difference 5 

between those citizen science programs that have unstructured protocols and those that have 6 

semi-structured or structured protocols for submitting observations. To quantify biases in an 7 

unstructured citizen science platform, we contrasted bird observations from the iNaturalist 8 

platform with that from a semi-structured citizen science platform — eBird — for the continental 9 

United States. We tested whether four traits of species (color, flock size, body size, and 10 

commonness) predicted if a species was under- or over-represented in the unstructured dataset 11 

compared with the semi-structured dataset. We found strong evidence that large-bodied birds 12 

were over-represented in the unstructured citizen science dataset; moderate evidence that 13 

common species were over-represented in the unstructured dataset; moderate evidence that 14 

species in large groups were over-represented; and no evidence that colorful species were over-15 

represented in unstructured citizen science data. Our results suggest that biases exist in 16 

unstructured citizen science data when compared with semi-structured data, likely as a result of 17 

the detectability of a species and the inherent recording process. Importantly, in programs like 18 

iNaturalist the detectability process is two-fold — first, an individual needs to be detected, and 19 

second, it needs to be photographed, which is likely easier for many large-bodied species. Our 20 

results indicate that caution is warranted when using unstructured citizen science data in 21 

ecological modelling, and highlight body size as a fundamental trait that can be used as a 22 

covariate for modelling opportunistic species occurrence records, representing the detectability 23 
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or identifiability in unstructured citizen science datasets. Future research in this space should 24 

continue to focus on quantifying and documenting biases in citizen science data, and expand our 25 

research by including structured citizen science data to understand how biases differ among 26 

unstructured, semi-structured, and structured citizen science platforms. 27 

 28 

Keywords: citizen science; biases; opportunistic data; presence-only data, species occurrence 29 

data, eBird; iNaturalist; species traits; detectability 30 
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INTRODUCTION 31 

Citizen science, or community science, — the involvement of volunteers in scientific endeavors 32 

— is increasingly seen as a cost-effective method for biodiversity monitoring and research. 33 

Accordingly, the quantity and diversity of citizen science projects in the ecological and 34 

environmental sciences is increasing 1. Such projects are quickly accumulating hundreds of 35 

millions of biodiversity observations around the world annually 2,3 expanding the spatial and 36 

temporal scope of our understanding in ecology, conservation, and natural resource management 37 

4,5. Citizen science projects vary widely in their scope, design, and intent 6,7,8. Projects can range 38 

from unstructured (e.g., little training needed to participate and contribute 39 

opportunistic/incidental observations) to semi-structured (e.g., with minimal workflows and 40 

guidelines, but additional data collected with each observation can be included) to structured 41 

(e.g., prescribed sampling in space and time by mostly trained and experienced volunteers). The 42 

level of structure consequently influences the overall data quality of a particular project 9,10.  43 

 44 

Data quality from citizen science projects has been questioned 11, 12, and such concerns can act as 45 

a barrier to the widespread use of citizen science data in ecology and conservation 13. These 46 

concerns arise because citizen science data can be biased temporally, spatially, and/or 47 

taxonomically. Temporally, many citizen science datasets are biased because participants 48 

frequently sample on weekends 14 or disproportionately during specific times of the year such as 49 

spring migration for birds 15, or during specific times of day, such as the morning period when 50 

birds are most active. Spatially, there is often a disproportionate number of sightings from areas 51 

with large human populations 16, areas with more accessibility 17, regions with high biodiversity 52 

that attract observers 18, and regions of the world with higher socioeconomic status 19. 53 
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Taxonomic biases also exist as some taxa receive orders of magnitude more citizen science 54 

observations than other taxa, evidenced by the fact that birds represent a disproportionate amount 55 

of data in the Global Biodiversity Information Facility 2. Even within citizen science projects 56 

focused on specific taxa, there can be strong taxonomic biases towards particularly charismatic 57 

species or those that are readily identified 20, 21, 22, 23.  58 

 59 

Despite potential biases in citizen science datasets, contrasts of data from volunteer participants 60 

to those contributed by more structured datasets have shown that citizen science programs can 61 

provide reliable data 12, 24. For example, one case study found that mark-recapture models of 62 

whale sharks are reliable whether using sightings reported by the public or by experienced 63 

researchers 25, and another case study found that unstructured data performs comparably with 64 

structured data in identifying and monitoring invasive plant species 26. When analyzed 65 

appropriately, citizen science data can further our understanding of many facets of biodiversity, 66 

including estimating species distributions 27, 28, 29, managing habitat for conservation 30, 67 

estimating species richness 31, monitoring pollination services 32, and quantifying population 68 

trends 33, 34. In the above examples, highlighting the potential uses of citizen science data, 69 

statistical solutions to account for known biases and noise in citizen science data are used 3, 35, 36. 70 

 71 

In addition to being an excellent resource for scientists to better understand ecological questions, 72 

citizen science projects are beneficial for society by encouraging increased engagement of the 73 

general public with science 37, 38. Many citizen science projects provide learning opportunities for 74 

their volunteers. For example, participants in citizen science projects have increased their 75 

knowledge about invasive weeds 39, 40, 41, increased their knowledge of bird biology and behavior 76 
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42, and even enhanced their conservation awareness and sense of place 42, 43. The ecological 77 

advances derived from citizen science data, combined with the important role it plays in 78 

community engagement with science, suggests that citizen science data will continue to play an 79 

important role in ecological and conservation research in the future 2, 4, 38, 44. However, what 80 

motivates volunteers to participate in science, and contribute observations, has important 81 

implications for the quality of the data obtained 45, particularly if there are biases towards certain 82 

species, places, or times of sampling. 83 

 84 

To ensure the continued and expanded use of citizen science data in ecology and conservation, it 85 

is important to document and understand the different biases present in citizen science datasets. 86 

Importantly, the degree of bias in a particular dataset will be influenced by the level of structure 87 

of that citizen science project. For example, unstructured projects (e.g., iNaturalist, 88 

www.inaturalist.org) or semi-structured projects (e.g., eBird, www.ebird.org) will generally be 89 

more spatially biased than structured projects that have pre-defined spatial sampling locations 90 

(e.g., Breeding Bird Surveys). Or, a citizen science project that collects incidental presence-only 91 

data, such as iNaturalist, is likely more susceptible to individual observer preferences compared 92 

with a semi-structured or structured project that requires all species encountered to be recorded 93 

by the observers. Charismatic species 21 can be over-represented in citizen science data because 94 

observers are more likely to record species that they, or society, consider more interesting or 95 

relevant 46. Similarly, rare species are more likely to be the subject of conservation monitoring or 96 

more likely to be actively searched for by amateur naturalists 47, 48 and thus can be over-97 

represented in biodiversity datasets. In contrast, in some citizen science projects, abundant 98 

species can form a disproportionate number of records (e.g., 49) because species’ abundance and 99 
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ease of identification can lead to an increase in the number of records by casual observers 50. 100 

Inherently linked with observer preferences are issues of differences in species detectability 50, 101 

and the ease of making the observations. Therefore, species traits (e.g., body size, color, flock 102 

size) may have an additive effect, influencing both the detectability of a species 51, 52, 53, and in 103 

turn, the likelihood of a species being submitted to an unstructured citizen science database. 104 

 105 

Quantifying biases in citizen science datasets can help (1) researchers using these data to better 106 

account for biases when drawing ecological conclusions, (2) the design and implementation of 107 

future citizen science projects, and (3) understand what species or regions may need data 108 

collection from professional scientists by understanding the ‘limits’ of citizen science projects 19. 109 

Here, we quantify biases in bird observation data from an unstructured, citizen science project — 110 

iNaturalist — with that from a semi-structured one — eBird. We restricted our comparison to 111 

birds because (1) birds are among the most popular taxa with the non-scientific public, ensuring 112 

large sample sizes in both citizen science projects, and (2) data on the species traits that may 113 

influence the likelihood of unstructured observations are readily available for birds. We assessed 114 

the over-representation or under-representation of bird species’ observations in the unstructured 115 

citizen science project compared to the semi-structured project (see Figure 1). We then tested the 116 

following predictions: that (1) more colorful species; (2) larger species; (3) species with the 117 

‘least concern’ IUCN status; and (4) more gregarious species (i.e., with larger flock sizes) are 118 

over-represented in the unstructured citizen science dataset (iNaturalist) in contrast to the semi-119 

structured citizen science dataset (eBird). Our analysis highlights the importance of considering 120 

species’ traits when using citizen science data in ecological research. 121 

 122 
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METHODS 123 

We made comparisons between iNaturalist (www.inaturalist.org) — an unstructured citizen 124 

science project — and eBird (www.ebird.org) — a semi-structured citizen science project 15, 54.  125 

 126 

iNaturalist citizen science data. iNaturalist is a multi-taxon citizen science project hosted by the 127 

California Academy of Sciences. It is an unstructured citizen science project where volunteers 128 

contribute opportunistic photos or sound recordings through a smart-phone or web-portal. Photos 129 

are then identified to the lowest possible taxonomic resolution using a community identification 130 

process, and once two users, or more than two-thirds, confirm the species-level identification of 131 

an organism it is considered “research grade”. Observations that are research grade are then 132 

uploaded to the Global Biodiversity Information Facility. We downloaded iNaturalist 133 

observations from the Global Biodiversity Information Facility for the contiguous United States 134 

55 for the period from January 2010 to May 2019, on December 3rd, 2019. For more details on the 135 

iNaturalist methodology, see here: https://www.inaturalist.org/pages/getting+started.  136 

 137 

eBird citizen science data. eBird is one of the most successful citizen science projects in the 138 

world, with > 1 billion bird observations globally. It was launched in 2002 by the Cornell Lab of 139 

Ornithology and focuses on collecting reliable data on the distributions and relative abundance of 140 

birds throughout the world 54. It is a semi-structured project where volunteers submit ‘checklists’ 141 

of birds seen and/or heard on birding outings, following different protocols (e.g., stationary, 142 

incidental, or travelling). An important component of eBird that differentiates it from 143 

unstructured data collection is that users are required to indicate whether the checklist is 144 

‘complete’ – meaning they included all species they were able to identify during that birding 145 

http://www.inaturalist.org/
http://www.ebird.org/
https://www.inaturalist.org/pages/getting+started
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outing. When using complete checklists only in an analysis, a user can infer non-detections in the 146 

dataset for any species not recorded. Observers can submit checklists at any time and place of 147 

their choosing, and for any duration and distance travelled. Most non-incidental checklists 148 

additionally include the duration and distance travelled while birding. Filters are set — based on 149 

spatiotemporal coordinates — which restrict the species and their associated counts that can be 150 

submitted without approval from a regional expert reviewer 56. We used the eBird basic dataset 151 

(version ebd_May-2019) and restricted our analysis to data from the contiguous United States for 152 

the period from January 2010 to May 2019. We also restricted the data used to those of the best 153 

‘quality’ by excluding incomplete checklists, checklists that were incidental or historical, which 154 

travelled >5 km, lasted <5 min, and lasted >240 min, minimizing the leverage of outliers on 155 

analyses 57, 58.  156 

 157 

Filtering and aggregating the citizen science datasets. Although both datasets are global in 158 

scope, we restricted our analysis to the contiguous United States as both of these citizen science 159 

projects initiated in the United States, and thus the data are most numerous from there. For 160 

comparisons, we aggregated data at the state level. This was done to account for differences that 161 

may exist throughout the entirety of the United States including differences in user behavior and 162 

the species pools that differ geographically. We used the eBird Clements taxonomy (version 163 

2018) and all species from iNaturalist were matched with this taxonomy. A total of 1,030 species 164 

was initially collated from the eBird checklists, but many of these only occurred once or a few 165 

times — possibly representing misidentifications that had not yet been fixed by local reviewers 166 

or escaped and exotic birds which are incorporated in the eBird dataset but not considered part of 167 

the local avifauna or of interest to our analysis here. Although, these could represent scarce and 168 
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uncommon species in a state as well, albeit these are rarely sampled by iNaturalist. To account 169 

for these biases, we removed species that were on <1% of eBird checklists for a given state; 170 

trimming the eBird observations to the ‘core’ suite of species that occur in a state (sensu 57). 171 

After trimming the species and harmonizing the taxonomy with iNaturalist, there were 507 172 

species remaining which were considered in our main analyses presented throughout the results. 173 

Although our results here are presented using the 1% cutoff level, we tested the sensitivity of this 174 

cutoff level and found comparable results across 0, 0.5, 1, and 1.5% cutoffs. For each state, the 175 

eBird and iNaturalist data were summarized by calculating the total number of observations in 176 

that state for every species. Using these aggregated data, we conducted preliminary comparisons 177 

of the unstructured and semi-structured datasets by quantifying the relationship between the 178 

number of eBird and iNaturalist observations at the state level, and at the species level. 179 

 180 

Species-specific over- or under-representation in iNaturalist 181 

Our first analytical step was to model the log-log linear relationship between the total number of 182 

observations in iNaturalist and total number of observations in eBird for a species (Figure 1). 183 

This linear model was repeated separately for each state, where the response variable was log-184 

transformed number of iNaturalist observations and the predictor variable was log-transformed 185 

number of eBird observations. Each model fitted was stratified by state, to account for inherent 186 

differences among states that were not of interest in our particular analysis, such as (1) the 187 

number of observers in a state, (2) the different relative abundance of a species throughout the 188 

United States, and (3) any other intrinsic differences that might exist among states that was not 189 

of interest in our analysis. A species with a high (i.e., positive) residual would be over-190 

represented in iNaturalist relative to eBird, whereas a species with a low (i.e., negative) residual 191 
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would be under-represented in iNaturalist relative to eBird (Figure 1). Then we took the residuals 192 

from these models and used these as the response variables in our subsequent analyses of species 193 

characteristics (see below). 194 

 195 

Species-specific trait data 196 

We tested whether four predictor variables (see Figure 1) would explain the over- or under-197 

representation of bird species in the unstructured citizen science data. For each species, we used 198 

a proxy for their commonness/abundance, categorized according to IUCN status, taken from 199 

HBW BirdLife international checklist version 3 (http://datazone.birdlife.org/species/taxonomy). 200 

This variable was treated as an ordinal variable in our models (see below) and encompassed 201 

Least Concern, Vulnerable, and Near Threatened species. The three species recorded as 202 

endangered were removed from this analysis due to a lack of power at this level with so few 203 

observations. For each species we used the continuous predictor variables of (1) body size; (2) 204 

color; and (3) average flock size. Body sizes (adult body mass in grams) were taken from the 205 

amniote life history database compiled by Myhrvold et al.  59 and were log-transformed to meet 206 

normality assumptions. Color was taken from Dale et al. 2015 60 and was extracted as RGB 207 

values for six patches per species (upper breast, lower breast, crown, forehead, nape, throat). To 208 

define a continuum of color where the brightest/most colorful (and likely most detectable species 209 

based on color) had the highest value we combined both the ‘distance from brown’ and the 210 

‘brightness’ of a species for the data from Dale et al. 2015 60. Distance from brown was defined 211 

as the maximum Euclidian distance in the cubic RGB color space from brown (R = 102, B = 68, 212 

G = 0) from any of the six patches on a species, regardless of sex. Brightness was defined as the 213 

maximum relative luminance (i.e., 0.2126R + 0.7152G + 0.0722B) from any of the six patches 214 

http://datazone.birdlife.org/species/taxonomy
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on a species, regardless of sex. These two variables were combined and scaled from 0 to 1 for all 215 

species in Dale et al. 2015 60 and this value was used as our measure of color. Calculations were 216 

done in “Lab” space, an approximately perceptually uniform color space standardized by the 217 

Commission Internationale d'Eclairage. Exploratory analyses showed similar results with HSV 218 

color space. Flock size — an approximation of the gregariousness of a species — was taken from 219 

eBird as the average number of reported individuals among all checklists where a species was 220 

reported, across all data. We acknowledge that the number of a species reported on an eBird 221 

checklist likely encompasses both the gregariousness of a species as well as the density of a 222 

species in an area, as birders can travel through multiple territories. 223 

 224 

Statistical analysis 225 

We used mixed effects models to examine the effects of species traits on the relative bias 226 

between our unstructured and semi-structured citizen science datasets. The response variable was 227 

the residuals from a log-log linear model fit between the eBird observations and the iNaturalist 228 

observations for a given species (described above), the predictor variables were the respective 229 

traits, and the random effect was state. First, we ran a global model where all traits were included 230 

as predictor variables: log10-transformed body size, log10-transformed flock size, color, and 231 

IUCN status treated as an ordinal variable. Second, to confirm the results of this global model, 232 

we ran four separate models – one for each trait as listed above – because there was much 233 

missing data for species’ traits. This approach allowed us to test the relationship of a predictor 234 

given the other predictor variables (i.e., all predictors against the response variable 235 

simultaneously) as well as the independent relationships (i.e., each predictor separately against 236 

the response variable).  237 
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 238 

Data analysis and availability 239 

All analyses were carried out in R software 61 and relied heavily on the tidyverse workflow 62. 240 

Mixed-effects models were fitted using the lme4 package 63 and p-values were extracted using 241 

the lmerTest package 64. Data and code to reproduce these analyses are available in a GitHub 242 

repository (https://github.com/coreytcallaghan/inaturalist_preferences) and will be permanently 243 

archived in a Zenodo repository upon acceptance of this article. 244 

 245 

RESULTS 246 

A total of 255,727,592 eBird and 1,107,224 iNaturalist observations were used in our analysis. 247 

At the state level, the number of eBird checklists and the number of iNaturalist observations 248 

were strongly correlated (Figure 2a; R2 = 0.58, p-value < 0.001). Similarly, at the species level, 249 

the total number of iNaturalist observations and eBird observations for a given species was 250 

strongly correlated (Figure 2b; R2 = 0.9), and for both datasets the number of observations per 251 

species was positively-skewed (Figure S1). We also found that the percent of eBird checklists a 252 

species was found on and the percent of total iNaturalist observations a species comprised was 253 

strongly correlated among states (Figure S2), suggesting that species are sampled to a 254 

proportionally similar extent in unstructured and semi-structured citizen science projects. 255 

 256 

Across the 507 species included in our analyses (Table S1), we showed that larger species were 257 

more likely to be over-represented in the unstructured citizen science dataset, and this was true in 258 

most states, as illustrated by the empirical comparison (Figure 3a). The empirical comparison 259 

also showed over-representation of flock size in the unstructured dataset, although some states 260 

https://github.com/coreytcallaghan/inaturalist_preferences
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showed a negative relationship indicating the possibility that this trait varies in space (Figure 3b). 261 

There was no discernible pattern in the relationship between color and over- or under-262 

representation in iNaturalist data (Figure 3c), and there was some evidence that Least Concern 263 

species were over-represented in the iNaturalist data (Figure 3d).  264 

 265 

In contrast to our empirical comparisons (Figure 3), our mixed effects multiple regression linear 266 

model (N=3986) with state as a random effect (Figure 4) found strong evidence that body size 267 

(parameter estimate=0.049; 95% CI=0.023, 0.073) and flock size (parameter estimate=0.051; 268 

95% CI=0.034, 0.069) were over-represented in iNaturalist compared with eBird; moderate 269 

evidence that common species were over-represented (parameter estimate=0.027; 95% CI=-270 

0.003, 0.058); and no evidence that color influenced the over- or under-representation of a 271 

species in iNaturalist (parameter estimate=-0.008; 95% CI=-0.064, 0.048). The patterns found in 272 

the multiple regression model qualitatively matched that of the individual trait models, where 273 

more observations were included in some instances (see Table S2). 274 

 275 

 DISCUSSION 276 

We compared two popular citizen science platforms throughout the continental United States and 277 

found that there was strong agreement between the relative number of observations of a species 278 

in iNaturalist and eBird, albeit there were about 200 times more observations in eBird than 279 

iNaturalist. This suggests that species are observed at similar rates in both citizen science 280 

projects — i.e., the inherent processes driving observation in both unstructured and semi-281 

structured citizen science projects are similar. Nevertheless, in support of our predictions (Figure 282 

1) we found strong evidence that large-bodied birds are over-represented in the unstructured 283 
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citizen science dataset compared with the semi-structured dataset. We also found moderate 284 

evidence that common species were over-represented in the unstructured data, and weak 285 

evidence that species in large flocks were over-represented. In contrast to our prediction, 286 

however, we found no evidence that brightly-colored species were over-represented in 287 

unstructured citizen science data. 288 

 289 

Our finding that large-bodied birds were over-represented in an unstructured citizen science 290 

dataset is probably because larger-bodied birds are more detectable 53, 65. This confirms previous 291 

research which has shown that smaller-bodied taxa are under-represented in citizen science data 292 

66, 67, 68, but this may not be the case for some taxa such as mammals 69. However, it is difficult to 293 

know whether this is an inherent preference shown by users of the unstructured citizen science 294 

data, or if this comes about as part of the recording process (e.g., species’ detectability; 50). 295 

Species detectability is complex and can be linked to species’ mobility or habitat preferences of 296 

the species themselves; for example, large-bodied wading birds generally occurring in open 297 

wetlands are more easily detected than small-bodied songbirds generally occurring in dense 298 

forest understory.  299 

 300 

Related to detectability, an important distinction between iNaturalist and eBird is how 301 

identifications are made. For an observer to make a record in iNaturalist, usually a photograph is 302 

uploaded (although sound recordings are also accepted). Because a photograph is needed, the 303 

detectability process is two-fold — first, it needs to be detected, and second, it needs to be 304 

photographed, which is likely easier for many large-bodied birds. Longer lenses, often restricted 305 

to serious photographers, may be needed to photograph smaller-bodied birds whereas 306 
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smartphones can usually capture a sufficient image of a larger-bodied bird. In contrast to 307 

iNaturalist, in eBird, a lot of identifications are made acoustically, and identification can 308 

sometimes also use contextual clues such as behavior or habitat of the bird — often difficult to 309 

capture in a photograph. Most traits analyzed here are related to visual encounter/identification, 310 

thus likely explaining the differences found between the unstructured iNaturalist and the semi-311 

structured eBird data. To illustrate this difference, in New York state, the most under-represented 312 

species in iNaturalist (i.e., with the lowest residuals) are Marsh Wren, American Crow, Warbling 313 

Vireo, Least Flycatcher, Willow Flycatcher – all species that are identified largely acoustically. 314 

In contrast, the most over-represented species in iNaturalist (i.e., with the highest residuals) are 315 

House Sparrow, American Robin, Palm Warbler, Northern Mockingbird – all species that are 316 

easy to visually see and thus detect and photograph (Table S1). Therefore, the bias towards 317 

large-bodied birds in the unstructured data is probably a result of detectability and the ability to 318 

capture a photograph 53. Photographs can also be uploaded to eBird, and a further test of this 319 

hypothesis could interrogate the species in eBird which have photographs uploaded. This process 320 

is similar in insects, for example, which are generally small, but larger insects (e.g., butterflies) 321 

are both easier to observe, photograph, and identify — making it likely that the biases we found 322 

in birds generalize to insects as well. Indeed, a study of bugs and beetles found that smaller 323 

species are typically less represented in citizen science data 68. Importantly, because this body 324 

size bias is systematic, it is likely easier to model as we know that this data is not missing at 325 

random (e.g., 70) and thus body size can be included in various modelling processes when using 326 

unstructured citizen science data (e.g., 67).  327 

 328 
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Similar to body size, we found that birds which occur in larger groups (i.e., flocks) are over-329 

represented in the unstructured dataset. This, again, may be inherently linked to the recording 330 

process, rather than a specific bias or preference of the observers themselves. This is because 331 

common birds, that occur in large flocks, are more likely to be seen and thus submitted to the 332 

unstructured citizen science data 65. A larger flock will likely also provide more opportunities to 333 

capture a photograph than when observing a single individual, as has been illustrated in the 334 

detectability of animals from aerial surveys by professionals 71.  335 

 336 

One explanation for the least concern birds being somewhat over-represented in iNaturalist is 337 

user behavior — eBird data are more likely to be derived from avid birdwatchers (e.g., those that 338 

search out uncommon birds and keep serious lists) compared with iNaturalist data which may be 339 

derived from more recreational birdwatchers that focus on ‘backyard’ species. The types of 340 

participants, and their motivations, of iNaturalist and eBird are therefore likely very different as 341 

has generally been shown among citizen science projects (e.g., 72). Participants submitting 342 

observations to eBird are likely better at identifying birds than those submitting to iNaturalist and 343 

can also rely on acoustic and contextual clues to make identifications, as discussed above. 344 

Importantly, our analysis focused on only unstructured versus semi-structured data, but future 345 

work should expand this comparison to include structured datasets (e.g., breeding bird surveys) 346 

to understand if the biases found here also exist when compared with more structured datasets. 347 

For example, there may be a skew in eBird data towards rare birds when compared to 348 

standardized surveys (e.g., breeding bird surveys) resulting from birders preferentially adding 349 

rare and uncommon species. Such a finding would further highlight the divergence in behavior 350 

between the users of iNaturalist and eBird. 351 
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 352 

The lack of signal of the colorfulness of a species in predicting over-representation in iNaturalist 353 

could suggest that iNaturalist users are not limited by ‘attractiveness/aesthetics’ but mostly by 354 

detectability, as discussed above (Figure 4). Alternatively, the lack of a signal here could be a 355 

result of the comparison being between a semi-structured and an unstructured dataset – i.e., both 356 

eBird and iNaturalist are skewed towards more colorful species, and a comparison with a 357 

structured dataset will help test this hypothesis. Quantifying the influence of color on 358 

detectability remains a challenge (e.g., 73). In contrast to our results, others have demonstrated a 359 

clear preference of ‘color’ by the general public in online google searches of birds 74. However, 360 

the role of aesthetics, or color, by the public may be complex as illustrated by one study which 361 

found that only blue and yellow were significant in determining bird ‘beauty’ 75. In other taxa, 362 

more colorful insect species are more commonly reported 68, as well as more patterned and 363 

morphologically interesting species. This may suggest, at least in the case of insects, that 364 

contributors are selecting subjects based on their visual aesthetics, not just their detectability. 365 

The discrepancies between our results and that of 68 suggest that the influence of traits may vary 366 

between different taxa, making it important to explore these relationships for a range of 367 

organisms rather than extrapolating the results of birds, or bugs and beetles, to other groups.  368 

 369 

While citizen science data are undoubtedly valuable for ecology and conservation 4, 76, 77, there 370 

remain limits to the use of citizen science datasets 13, 78. The ability to sample remote regions, for 371 

example, will likely remain a limitation in citizen science data, and this has been well-recognized 372 

17. Quantifying the limits of citizen science datasets for use in ecology and conservation remains 373 

an important step for the future widespread use of citizen science data in ecology and 374 
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conservation. Data-integration — where noisy citizen science data are integrated with 375 

professionally-curated datasets — will likely be increasingly important in the future use of 376 

citizen science data 79, 80. By knowing the biases present in citizen science data, experts can 377 

preferentially generate data that maximize the integration process, for example by collecting data 378 

from remote regions. Further, professional scientists should use limited funding to target species 379 

that are likely to be under-represented in citizen science datasets — i.e., rare, small-bodied, 380 

species.  381 

 382 

Ultimately, citizen science data will continue to perform, at least in part, a substantial role in the 383 

future of ecology and conservation research 44. Understanding, documenting, and quantifying the 384 

biases associated with these data remains an important first step before the widespread use of 385 

these data in answering ecological questions and biodiversity monitoring 5. Our results highlight 386 

that for birds, semi-structured eBird out-samples unstructured iNaturalist data, but the number of 387 

observations recorded per species are strongly correlated between the two platforms. When 388 

looking at the differences in this relationship, it is clear that biases exist, likely due to the biases 389 

in the unstructured iNaturalist data. We note that we compared the unstructured dataset to a 390 

semi-structured dataset, and the semi-structured dataset does not necessarily represent the 391 

“truth”. The biases found here, could also be present when comparing a semi-structured dataset 392 

to true density or abundance of birds in the landscape. To better understand these differences, 393 

future research in this space should continue to focus on quantifying and documenting biases in 394 

citizen science data, and understanding how these biases change from unstructured to semi-395 

structured to structured citizen science platforms. Nevertheless, our results demonstrate the 396 
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importance of using species-specific traits, when modelling citizen science datasets 27, 29, 52, 81, 82, 397 

83,84. 398 
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FIGURES 622 

 623 

 624 
Figure 1. A conceptual figure depicting the methods used in our analysis. We used the residual 625 

from the relationship between the number of eBird observations (i.e., semi-structured citizen 626 

science observations) and iNaturalist observations (i.e., unstructured citizen science 627 

observations) to quantify the over- or under-representation of a species in unstructured citizen 628 

science data. We predicted that species which were over-represented in unstructured iNaturalist 629 

data would be larger in size, occur more frequently in large flocks, be brighter in color, and be 630 

categorized as Least Concern IUCN status (a proxy for commonness). 631 



32 

 

632 
Figure 2. a) The relationship between the total number of eBird checklists and total number of 633 

iNaturalist observations for 49 states, including the District of Columbia. There was strong 634 

evidence that these variables were correlated (R2=0.58, p-value <0.001) suggesting that sampling 635 

between datasets is correlated among states. b) The relationship between the number of 636 

observations for a species from eBird (x-axis) and the number of observations for a species from 637 

iNaturalist (y-axis) for only eBird species which were found on >1% of eBird checklists. 638 
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 639 
Figure 3. The relationship between a) body size of a species, b) flock size, c) color and d) 640 

commonness and the residuals of a linear model fit between iNaturalist and eBird observations 641 

(see Figure 1). These results demonstrate that there is a strong bias of body size in iNaturalist 642 

compared with eBird. Positive values on the y-axis mean over-represented in iNaturalist and 643 

negative values on the y-axis mean under-represented in iNaturalist. Body size and flock size are 644 

represented on a log10 scale. Each line represents a state (N=49). For a-c), the overall 645 

relationship pooling states is represented by the orange fitted line and 95% confidence interval. 646 

 647 
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 648 
Figure 4. Results of a linear mixed effect model where all four variables were considered 649 

simultaneously, and state was a random effect. Strong support was found for body size and flock 650 

size (their 95% confidence interval does not overlap 0), whereas moderate support was found for 651 

IUCN status, and no support was found for color. 652 

 653 

 654 

 655 
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SUPPLEMENTARY FIGURES 

Figure S1. Histograms of the number of observations for a species from both eBird and 

iNaturalist citizen science projects. 
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Figure S2. Among states (each line represents a state; N=49) we found that the percent of eBird 

checklists a species was found on and the percent of all iNaturalist observations a species 

comprised was strongly correlated. 
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Table S1. Uploaded separately. Raw data used for modelling, including the residual difference 

between iNaturalist and eBird, stratified by state. 
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Table S2. Results of single regression models, where each trait was treated separately, and 

consequently had different sample sizes in the model fit. Each model was fit with the residuals 

used as the response variable, the specific trait as the predictor variable, where body size and 

flock size were log10-transformed and IUCN was treated as an ordinal variable, and state was a 

random effect. This analysis was performed to confirm the results of the multiple regression 

mixed effects analysis presented in the main results (Figure 4). 

 

  estimate t p-value Number of obs 

Body size 0.11 31.59 <0.001 7743 

Color -0.01 -0.413 0.68 4542 

Flock size 0.033 6.118 <0.001 8702 

IUCN status 0.078 7.73 <0.001 7629 

 

   

 

 

 

 

 

 

 

 


