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ABSTRACT 1 

Monitoring urban biodiversity is increasingly important, given the increasing anthropogenic 2 

pressures on biodiversity in urban areas. While the cost of broad-scale monitoring by 3 

professionals may be prohibitive, citizen science (also referred to as community science) will 4 

likely play an important role in understanding biodiversity responses to urbanization into the 5 

future. Here, we present a framework that relies on broad-scale citizen science data –– 6 

collected through iNaturalist –– to quantify (1) species-specific responses to urbanization on 7 

a continuous scale, capitalizing on globally-available VIIRS night-time lights data; and (2) 8 

community-level measures of the urbanness of a given biological community that can be 9 

aggregated to any spatial unit relevant for policy-decisions. We demonstrate the potential 10 

utility of this framework in the Boston metropolitan region, using > 1,000 species aggregated 11 

across 87 towns throughout the region. Of the most common species, our species-specific 12 

urbanness measures highlighted the expected difference between native and non-native 13 

species. Further, our biological community-level urbanness measures –– aggregated by towns 14 

–– negatively correlated with enhanced vegetation indices within a town and positively 15 

correlated with the area of impervious surface within a town. We conclude by demonstrating 16 

how towns can be ‘ranked’ promoting a framework where towns can be compared based on 17 

whether they over- or under-perform in the urbanness of their community relative to other 18 

towns. Ultimately, biodiversity conservation in urban environments will best succeed with 19 

robust, repeatable, and interpretable measures of biodiversity responses to urbanization, and 20 

involving the broader public in the derivation and tracking of these responses will likely 21 

result in increased bioliteracy and conservation awareness.  22 

Keywords: citizen science; community science; participatory science; community-based 23 

monitoring; urban ecology; urban tolerance; sampling biases; iNaturalist, species occurrence 24 

data 25 
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INTRODUCTION 26 

We are currently facing the 6th mass extinction event in the Anthropocene, and biodiversity is 27 

increasingly at risk from various anthropogenic pressures (Ceballos and Ehrlich 2002). 28 

Monitoring how biodiversity responds to both threats (e.g., pollution, habitat loss, invasive 29 

species, climate change, and other anthropogenically-derived pressures) as well as 30 

interventions for enhancement (e.g., habitat restoration, green infrastructure) is essential to 31 

understand how best to preserve and manage our collective biodiversity. Biodiversity plays a 32 

key role in regulating ecosystem processes, and as acts as an ecosystem service in itself, 33 

subject to valuation (Mace et al. 2012). This, combined with the increased recognition that 34 

human well-being is positively linked with increased biodiversity highlight the necessity of 35 

monitoring changes in biodiversity (Young and Potschin 2010; Davies et al. 2019). But 36 

current funding for conservation science is failing to keep pace with the increased necessity 37 

to fully understand and monitor biodiversity change in response to varied anthropogenic 38 

pressures (Bakker et al. 2010). So, how then can we monitor biodiversity cost-effectively, 39 

with the aim of understanding how biodiversity responds to anthropogenic changes? 40 

 41 

Broad-scale citizen science or community science projects likely provide necessary data to 42 

monitor biodiversity into the future (Bonney et al. 2009; Chandler et al. 2017; McKinley et 43 

al. 2017). Citizen science –– the collaboration between members of the public, regardless of 44 

citizen status in a particular jurisdiction, with professional scientists –– projects are 45 

increasingly used in natural resource management, ecology, and conservation biology 46 

(McKinley et al. 2017), and the number of such projects is simultaneously increasing (Pocock 47 

et al. 2017). For example, citizen science data have been used to increase the accuracy and 48 

specificity of threat levels of endemic birds in the Western Ghats (Ramesh et al. 2017), 49 

identify the important role temperature plays in sexual coloration in a dragonfly (Moore et al. 50 
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2019), identify new records and range extensions (Rosenberg et al. 2017), and quantify 51 

biodiversity changes in space and time (Cooper et al. 2014). These are only a select few 52 

examples. Despite the increasing prevalence of citizen science data (Pocock et al. 2017), 53 

there is still reluctance to fully adapt such data in wide-spread monitoring of biodiversity 54 

(e.g., Burgess et al. 2017). This is, in part, likely due to the biases generally associated with 55 

citizen science data (Boakes et al. 2010). Such biases include increased sampling on 56 

weekends (Courter et al. 2012), taxonomic preferences for ‘charismatic’ fauna and flora 57 

(Ward 2014), and generally skewed data collections to areas with large human populations 58 

(Kelling et al. 2015). This latter bias is generally problematic for any citizen science project 59 

with semi-structured or unstructured data collection (Kelling et al. 2019). 60 

 61 

While this sampling bias towards urban areas can limit our inferences surrounding 62 

biodiversity in natural, remote regions (Callaghan et al. 2020a), it offers opportunities to 63 

better understand urban ecological and conservation questions (Cooper et al. 2007) and can 64 

complement biases ecologists have in sampling predominantly protected areas (Martin et al. 65 

2012). Indeed, citizen science data have recently been leveraged to understand many aspects 66 

of urban ecology (e.g., Boukili et al. 2017; Li et al. 2019; Leong and Trautwein 2019). And 67 

citizen science data may provide a relatively cost-effective method to monitor biodiversity in 68 

urban areas (Callaghan et al. 2019b), including private lands which are often only accessible 69 

to private landowners (e.g., Li et al. 2019). This is critical, given the fact that urbanization is 70 

an intense anthropogenic pressure, and habitat loss and fragmentation associated with urban 71 

land transformation has generally negative impacts on biodiversity (Cincotta et al. 2000; 72 

McKinney 2006). Further, the importance of fully using citizen science data in urban areas is 73 

made clear because: (1) urban areas are where many people experience nature, and thus 74 

involving urban residents in citizen science projects can have flow-on effects for conservation 75 



5 

 

(Lepczyk et al. 2017), because people are more likely to take conservation action when they 76 

have direct experiences with nature (i.e., the pigeon paradox; Dunn et al. 2006); (2) citizen 77 

science biodiversity research provides education benefits to participants (Jordan et al. 2011) 78 

with the potential to increase bioliteracy, benefitting biodiversity inside and outside of cities 79 

(Ballard et al. 2017); (3) urban areas can act as vessels for conservation (Dearborn and Kark 80 

2010); and (4) urban areas can even protect threatened species (Ives et al. 2016). 81 

 82 

Given the importance of understanding urban biodiversity, and the potential for citizen 83 

science data to enhance this understanding and increase bioliteracy, the use of citizen science 84 

data needs to be validated to better understand how these data can be used in future 85 

monitoring of urban biodiversity. By increasing the bioliteracy of participants in citizen 86 

science projects a positive feedback cycle can be initiated, leading to an increase in the 87 

quality of the data (i.e., people become better at identifying and finding specific species) as 88 

the project continues. Many people have quantified the relationship between citizen science 89 

data and ‘professional’ data (Kosmala et al. 2016; Aceves-Bueno et al. 2017). But most 90 

comparisons have been from semi-structured citizen science datasets (e.g., eBird). 91 

Opportunistic citizen science projects (e.g., iNaturalist) likely have their own sets of biases 92 

(Brown and Williams 2018), but are showing promise in helping to deduce patterns of 93 

biodiversity across urban environments (Leong and Trautwein 2019; Li et al. 2019). The 94 

development of repeatable and robust methods that harness the power of citizen science data 95 

may not only help monitor biodiversity responses to urbanization but potentially help bridge 96 

the translation gap from science to urban planning and conservation action (Norton et al 97 

2017). 98 

 99 
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iNaturalist is one of the most popular global biodiversity recording platforms with over 33 100 

million observations of 250,000 species made by more than 800,000 observers. Moreover, 101 

data from iNaturalist is the second most downloaded source of data from the Global 102 

Biodiversity Information Facility. Here, we use opportunistic (i.e., generally collected in an 103 

unstructured format) iNaturalist data from the metropolitan region of Boston, USA to detect 104 

and understand patterns in biodiversity across an urban to rural gradient. Urban environments 105 

differ from natural landscapes in many ways, and efforts to understand these differences (e.g., 106 

land use, fragmentation, disturbance) often rely on land use analyses (e.g., Pearse et al. 2018; 107 

Li et al. 2019; Leong and Trautwein 2019). A global dataset of night-time lights has allowed 108 

for an approach to analyze the response of organisms to urbanization on a continuous scale, 109 

and has thus far been used to understand patterns in urban bird biodiversity at local and 110 

regional scales using eBird citizen science data (Callaghan et al. 2019a, b, 2020b). Here we 111 

look to test whether opportunistically-collected iNaturalist data can similarly help to detect 112 

patterns in biodiversity across urbanization gradients, scaling from species-specific responses 113 

to town-specific measures of the urbanness of the biological community within that town. 114 

Our approach highlights how directed efforts of sampling such as the City Nature Challenge 115 

hold potential for building both a robust dataset to understand patterns of biodiversity 116 

responses to urbanization and increase public awareness of surrounding urban biodiversity.  117 

 118 

First, we assess the sampling biases of participants contributing opportunistic citizen science 119 

iNaturalist observations, as it pertains to a continuous gradient of urbanization –defined using 120 

night-time lights – available to sample across. We hypothesized that the degree of 121 

urbanization in a town would be positively correlated with the degree of urbanization of the 122 

observations in that town (i.e., more urban towns would have more urban observations). We 123 

then use these citizen science data to assign species-specific measures of urban tolerance, 124 
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defined as the median night-time lights value of all observations for a species. From this, we 125 

produce town-specific measures of the urbanness of the collective species found therein, 126 

defined as the median of all species-specific measures of urban tolerance. We hypothesized 127 

that the relationship between the underlying degree of urbanization in a town and the 128 

cumulative town-specific urban tolerance of the species found therein would be positively 129 

correlated. We then demonstrate how these town-specific measures of urbanness can be used 130 

in an ecological context by showing the relationship between the town-specific urbanness and 131 

its ecological attributes (i.e., tree cover and enhanced vegetation index). And lastly, we 132 

provide a forward-looking approach to compare individual planning units (e.g., towns) 133 

among one another in regards to the total urbanness of their biodiversity. Ultimately, we 134 

highlight a framework that is robust and uses globally-available datasets (i.e., VIIRS night-135 

time lights and iNaturalist citizen science data) to better understand how to fully realize the 136 

potential of citizen science data to understand urban biodiversity. Because of the ubiquity of 137 

iNaturalist data in cities and availability of a global night-time lights data set, we expect this 138 

approach can be successfully applied to increase awareness of and manage urban 139 

environments worldwide.  140 

 141 

METHODS 142 

Study area 143 

We used the Boston metropolitan region (Figure S1) as a case study to demonstrate the 144 

applicability of using citizen science data to monitor the urbanization of species and 145 

communities. This region was chosen because it has been documenting urban biodiversity 146 

since 2017 as part of the City Nature Challenge (hereafter CNC; 147 

https://citynaturechallenge.org/) –– an annual challenge begun in 2016 by the California 148 

Academy of Sciences and the Natural History Museum of Los Angeles. The CNC focuses on 149 

https://citynaturechallenge.org/
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encouraging city residents to document biodiversity during a 4-day bioblitz where cities are 150 

challenged to celebrate urban biodiversity on a global scale. The Boston CNC area includes a 151 

both urban and rural habitats and starts from the city of Boston extending to the outer limits, 152 

bounded by highway 495 –– a large ring road that circumnavigates the City of Boston 153 

approximately 50 kms from Boston City centre. The Boston CNC area is made up of varied 154 

habitats, including varying degrees of residential, commercial, and industrial land use, upland 155 

forests, wetlands, lakes and ponds, and coastlines (Figure S1). It offers a wide range of taxa 156 

that have been observed and submitted to iNaturalist with over 8,000 species currently 157 

observed at least once. Our analyses are restricted to the Boston CNC area and data were split 158 

into the different municipal towns within this region to aggregate observations, using the 159 

town shapefile downloaded here: https://docs.digital.mass.gov/dataset/massgis-data-160 

community-boundaries-towns-survey-points. The resulting area includes 147 towns (or parts 161 

of towns for towns which were intersected by the Boston CNC area) that met our minimum 162 

surface area (5 km2) requirements for analyses. 163 

 164 

iNaturalist citizen science data 165 

iNaturalist (www.inaturalist.org) is a multi-taxa opportunistic citizen science project hosted 166 

by the California Academy of Sciences and National Geographic Society. Participants 167 

contribute observations (e.g., photos, recordings) of any living organism through a smart-168 

phone or web-portal with location and date assigned. Records are then tagged and identified 169 

to the lowest possible taxonomic resolution by other iNaturalist community members. 170 

iNaturalist provides a coordinate uncertainty for each observation location – which can be 171 

adjusted to obscure sensitive data. To allow for fine-grain spatial analysis, we limited our 172 

dataset to a coordinate uncertainty less than 30 meters. (For more details on the iNaturalist 173 

methodology, see here: https://www.inaturalist.org/pages/getting+started.) Those 174 

https://docs.digital.mass.gov/dataset/massgis-data-community-boundaries-towns-survey-points
https://docs.digital.mass.gov/dataset/massgis-data-community-boundaries-towns-survey-points
http://www.inaturalist.org/
https://www.inaturalist.org/pages/getting+started
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observations with sufficient community agreement on taxon identity meet the “research 175 

grade” criterion, and are regularly uploaded to the Global Biodiversity Information Facility 176 

(GBIF). We downloaded iNaturalist observations from the Global Biodiversity Information 177 

Facility for the period between 07/22/1922 (the first observation in our dataset) and 178 

08/28/2019 for the contiguous United States (GBIF Download 2019). Accordingly, the 179 

taxonomy in our analysis follows that of GBIF (see: https://www.gbif.org/dataset/d7dddbf4-180 

2cf0-4f39-9b2a-bb099caae36c).  181 

 182 

iNaturalist samples across all taxa, but we restricted our analysis to species observed within 183 

the Boston CNC area at least once. Fish were removed taxonomically (Myxini, 184 

Petromyzontida, Hyperoartia, Chondrichthyes, Actinopterygii, or Sarcopterygii), and marine 185 

species were excluded through cross-referencing with the World Registry of Marine Species 186 

(WoRMS Editorial Board 2020), as there was no a priori expectation that they would be 187 

impacted by terrestrial urbanization measures (see below). Additionally, we excluded birds 188 

(Aves) as others have previously investigated the relationship between birds and urbanization 189 

(e.g., Callaghan et al. 2019a), because birds are highly seasonal in nature compared with 190 

other taxa, and other sources of data (e.g., eBird) would better represent bird occurrence than 191 

iNaturalist data. A full list of taxa investigated in our analyses is available in Table S1. We 192 

classified species as either native or non-native as defined by the Go Botany New England 193 

website (https://gobotany.nativeplanttrust.org/) for plants and iNaturalist for other taxa. 194 

 195 

Species-specific urban scores 196 

Our goal was to assign a species-specific measure of urbannesss (i.e., urban score) for each 197 

species, creating a continuum of urban tolerance across species from the most urban tolerant 198 

to the least urban tolerant species (sensu Callaghan et al. 2020b). These species-specific 199 

https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c
https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c
https://gobotany.nativeplanttrust.org/
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urbanness scores were first derived from a regional dataset incorporating all observations of 200 

that species throughout a larger region than the Boston CNC area. This region was 201 

constructed using the Commission for Environmental Cooperation (CEC)’s North American 202 

ecoregion designations (https://www.epa.gov/eco-research/ecoregions), and outlining the 203 

ecoregions that make up the Boston CNC area with a bounding box (Figure S2).  204 

 205 

Using all observations for each species within that ecoregion, we calculated the underlying 206 

VIIRS night-time lights value (Elvidge et al. 2017) for every observation using Google Earth 207 

Engine (Gorelick et al. 2017). VIIRS night-lights values are available at the 500 m2 scale. 208 

VIIRS night-time lights is a continuous proxy for urbanization, and uses a number of 209 

algorithms to exclude background noise including solar and lunar contamination, data 210 

degraded by cloud cover, and features unrelated to electric lighting such as wildfires (Elvidge 211 

et al. 2017). These night-time lights data have previously been used to track human 212 

population at many different scales (Zhang and Seto 2013). We acknowledge that although 213 

we use VIIRS night-time lights as a proxy for urbanization, species are differentially 214 

impacted by ambient light pollution (e.g., Longcore and Rich 2016), and it may be difficult to 215 

distinguish between whether species are responding to urbanization or night-time lights itself 216 

(i.e., ambient light pollution). Species respond differently to the intensity, direction, and 217 

duration of ambient light (Longcore and Rich 2016); most of which is not captured in the 218 

measurement of VIIRS night-time lights. And because intensity, direction, and duration of 219 

the night-time lights varies temporally and seasonally, by taking the mean VIIRS of many 220 

nights (and across years), we likely are producing a measure that better corresponds with 221 

urbanization at a 500 m2 scale than it does the possible influences of ambient light pollution 222 

on specific species.  223 

 224 

https://www.epa.gov/eco-research/ecoregions
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After each observation was assigned the VIIRS night-time lights value, a species was 225 

accordingly left with a continuous distribution (e.g., Figure 1). We defined a species-specific 226 

measure of urbanness as the median VIIRS value across a species’ entire regional distribution 227 

of observations. Theoretically, a species with a negatively-skewed distribution would be a 228 

species which prefers and is well-adapted to urban areas, whereas a species with a positively-229 

skewed distribution is a species which prefers non-urbanized areas, and there are many 230 

generalist distributions possible accounting for the continuum of species-specific responses to 231 

urbanization (see Callaghan et al. 2020b for details).  232 

 233 

After the taxonomic filtering of the data, we included only species which had at least 100 234 

regional observations to help ensure sufficient observations for a species to accurately 235 

represent its urbanness (Callaghan et al. 2019a, 2020b). We were then left with 1,004 species 236 

from the Boston CNC area with regional urban scores (Table S1). In order to test whether the 237 

regional urbanness scores were representative of species’ scores within the Boston CNC area, 238 

we calculated a “local Boston urbanness” measure for the 97 species with >50 observations 239 

only using the VIIRS night-time lights values for each species within the Boston CNC area. 240 

There was a strong agreement between the regional and Boston specific approaches (Figure 241 

S3; R2=0.64, p-value < 0.001), demonstrating that regional scores are a good representation 242 

of how biodiversity responds at a local scale (e.g., Callaghan et al. 2020b). By using the 243 

regional scores, we were accordingly able to incorporate more species into our downstream 244 

analyses. 245 

 246 

Community-level urban scores 247 

Using these regional species-specific urban scores, we then developed town-specific 248 

measures of how urban the community of species observed was for any given town –– 249 
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subsequently referred to as the “Town Biodiversity Urbanness Index” This was done by 250 

taking the list of distinct species observed in a given town (that we had sufficient species-251 

specific urbanness measures for) and taking the median of this distribution of urban tolerance 252 

scores (e.g., Callaghan et al. 2019b). But because many towns within the Boston CNC area 253 

have been relatively poorly sampled (Figure S4; Figure S5), we only investigated towns with 254 

a minimum of 30 observations (chosen based on exploratory analysis in the variance based on 255 

a priori local knowledge of species in the region), leaving us with a total of 87 towns used to 256 

make comparisons among. Across these 87 towns used in the analysis, the median species 257 

richness was 69 and the minimum species richness was 18. 258 

 259 

Assessing sampling biases related to urbanization 260 

In order to interpret our Town Biodiversity Urbanness Indices we investigated biases 261 

associated with these scores. To do so, we calculated two additional distributions specific to a 262 

given town: (1) the distribution of VIIRS night-time lights value for all observations 263 

(regardless of species observed) in a town (Figure S6) –– which we call the “Opportunistic 264 

Observation Index”; and (2) the distribution of VIIRS across all underlying pixels in a town 265 

as an index of town urbanization –– which we call the “Town Underlying Urbanness Index” 266 

(Figure S7). The first two were calculated by using the VIIRS values already assigned to all 267 

observations as described above, whereas the latter was done by extracting the pixels from 268 

within each town from the VIIRS night-time lights in Google Earth Engine. The gradient of 269 

Town Underlying Urbanness Index across the 87 towns used in downstream analyses ranged 270 

(examples in S7) from highly rural (26 towns had Town Underlying Urbanness Index< 2; 271 

e.g., Concord Town Underlying Urbanness Index=1.4), to urbanized (25 towns with a Town 272 

Underlying Urbanness Index>10), to highly urbanized (7 towns with a Town Underlying 273 

Urbanness Index > 20; e.g., Boston Town Underlying Urbanness Index=44). These three 274 



13 

 

distributions (Town Biodiversity Urbanness Index, Town Underlying Urbanness Index, 275 

Opportunistic Observation Index ; e.g., Figure S8) for each town allowed us to draw 276 

comparisons between a town’s measure of urbanness (i.e., Town Underlying Urbanness 277 

Index), where iNaturalist observations occurred (i.e., Opportunistic Observation Index ), and 278 

the degree of urbanness of the species assemblage observed in that town (i.e.,  Town 279 

Biodiversity Urbanness Index). 280 

 281 

First, we tested whether where people sample changes depending on the level of urbanization 282 

within a town by comparing the relationship between the observations in a town with a 283 

town’s underlying urbanness index hypothesizing that as a town became more urban (i.e., 284 

higher Town Underlying Urbanness Index) the observations within that town would also 285 

become more urban (i.e., higher Opportunistic Observation Index . Second, we compared the 286 

median urbanness of all species found in a town ( Town Biodiversity Urbanness Index) with 287 

the town’s underlying urbanness (Town Underlying Urbanness Index), hypothesizing that as 288 

a town became more urban (i.e., higher Town Underlying Urbanness Index, the mix of 289 

species found there would comprise a greater fraction of urban tolerant species (i.e., higher  290 

Town Biodiversity Urbanness Index). These relationships were quantified using linear 291 

models for the 87 towns with > 30 observations where the respective distributions were 292 

collapsed as the median of that distribution (Figure S8), and both the predictor variables (i.e., 293 

Opportunistic Observation Index and  Town Biodiversity Urbanness Index, respectively) and 294 

the response variables (Town Underlying Urbanness Index in both instances) were log-295 

transformed.  296 

 297 

Ecological attributes influencing the species assemblage of a town 298 



14 

 

After assessing the relationship between the species median and the underlying urbanization 299 

of a town, we demonstrated how  Town Biodiversity Urbanness Index can be used to test 300 

ecological predictions using macro-ecological characteristics for each town. The 301 

characteristics we used were the percent of tree cover, mean Enhanced Vegetation Index 302 

(EVI), and mean impervious surface within a town (sensu Callaghan et al. 2018). We fitted a 303 

linear regression model to test the relationship between  Town Biodiversity Urbanness Index 304 

values for the towns and the macro-ecological characteristics associated with each town. The 305 

response variable was log-transformed  Town Biodiversity Urbanness Index and the predictor 306 

variables were tree cover, mean EVI of a town, and mean impervious surface of a town. We 307 

also included Town Underlying Urbanness Index (i.e., the median of the town’s underlying 308 

pixels of VIIRS night-time lights) in the model as a covariate, and we used weights where 309 

weights were the number of observations originating from a town, providing more confidence 310 

to that town’s relationship in the model-fitting procedure. Variables showed minimal multi-311 

collinearity prior to modelling. 312 

 313 

RESULTS 314 

We used a total of 643,000 iNaturalist observations from the regional scale (Figure S2), and 315 

20,292 observations from the Boston CNC area contributed by 2,085 observers (mean 316 

observations per observer: 9.7; range:1-788; sd: 40.7). A total of 2,023 species from the 317 

regional scale met our criteria, with 1,004 of these corresponding with at least 100 318 

observations, and thus being used in our local-level analyses (Table S1). The 1,019 species 319 

not included in our analyses accounted for < 10 % of all research grade observations 320 

submitted within the Boston CNC area. Taxonomically, the 1,004 species used in analyses 321 

corresponded with a total of 9 phyla, 27 classes, 95 orders, and 280 families. Tracheophyta 322 

comprised 63% of observations, followed by Arthropoda (21%), Chordata (13%), 323 
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Basidiomycota (2%), while Ascomycota, Mollusca, Mycetozoa, Annelida, and Bryophyta all 324 

comprised <1% of all observations. 325 

 326 

The species-specific urban scores followed a log-normal distribution, with the mean 327 

urbanness being 5.07 ± 7.85 SD (Figure 2a). The three most urban species from the regional 328 

urban scores were Japanese creeper Parthenocissus tricuspidata (55.51), tree-of-heaven 329 

Ailanthus altissima (50.15), northern seaside goldenrod Solidago sempervirens (48.37). 330 

Conversely, the three least urban species in the regional urban scores were Canadian 331 

bunchberry Cornus canadensis (0.21), threeleaf goldthread Coptis trifolia (0.21), and frosted 332 

whiteface Leucorrhinia frigida (0.22). Native species dominated the species commonly 333 

observed within the Boston metropolitan region: of the 223 species with at least 20 334 

observations, 142 were native and 81 were non-native species. While some of the non-native 335 

species found in this study in the more urbanized towns are commonly thought of as 336 

synathropes (American cockroach Periplaneta americana, common dandelion Taraxacum 337 

officinale), those species with the highest urbanness scores were lawn/yard plants (e.g., 338 

Broadleaf plantain Plantago major, common woodwort Artemisia vulgaris) or common to 339 

disturbed sites such as road sites or park entrances (e.g., garlic mustard Allaria petiolata, 340 

Japanese knotweed Reynoutria japonica, tree of heaven Ailanthus altissima). Several native 341 

species also had high urban scores including some common synanthropes (e.g., grey squirrel 342 

Sciurus carolinensis), lawn/yard taxa (e.g., fleabane Erigeron Canadensis) and species which 343 

exploit disturbances (e.g., American pokeweed Phytolacca americana). Native species also 344 

tended to be less urban tolerant than non-native species (i.e., native species’ observations 345 

corresponded with lower VIIRS night-time lights values than non-native species). The mean 346 

urbanness of natives was 3.67 ± 5.36 compared with 10.9 ± 10.0 for non-native species 347 

(t=8.923, p-value < 0.001; Figure 2b). Whereas 78% of the 99 species with an urban score 348 
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less than two were native, only 22% of the 45 species with an urban score greater than ten 349 

were native.  350 

 351 

We found that the Opportunistic Observation Index (i.e., the median night-time lights value 352 

of all observations in a town) correlated very closely with Town Underlying Urbanness Index 353 

(i.e., the median of the VIIRS night-time lights value of underlying pixels for that town) 354 

(Figure 3). While there may be variation from town to town, as a whole there was not strong 355 

bias towards or against more natural (or disturbed) areas in towns in the Boston region 356 

(Figure 3; Figure S9; R2=0.73, p-value <0.001). This suggests that the Boston iNaturalist 357 

community does not show a strong bias in where they sample with respect to the degree of 358 

urbanness found in a town: users are not preferentially choosing lighter or darker areas 359 

among towns to make their observations. This relationship appeared to be invariant to the 360 

number of observations in a town (Figure S10) –– suggesting that the patterns observed 361 

would not change by increasing sample size. Furthermore, the  Town Biodiversity Urbanness 362 

Index did not appear to move towards the town’s underlying median urbanness score as the 363 

number of observations in a town increases, suggesting that simply increasing opportunistic 364 

sampling would not alter the  Town Biodiversity Urbanness Index for a town (Figure S11). 365 

Towns that are more urbanized (i.e., higher Town Underlying Urbanness Index also were 366 

shown to have species with higher urbanness scores (i.e., with higher Town Biodiversity 367 

Urbanness Index) but there was significant variability in this relationship (Figure 3). For the 368 

more rural towns –– with a Town Underlying Urbanness Index of 3 or less (e.g. Concord see 369 

Figure S8) –– the median values for those species found had a similar degree of urbanness 370 

(i.e.,  Town Biodiversity Urbanness Index) to the town itself. However, as the towns became 371 

more urban –– with a Town Underlying Urbanness Index above 3 (e.g., Waltham) ––  Town 372 

Biodiversity Urbanness Index did not track at the same pace as the increasing Town 373 
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Underlying Urbanness Index; as fewer species matched the increasing urbanness values of 374 

the towns (Figure S8).  375 

 376 

 Town Biodiversity Urbanness Indexwas negatively related to the mean EVI in a town and 377 

was positively associated with the mean impervious surface in a town (Figure 4; Table 1), 378 

and unsurprisingly was significantly related to the Town Underlying Urbanness Indexof a 379 

town (Figure 3; Table 1). Towns with more vegetation and/or trees also had an observed 380 

species assemblage that was less urban (i.e., lower  Town Biodiversity Urbanness Index) and 381 

conversely towns with greater area of impervious surface had an observed species 382 

assemblage that was more urban (i.e., higher  Town Biodiversity Urbanness Index; Figure 4). 383 

 384 

We took the residuals from the relationship between Town Underlying Urbanness Indexand 385 

Town Biodiversity Urbanness Index (e.g., Figure 3), allowing each town to be ranked by the 386 

degree to which they have relatively more or fewer urban tolerant species found there (Figure 387 

5). Towns that underperform (i.e., have relatively fewer urban species than predicted) include 388 

several coastal towns north of Boston (e.g., Newburyport, Duxbury), but also include towns 389 

that are considered more urbanized (e.g., Arlington, Salem and even Somerville –– 390 

considered the most densely populated city in the United States). Conversely, towns that 391 

overperform (i.e., have more than the predicted assemblage of urbanized species recorded) 392 

included surbuban towns such as Winchester and more rural towns such as Littleton. No 393 

obvious geographic patterns emerged by mapping these towns (Figure 5), suggesting that 394 

local-level influences (i.e., habitat characteristics) likely lead to over- or under-performance 395 

of a given town. 396 

 397 

DISCUSSION 398 



18 

 

We used data from iNaturalist –– a successful citizen science project –– to highlight the 399 

utility and practicality of opportunistic citizen science data to understand species and 400 

biological community-level responses to urbanization. First, the approach of assigning 401 

species-specific measures of urbanness based on underlying distributional response to VIIRS 402 

night-time lights can clearly highlight and differentiate species-specific responses to 403 

urbanization on a continuous scale (Callaghan et al. 2020b). This was clearly highlighted 404 

when considering the most abundant 223 species from the Boston CNC region, where we 405 

expectedly found the mean urbanness scores of non-native species to be more than twice that 406 

of natives. Such continuous information at the species-level is informative for understanding 407 

species’ traits that predict presence in urban environments (Duncan et al. 2011; Lepczyk et al. 408 

2017; Pearse et al. 2018; Borowy and Swan 2020), and understanding which species may 409 

deserve critical conservation attention in urban areas (Duncan et al. 2011; Lepczyk et al. 410 

2017). Second, we were able to scale our species-specific approach to community-level 411 

metrics, quantifying the urbanness of a given community within a geopolitical region (i.e., 412 

towns). While traditional community-level measures of biodiversity (e.g., species richness, 413 

Shannon diversity) are certainly informative, a measure of the biological community’s 414 

response to urbanization (i.e., the Town Biodiversity Urbanness Index) –– derived from 415 

species-specific urbanness scores –– can properly capture how a biological community is 416 

responding to urbanization. For example, two communities could have “equal” species 417 

richness values, but one of these communities could be dominated by synathropic species 418 

adapted to urbanization, whereas the other community could comprise less urbanized species 419 

which should be encouraged to persist in urban areas (Callaghan et al. 2019b). Of course, 420 

there will always be species that have a predisposition to persist in urban environments, 421 

whereas not all species can be expected to become ‘urban species’ (i.e., Moose are not 422 

expected to persist in downtown Boston). Importantly, our framework can help to understand 423 
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the complex set of barriers and threats in the urban matrix by providing organismal-level 424 

responses to urbanization (e.g., native vs. non-native species), combined with local 425 

interpretation of which species could be targeted for persistence based on detailed natural 426 

history knowledge (see Figure 6). Moreover, as urban environments are managed or change – 427 

we can assess the species response to these interventions to better understand the impact of 428 

our activities on local biodiversity. 429 

 430 

Here, we briefly highlighted the utility of our framework by correlating Town Biodiversity 431 

Urbanness Index with macro-ecological characteristics. We found that the mean EVI and 432 

percent tree cover (to a lesser extent) was, unsurprisingly, negatively correlated with Town 433 

Biodiversity Urbanness Index and the impervious surface area was positively correlated with 434 

Town Biodiversity Urbanness Index (Figure 4). Clearly, supporting green infrastructure in 435 

urban areas will have significant effects on the species that can persist there. We also showed 436 

how towns may “perform” with respect to the degree of urbanness of the species present 437 

(Figure 5) –– with some towns underperforming (e.g., Marshfield; see interactive figure here) 438 

by having more urbanized species recorded than would have been predicted based on the 439 

town’s underlying degree of urbanness. Town managers and community members might be 440 

able to use the relative “naturalness” of their biological community –– as recorded by the 441 

public –– to boost civic pride and take action to protect and build awareness of its 442 

biodiversity value. Conversely, towns which overperform by having fewer urban species 443 

found there than would be predicted by the underlying degree of urbanness for that town 444 

(e.g., Winchester) could be motivated to protect or enhance the remaining green areas and 445 

reduce threats to limit more natural species. 446 

 447 

https://coreytcallaghan.github.io/BIOC_108753/town_urbanness.html
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Several approaches have emerged to address the need to understand how biodiversity 448 

responds to urbanization. These approaches include comparisons across urban to rural 449 

gradients (e.g., McKinney 2006), comparisons across a series of networked patches such as 450 

lawns or parks (Zipperer 2002; Rega-Brdolsky et al. 2015; Locke et al. 2018) or hierarchical 451 

landscape units (Breuste et al. 2008; Li et al. 2019), and taxonomic comparisons across cities 452 

(e.g., Duncan et al. 2011; Pearse et al. 2018; Borowy and Swan 2020). Like much of New 453 

England, the urban region surrounding Boston is losing open greenspace –– with active 454 

scenario-planning about how best to protect greenspace (Kittredge et al. 2015; Foster et al 455 

2017; Ricci et al. 2020). Most of this effort in New England revolves around promoting forest 456 

or greenspace conservation using traditional metrics such as extent of protected land, habitat 457 

connectivity, and presence of rare and endangered species, among others (Kittredge et al. 458 

2015; Foster et al. 2017; Ricci et al. 2020), without much integration of a fuller description of 459 

the response of biodiversity to those greenspaces. The development of a biodiversity 460 

urbanness index such as that proposed here can complement the existing habitat and rarity 461 

indices and help to inform conservation planning frameworks and bridge the acknowledged 462 

gap between the information derived by scientists and practitioners who plan and manage the 463 

environment (e.g., Norton et al 2016).  464 

 465 

Developing pro-conservation attitudes by many small land-owners is critical in building the 466 

needed social capital to avoid loss of important natural habitats (Kittredge et al. 2015). The 467 

choice of monitoring tools and who is engaged in the process will not only influence the data 468 

collected, but also the uptake of the outcomes by policy makers as well as community 469 

members who will ultimately decide the fate of those lands. Making sure the research is 470 

accessible and relevant is essential to its uptake by planners and the broader community 471 

(Theobald et al. 2000; Norton et al. 2016). Theobald et al. (2000) articulates this well: 472 
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“Probably the most important of these is the idea that ecological data and analysis must be 473 

understood by those who will be affected by the decisions. In other words, citizens 474 

participating in planning processes ‘will not support what they do not understand and cannot 475 

understand that in which they are not involved’ (FEMAT 1993, II-80).”  By increasing the 476 

bioliteracy of participants in iNaturalist – and other citizen science projects – it may be 477 

possible for changes in actions and attitudes towards urban biodiversity, and conservation 478 

more generally. As Heberlein (2012) highlights, norms will be necessary to influence 479 

behavioral change to overcome environmental problems, and by encouraging citizen science 480 

data collection and collaboration, iNaturalist may be able to enact positive behavioral change 481 

for conservation; although understanding the relation between actions and attitude in citizen 482 

science will require greater social science research (Sandbrook et al. 2013). 483 

 484 

A collaborative approach between the participants of a citizen science project, project 485 

managers, and conservation and/or restoration projects will help to maximize the value of 486 

increasingly popular citizen science data (Figure 6). Local project managers (e.g., City Nature 487 

Challenge) can use our framework to encourage ‘best practice’ sampling of urban 488 

biodiversity. For instance, participants could be encouraged to reflect on where they are 489 

sampling (more or less urban), what they are sampling (i.e. the “urbanness” of the species 490 

they are observing), or by encouraging ‘competition’ among event organizers or towns to 491 

identify which places have the least urban community of plants and animals (e.g., Figure 5 492 

and Figure 6). We demonstrated that there is currently a strong relationship between the 493 

underlying urbanization value of a town and the observations submitted from that town 494 

(Figure 3). But there is clearly variation in this, and this can likely be spurred on by 495 

individual efforts, where participants are encouraged to sample “where the wild things are”. 496 

For example, participants may be encouraged to sample deeper into parks, fields, or local 497 
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forests rather than simply at the parking lot or alongside roads. Our framework is also easily 498 

adaptable to other cities throughout the world, given the prevalence of iNaturalist data and 499 

the growing contributions to the project. We used local towns as grouping factors throughout 500 

the Boston CNC area, but these could be grouped by grids, different geo-political boundaries, 501 

or through spatial clustering approaches to better understand biological community-level 502 

urbanness responses within cities. We have used towns as a way that both the participants and 503 

municipal government agencies perceive their activities. Towns, municipalities, and other 504 

policy bodies could use these species-specific scores to help identify species which can be 505 

targeted for restoration and conservation projects (i.e., by targeting species with low urban 506 

scores; Callaghan et al. 2019b). Lastly, and importantly, these same policy bodies can then 507 

use the citizen science data to track how their restoration targets are performing in a positive 508 

feedback loop (Figure 6).  509 

 510 

While we have demonstrated the power of broad-scale citizen science data, these data are not 511 

without their flaws and biases. We used strict filters to remove species and observations from 512 

potential inclusion (e.g., only included species with <30 m accuracy in their observation, 513 

removed marine species) in order to ensure we minimized the possibility of mismatch 514 

between a species’ location and its measure of VIIRS night-time lights. This leaves many 515 

missing data from our current framework and future work should further investigate the 516 

complex trade-offs in quantity versus quality of data. These missing data include species that 517 

were excluded based on our criteria but more importantly many undetected species that have 518 

yet to be submitted to iNaturalist or that are hard to verify using photo identification (e.g., 519 

grasses, sedges, flies, ants). In our approach, we assumed that these data are missing at 520 

random with respect to the urbanness of a given species (Nakagawa and Freckleton 2008). 521 

That is, it is equally likely for a nonurban species and an urban species to be missing. We 522 
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assume this because there are many taxonomic biases within citizen science data (Wei et al. 523 

2016) that are likely driving the missingness of species, and even within a specific taxonomic 524 

group there are likely biases which influence the likelihood a species being detected, 525 

submitted, and identified in iNaturalist. For example, some charismatic species may be over-526 

represented, or common species could be less frequently reported because many people use 527 

iNaturalist to learn identifications and once a species is known, a user may be less likely to 528 

submit records of that species. Another critique of this approach might be that most data from 529 

iNaturalist included in our analysis has been sampled “conveniently” (Anderson 2001); the 530 

observations are generally collected at a time and place convenient for the observer to record 531 

that observation (e.g., by their house, at a parking lot, along a trail). We might, for example, 532 

expect that it would be less convenient to sample in rural areas because there are fewer trails 533 

or less access there. However, at a town-level we did not find that the location of 534 

observations (i.e., Opportunistic Observation Index) deviated significantly from what was 535 

available (i.e., Town Underlying Urbanness Index) to observers; people sampled in urban 536 

locations in proportion to that which was available. We suspect the bias of convenience 537 

sampling might become more problematic when comparing regions that have different ease 538 

of access. And more convenient locations may also lead to more easily-detected species being 539 

submitted to iNaturalist. Future work should look to test how our approach interacts with 540 

missing data, and understand the biases in behaviour patterns that may influence the 541 

urbanness of species submitted to iNaturalist, likely by relying on simulations. For example, 542 

do participants show preferences for less urban species compared to more urban species? 543 

Importantly, our examples here illustrate only one way that these community-level scores 544 

could be used to understand biodiversity responses to urbanization. We envision these scores 545 

being updated regularly, given the near real-time nature of many citizen science projects, 546 
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including iNaturalist (Callaghan et al. 2019c), and as these data continue to increase in 547 

quantity and quality, so too will the applicability of our proposed framework.  548 

 549 

Conclusions 550 

We demonstrated a framework that uses citizen science data to understand patterns of 551 

biodiversity at the town level –– the relevant socio-economic unit that make policy-decisions 552 

about local investment, including zoning and building ordinances and restrictions. It remains 553 

to be tested whether planners or managers at the town or regional level will take-up a more 554 

integrated measure of the response of biodiversity to urbanness such as Town Biodiversity 555 

Urbanness Index, but it may provide a simple index to understand and communicate how a 556 

town compares to others in terms of the nature found there. Importantly, people’s experience 557 

with nature will increasingly come from cities, with potential benefits for human well-being 558 

and biodiversity conservation both within and outside of cities (Soga and Gaston 2016; 559 

Prévot et al. 2018). Citizen science offers one mechanism in which we can better understand 560 

biodiversity responses to urbanization, encourage people to interact with the nature within 561 

their cities (Cooper et al. 2007; Li et al. 2019), and simultaneously increase scientific and 562 

environmental literacy (Ballard et al. 2017). Ultimately, citizen science data are dynamic: 563 

hundreds to thousands of observations are submitted every day. For our study area only, for 564 

example, there is clearly an exponential increase of observations through time (Figure S12). 565 

Collectively, we need to maximize the effectiveness of citizen science data in conservation, 566 

ecology, and natural resource management (McKinley et al. 2017), ensuring that the immense 567 

quantities of data being submitted to citizen science projects are appropriately used to inform 568 

biodiversity conservation.  569 
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FIGURES 795 

 796 

 797 
Figure 1. Eight example species –– chosen based on their prevalence in the Boston CNC area 798 

–– and their distributional response to VIIRS night-time lights (on a log-scale), showing an 799 

example of the differences among species. The red line represents the median. This was 800 

repeated for every species with >100 observations in the continental region (Fig. S2). 801 

 802 
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 803 

 804 
Figure 2. a) The species-specific regional urban scores for 1,004 species found in the Boston 805 

region; the distribution follows a log-normal distribution with some species being very urban 806 

(e.g., Eastern Gray Squirrel) and others being less urban (e.g., Common Eastern Bumble 807 

Bee), compared with the majority of species which are distributed between. The y-axis 808 

represents the number of species which fall into the specific bin corresponding with the x-809 

axis. Five example species, chosen based on their prevalence in the Boston CNC area are 810 

displayed. b) The 223 species with > 20 observations in the Boston CNC area and their 811 

species-specific regional urban scores (as in a) stratified to their status as native or non-812 

native.813 
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 814 

 815 
Figure 3. Relationship between the log-transformed Town Underlying Urbanness Index (x-816 

axis) and both the log-transformed Opportunistic Observation Index and the Town 817 

Biodiversity Urbanness Index (y-axis). Blue is a one-to-one line. And linear regressions are 818 

shown for each variable. The residuals between the Town Underlying Urbanness Index and 819 

Town Biodiversity Urbanness Index were extracted for further analyses. 820 

 821 
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 822 
Figure 4. The relationship between three macroecological variables (EVI=Enhanced 823 

Vegetation Index) extracted from each town (N=87) where there were at least 30 iNaturalist 824 

observations and the log-transformed Town Biodiversity Urbanness Index for each town (i.e., 825 

community-level urbanness).  826 

 827 
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 828 

 829 
 830 

Figure 5. The residuals between Town Biodiversity Urbanness Index and Town Underlying 831 

Urbanness Index extracted and plotted based on the relative ranking of over- and under-832 

performance for each of the 87 towns considered for analyses. Over-performing towns are 833 

towns that have less urban tolerant species than would be expected based on their Town 834 

Underlying Urbanness Index, and vice versa for underperforming towns. These residuals are 835 

plotted based on the ranking (left) and spatially (right). An interactive version of the left-hand 836 

panel is here. 837 

 838 

 839 

 840 

https://coreytcallaghan.github.io/BIOC_108753/town_urbanness.html
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 841 
Figure 6. The theoretical positive-feedback loop that can be implemented through our 842 

proposed framework. Species-specific urbanness can be derived from citizen science data, 843 

and then community-level urbanness values can be derived across multiple taxa. These 844 

provide baseline data for future urban restoration projects, and local citizen science project 845 

managers can direct participants to sample meaningfully to help monitor urban biodiversity 846 

through citizen science projects. 847 

 848 

 849 

 850 

 851 

 852 
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TABLES 854 

 855 

Table 1. Results of a multiple linear regression model where the town-specific community 856 

urbanness measure (i.e., Town Biodiversity Urbanness Index) was the response variable, log-857 

transformed. The urbanness of a town (Town Underlying Urbanness Index was included as a 858 

covariate as this was correlated with the Town Biodiversity Urbanness Index (Figure 3). 859 

Significant variables are in bold. 860 

 861 

Term Estimate Standard error t-value p-value 

Intercept 0.443 0.087 5.109 <0.001 

Town urbanness  0.005 0.001 3.553 <0.001 

Trees 0.000 0.002 0.005 0.996 

EVI -0.612 0.221 -2.763 0.007 

Impervious surface 0.004 0.001 3.159 0.002 

 862 

 863 

 864 

 865 
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SUPPLEMENTARY FIGURES 

A) 

 
 

B) 

 
Figure S1. A) The Boston area, and underlying landcover categories derived from GlobCover, as well as B) the proportion of GlobCover 

categories and the proportion of sampled categories. 
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Figure S2. The Boston CNC area (blue region) and the CEC Level II Ecoregions used to derive species-specific urbanness scores. In order to 

query GBIF we bound these regions with a bounding box surrounding these regions. This approach worked to include as many species as 

possible in the analyses, and only species with at least 100 regional observations were included in further analyses. There was strong correlation 

between the regional urbanness and the local-scale urbanness (i.e., Boston CNC area) demonstrating the robustness of this approach (see Figure 

S3 for more details).
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Figure S3. The relationship between the regional urban scores for 97 species, and the urban 

scores calculated from observations only within the Boston CNC area, both log-transformed. 

Only species with at least 50 observations from the CNC area were considered to assess this 

relationship. The positive relationship highlights that regional scores predict local-level 

scores and thus serve as a good representation of how species respond to urbanization at the 

local scale. 
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Figure S4. The number of observations from each of the potential 147 towns in the Boston 

CNC area. We only included towns which had at least 30 iNaturalist observations in analyses 

(N=87) based on a priori local knowledge of the variation of biodiversity that exists among 

towns. 
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Figure S5. The spatial representation of the towns in the Boston CNC and the number of 

iNaturalist submissions on a logarithmic scale (e.g., Figure S4). There were clear biases in the 

number of observations from a town, and so we only included towns with at least 30 

observations in further analyses. 
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Figure S6. The distribution of observations (i.e., the Opportunistic Observation Index) in six 

example towns showing the differences in how towns sample, where the red line represents 

the median. Note the axes are the same. 
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Figure S7. Six example towns (as above) and their underlying pixels of VIIRS night-time 

lights values (i.e., the Town Underlying Urbanness Index), showing the difference in how 

‘urban’ a town is, based on a suite of variables (e.g., built up cover, natural area), where the 

red line represents the median. 
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Figure S8. Two example towns (Concord and Waltham) showing the three distributions used 

and compared among one another in our analyses. 
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Figure S9. The relationship between the underlying urbanness of a town (i.e., TUUI) and the 

observations submitted from a town (i.e., OOI). As expected, the more ‘urban’ a town is, the 

more ‘urban’ their observations are. Citizen scientists are generally sampling around the 

median of the urbanness in a town. Only towns with at least 30 observations are included in 

this figure (N=87 towns). 
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Figure S10. The x-axis shows the number of iNaturalist observations in the town 

(logarithmic scale), and on the y-axis the residual value of a simple linear regression between 

Median Town Observation Pixel Value and the Town Underlying Median Pixel Value (i.e., 

Figure S9). There is no significant relationship, suggesting that the distribution of 

observations across a town’s urban gradient is not impacted by the increase in the volume of 

observations. Only towns with >=30 observations are included in this figure (N=87 towns). 
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Figure S11. Parallel to above, on the x-axis we have the number of observations in the town 

(log10), and on the y-axis the residual value of a simple linear regression between Median 

Species Urbanness of a town (species counted distinctly), and the Town Underlying Median 

Pixel Value. There is no relationship here, indicating the urbanness of the species observed in 

a town does not approach the town urbanness median as observations increase. 
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Figure S12. The cumulative observations from the Boston CNC area since 2010, submitted 

to iNaturalist. 

 

 

 

 

 

 


