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Abstract

Individuals’ behavioral strategies are often well described by reaction norms, which are1

functions predicting repeatable patterns of personality, plasticity, and predictability across2

an environmental gradient. Reaction norms can be readily estimated using mixed-effects3

models and play a key role in current theories of adaptive individual variation. Unfortunately,4

however, it remains challenging to assess the effects of reaction norms on fitness-relevant5

outcomes, due to the high degree of uncertainty in random effect estimates of reaction norm6

parameters, also known as best linear unbiased predictors (BLUPs). Current approaches to7

this problem do not provide a generalized solution for modelling reaction norm effects with8

nonlinear structure, such as stabilizing, disruptive, balancing, and/or correlational selection,9

which are necessary for testing adaptive theory of individual variation. To address this10

issue, I present a novel solution for straightforward and unbiased estimation of linear and11

nonlinear reaction norm effects on fitness, applicable to both Gaussian and non-Gaussian12

measurements. This solution involves specifying BLUPs as random effects on behavior and13

fixed effects on fitness within a Bayesian multi-response model. By simultaneously accounting14

for uncertainty in reaction norm parameters and their causal effects on other measures,15

the risks accompanying classical approaches to BLUPs can be effectively avoided. I also16

introduce a new method for visualizing the consequences of multivariate selection on reaction17

norms. Simulations are then used to validate that the proposed models provide unbiased18

estimates across realistic parameter values, and an extensive coding tutorial is provided to19

aid researchers in applying this method to their own datasets in R.20

Keywords mixed-effects · multivariate · Bayesian · reaction norm · adaptation · individuality21

1 Introduction22

A population will evolve by natural selection whenever heritable variation occurs in fitness-relevant phenotypes23

(Darwin 1859). Individual differences in behavior are, therefore, a fundamental ingredient for adaptive24

behavioral evolution. Across taxa, repeatable individual variation is observed not only in animals’ average25

behavior (Bell, Hankison, and Laskowski 2009), but also in the degree of behavioral responsiveness they26

exhibit toward the environment (Dingemanse et al. 2010; Stamps 2016), as well as in the intra-individual27

variability of their behavior across time (Biro and Adriaenssens 2013; Westneat, Wright, and Dingemanse28

2015). These respective patterns of personality, plasticity, and predictability represent distinct but often29

integrated components of the behavioral reaction norms (RNs) within a population (see Figure 1), which are30

functions expressing individual-specific behavioral strategies across an environmental gradient (Dingemanse31

et al. 2010; McNamara and Leimar 2020). The evolution of such function-valued traits is currently a32

central area of research within evolutionary ecology (Gomulkiewicz et al. 2018), which has led to a host33
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of methodological innovations for estimating the RNs of complex traits subject to measurement error34

(Dingemanse and Dochtermann 2013; Martin and Jaeggi 2021), as well as the development of a rich theoretical35

framework for explaining the adaptive processes maintaining individual variation in RNs within populations36

(Dall and Griffith 2014; Sih et al. 2015; Wolf and Weissing 2010). Attention to RNs has also increased in37

related fields of inquiry such as personality psychology (Nettle and Penke 2010) and evolutionary anthropology38

(Jaeggi et al. 2016), suggesting that an integrative framework for studying the evolution of RNs will benefit39

research on individuality more generally.40

For labile phenotypes such as behavior, hormones, and cognition, the magnitude of repeatable between-41

individual variation in measurements is generally modest in comparison to the total phenotypic variation42

observed across space and time (Bell, Hankison, and Laskowski 2009; Cauchoix et al. 2018; Fanson and Biro43

2015). This is unsurprising, given that these traits are often the primary mechanisms by which organisms can44

flexibly respond to ephemeral and stochastic variation in their local environments, such as by up-regulating45

circulating testosterone in response to social challenges (Eisenegger, Haushofer, and Fehr 2011), or by46

temporarily inducing a fear state in response to odor cues of predation (Mathuru et al. 2012). As such,47

single measurements of these phenotypes are poor indicators of the underlying between-individual differences48

that are targeted by selection, and tend to instead reflect various sources of within-individual environmental49

heterogeneity (Brommer 2013; Dingemanse and Dochtermann 2013). Despite the unfortunate fact that many50

empirical studies still confound these distinct sources of trait (co)variation (Niemelä and Dingemanse 2018;51

Royauté et al. 2018), the necessity of longitudinal data for studying RNs is increasingly appreciated and52

enforced within behavioral ecology (Dingemanse and Wright 2020). With the appropriate application of53

generalized mixed-effect models (GLMMs), such repeated measures data can then be used to estimate the54

unobserved but statistically identifiable RNs underlying raw trait measurements, thus effectively partitioning55

stochastic effects and measurement error from repeatable sources of between-individual variation (Dingemanse56

and Dochtermann 2013; Martin and Jaeggi 2021; Nakagawa and Schielzeth 2010; Nussey, Wilson, and57

Brommer 2007).58

GLMMs are a powerful tool not only for estimating RNs from empirical data using random effects, but also59

for subsequently modeling the fixed effects of personality, plasticity, and predictability on fitness and other60

biological outcomes of interest. Nevertheless, although GLMMs provide a quite robust modeling framework61

(Schielzeth et al. 2020), they can only give as much information about RNs and their effects as the model62

assumptions and empirical data provided to them. For labile phenotypes like behavior, this means that the63

predicted random effect values of RN parameters, also known as best linear unbiased predictors (BLUPs), are64

often inferred with non-trivial degrees of statistical uncertainty. The use of BLUP point estimates to predict65

outcomes in another response model will, therefore, artificially reduce uncertainty in the estimated effects66

of RNs and increase the risk of false positives (see Hadfield et al. 2010 for a detailed treatment). Previous67

solutions to this problem have provided effective antidotes to the anti-conservative inference encouraged by68

ignoring uncertainty in BLUPs (Houslay and Wilson 2017). However, these solutions also reduce empiricists’69

capacity to effectively model the nonlinear effects of RNs on fitness-relevant outcomes, which is necessary for70

understanding the degree to which natural selection is actively maintaining or diminishing individual variation71

in behavior. The present study therefore introduces a new method to facilitate unbiased estimation of nonlinear72

RN effects within a Bayesian GLMM framework. The proposed solution is first motivated through a brief73

discussion of current approaches to the misuse of BLUPs and their benefits and limitations. I then formally74

introduce the proposed method along with a novel approach to visualizing the effects of multivariate selection75

on reaction norms. I also provide R code (R Core Team 2020) and tutorials on the accompanying Github76

repository for this manuscript (https://github.com/Jordan-Scott-Martin/Selection-on-RNs), demonstrating77

how to estimate these models with the Stan statistical programming language (Carpenter et al. 2017). These78

tutorials will aid researchers in investigating nonlinear RN effects with their own datasets.79

2 Current approaches80

The basic challenge of modelling RN effects is to effectively account for the uncertainty in RN parameters81

(i.e. BLUPs) across all stages of analysis. Variation in phenotypes with low to moderate repeatability is, by82

definition, largely explained by factors other than between-individual differences. As a consequence, sampling83

designs with modest repeated measurements and uncontrolled environmental variation typically result in84

highly uncertain estimation of RNs. Failure to account for the uncertainty of RNs across subsequent stages85

of analysis artificially reduces uncertainty in the inferred effects of RNs, as uncertainty in individuals’ trait86

values necessarily translates into uncertainty about the effects of these trait values, and can thus undesirably87

increase the risk of false positives. For this reason, Hadfield et al. (2010) discouraged all future use of88
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Figure 1: A behavioral reaction norm (RN) for individual j defined across an environmental gradient. The
individual’s reaction norm is defined by three parameters indicated in the left plot: (i) the RN intercept
trait value µj describing behavioral consistency (i.e. personality) across environments; (ii) the RN slope
trait value βj capturing behavioral plasticity across environments; and (iii) the RN dispersion trait value θj
reflecting behavioral predictability across environments, as indicated by the 95% shaded credible interval (i.e.
±1.96 ∗ θj). Individuals’ true RN parameters will be unknown in empirical research and must be inferred
from raw longitudinal measurements (teal circles) across the environmental gradient. These inferences will
generally be subject to high degrees of statistical uncertainty, as captured by the posterior distributions of
each RN parameter shown on the right. RN point estimates (BLUPs) taken from these posterior distributions,
such as the mean values indicated by the black vertical lines, ignore this uncertainty and provide misleading
confidence in the shape of an individuals’ behavioral strategy. For example, it can be seen that there is a wide
range of possible values for individual j’s parameters with similar degrees of posterior support, particularly for
the highly uncertain predictability trait value. As has been previously emphasized in the literature, failure to
account for this uncertainty around point estimates can lead to anti-conservative inference and an increased
risk of false positives. See the main text for further discussion.
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BLUP point estimates in evolutionary ecology, so as to prevent the proliferation of misleading findings in the89

literature. Nevertheless, because the theoretical significance of RNs is not diminished by the difficulty of90

appropriately modeling their effects, many behavioral ecologists without clear alternative solutions continued91

to misuse point estimates of BLUPs in their research. In response, Houslay and Wilson (2017) provided a92

detailed overview of appropriate strategies for tackling this challenge, emphasizing that multivariate GLMMs93

with covarying random effects can be used to effectively account for uncertainty in RNs across multiple94

response models. Despite these repeated cautionary notes, some researchers still continue to utilize BLUP95

point estimates (e.g. Dingemanse et al. 2020) or raw data (e.g. Brehm et al. 2019) for testing RN effects,96

even while acknowledging the work of Hadfield et al. (2010) and Houslay and Wilson (2017). This likely97

reflects the fact that the random effects models proposed by Houslay and Wilson (2017) do not readily98

extend to a variety of more complex RN effects that cannot be straightforwardly derived from random effect99

covariances and correlations. This section briefly reviews current solutions for the misuse of BLUPs and100

discusses their benefits and limitations.101

2.1 Multivariate GLMMs with covarying random effects102

Popular GLMM software such as the “lme4” R package (Bates et al. 2014) do not readily address multivariate,103

integrated phenotypes. As a consequence, researchers are often motivated to (i) estimate RNs from a104

univariate response model of a relevant behavior, and (ii) subsequently enter BLUP point estimates of these105

RNs as covariates in another response model. Fortunately, the risk engendered by this approach can be readily106

overcome by specifying a multivariate GLMM that simultaneously accounts for uncertainty in behavioral107

BLUPs and their associations with other responses. Houslay and Wilson (2017) demonstrate how this can be108

accomplished with random effect correlations or covariances for phenotypic and quantitative genetic studies,109

using both frequentist and Bayesian software.110

The multivariate GLMMs proposed by Houslay and Wilson (2017) are an extremely valuable tool for111

behavioral ecologists interested in RNs and integrated phenotypes. These models provide desirable flexibility112

for addressing a variety of questions beyond simply quantifying random effect variances and covariances,113

although this is on its own quite an important task. As any student of multivariate statistics is well aware,114

trait covariance matrices can be readily transformed to provide a veritable treasure chest of biological insights115

(Blows 2007), such as identifying trajectories of phenotypic conservation and divergence among closely116

related populations (Royauté, Hedrick, and Dochtermann 2020), discovering latent behavioral characters and117

networks causing covariance among multiple traits (Araya-Ajoy and Dingemanse 2014; Martin et al. 2019),118

and calculating linear selection differentials and genetic responses to selection (Stinchcombe, Simonsen, and119

Blows 2014). Thus, this method can be used to accomplish many empirical goals with relative ease.120

Nevertheless, there are important cases where further information is desired that cannot be derived from121

random effect covariation alone, limiting the utility of these models for explaining the effects of RNs on122

evolutionarily relevant outcomes. This is why fixed effects remain important for testing evolutionary ecological123

theory, because we often want to directly parameterize specific functional relationships between traits, as well124

as to specify the direction of these effects. In other words, we often want to know whether a behavior affects125

another measure in a specific, potentially nonlinear manner, and perhaps in interaction with other traits126

or states, rather than merely asking whether the trait and the outcome are linearly associated through any127

number of possible causal pathways in either direction. This issue is not specific to the models proposed by128

Houslay and Wilson (2017), but is rather a limitation of variance-partitioning models more generally, which129

tend to trade off explanatory power and causal insight for accurate description and in situ prediction (Briley130

et al. 2019; Hadfield and Thomson 2017; Okasha and Otsuka 2020).131

A particular concern is that testing adaptive theory of individual variation often requires evaluating nonlinear132

selection on behavioral RNs (Figure 2). In general, these nonlinear effects cannot be accurately estimated133

by random effect covariances, as covariance is by definition a measure of linear dependency and thus does not134

capture nonlinear dependencies among measures. However, it is straightforward to capture these patterns135

using fixed quadratic and interaction effects in a parametric fitness model (Lande and Arnold 1983). For136

example, if the population RN is at an evolutionary equilibrium, so that RN variation is non-adaptive within137

the population and results from processes such as mutation-selection balance or developmental noise (e.g.138

Bierbach, Laskowski, and Wolf 2017; Tooby and Cosmides 1990), then we should expect to find evidence of139

stabilizing selection around the population average RN parameters. In the absence of correlational selection,140

this would be observed in a Lande-Arnold selection analysis as null or weak linear effects and negative141

quadratic effects (Stinchcombe et al. 2008), assuming the population had not been recently displaced from a142

fitness peak by non-adaptive processes. Alternatively, strong disruptive selection, potentially indicative of143
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ongoing behaviorally-mediated speciation (Wolf and Weissing 2012), would be expected to surface as the144

opposite pattern–null or weak linear effects with positive quadratic effects.145

When individual variation is adaptive and maintained through balancing selection caused by spatially and/or146

temporally varying fitness effects (e.g. Gurven et al. 2014; Le Cœur et al. 2015), interaction effects will147

be expected between local ecological conditions (e.g. season, population density, resource abundance) and148

individuals’ RN parameters (Wright et al. 2019). Similar considerations apply to social contexts addressed149

by evolutionary game theory, in which frequency-dependent fitness functions, such as cooperative strategies150

with diminishing returns or threshold effects as a function of partners’ strategies (McNamara and Leimar151

2020), will be observed through interactive selection effects (Araya-Ajoy, Westneat, and Wright 2020; Martin152

and Jaeggi 2021; Queller 2011). When adaptive individual variation is maintained through state-dependent153

calibration or feedback processes (e.g. von Rueden, Lukaszewski, and Gurven 2015; Sih et al. 2015), then154

phenotypes should also interact with state variables to determine fitness outcomes. Adaptive behavioral155

syndromes may further evolve through correlational selection for specific RN parameter combinations. Cichlid156

Pelvicachromis pulcher females’ mating preferences, for example, select for males with high levels of both157

personality and predictability in aggressiveness (Scherer, Kuhnhardt, and Schuett 2018). When RNs are158

under such correlational selection, interaction effects are expected between RN parameters on fitness (Blows159

2003). Of course, these considerations also apply to a host of RN effects on outcomes other than fitness, such160

as the exponential effects of personality in activity level and anxiety on seed removal and dispersal among161

small mammals (Brehm et al. 2019). In all such cases, one would not detect these theoretically pertinent162

relationships using linear covariances among random effects, but must instead directly specify fixed quadratic163

and interactive effects caused by behavioral RNs. A variety of more complex fitness surfaces can also be164

captured through the combination of these quadratic and interaction effects (Phillips and Arnold 1989), or165

higher term polynomials, as shown in Figure 2 for a bivariate analysis.166

A potential solution to this challenge is to model the squared and product values of raw measurements as167

additional responses with covarying random effects, which can subsequently be used to calculate nonlinear168

selection gradients (Dingemanse, Araya-Ajoy, and Westneat 2021). However, this approach does not differen-169

tiate between the fitness effects of personality, plasticity, and predictability, and it does not appropriately170

partition between- and within-individual (co)variation in non-Gaussian measurements. To calculate nonlinear171

selection gradients for non-Gaussian responses, expected trait values should be first estimated on a latent172

linear scale, through the use of an appropriate GLMM link function, before being squared or multiplied173

together. This ensures that nonlinear mean and variance effects are correctly predicted on the original data174

scale (Nelder and Wedderburn 1972).175

2.2 Two-stage analyses176

Another solution to the challenges posed by the random effects method is to instead (i) estimate BLUP177

posteriors in a Bayesian random effects model, and then (ii) estimate a separate model with fixed RN effects,178

running the analysis repeatedly over the posterior distribution of BLUPs estimated in the first model. While179

this approach technically carries the uncertainty in RNs forward, thus avoiding the undesirable consequences180

of point estimates, it can nevertheless result in downwardly biased estimates of the RN fixed effects, as181

Dingemanse et al. (2020) observed in supplementary simulations. Although these authors did not provide an182

explanation for the observed bias, it can be attributed to a more general statistical phenomenon known as183

attenuation bias, in which independent measurement error in a predictor variable causes downward bias in184

its association with an outcome measure (Adolph and Hardin 2007; Spearman 1904). This is caused by the185

BLUPs in the initial model being estimated independently of the RN effects on the outcome of interest, so186

that the estimated uncertainty in BLUPs is by design statistically independent of uncertainty in the RN187

effects estimated in the second stage of the analysis. This does not, however, make the use of BLUP point188

estimates any less risky or more desirable, but is simply an artifact of not simultaneously accounting for both189

sources of uncertainty in the same model. It is important to remember that BLUPs and RNs are latent,190

statistical inferences, not directly measured trait values or mere averages of raw trait values, and as such are191

particularly sensitive to correct model specification (Hadfield et al. 2010; Postma 2006). A related alternative192

solution is to handle attenuation bias by adjusting selection coefficients on raw trait values with repeatability193

estimates, rather than directly using BLUPs in the fitness model (Dingemanse, Araya-Ajoy, and Westneat194

2021). However, this approach does not provide a means of differentiating nonlinear selection on personality,195

plasticity and predictability, nor does it generalize to non-Gaussian measurements where repeatability is best196

expressed on a transformed linear scale due to non-linear mean and variance effects on the original scale.197
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Figure 2: Nonlinear selection surfaces for behavioral RNs. Adaptiveness is indicated by the color of the line
or surface, with red indicating lower relative fitness (w) and gold indicating higher relative fitness.

Top row. Patterns of nonlinear selection on a single behavioral RN parameter zpm, which also
apply to selection on multiple traits in the absence of correlational selection between traits. Dashed lines
intercept the expected population-level trait value and relative fitness at (zpm = 0, w = 1). Left panel:
stabilizing selection on trait values, which maintains the population average trait value at an evolutionary
equilibrium and reduces individual variation. Middle panel: disruptive selection, which increases the
frequency of extreme trait values and increases individual variation as a consequence. Right panel: balancing
selection, in which the fitness consequences of a trait value vary across different states, causing the
maintenance of individual variation across multiple selection events. States refer to any factors that modulate
the fitness consequences of a behavior, such as differing spatial and/or temporal contexts, population
densities, or frequencies of social partner strategies. States may also be endogenous factors that determine
whether it is adaptive to express a particular RN trait value, such as the effects of body size and condition on
the fitness consequences of boldness and aggression.

Bottom row. Patterns of nonlinear selection on two behavioral RN parameters zpm and zpn.
Due to the presence of correlational selection, the adaptiveness of any trait value for parameter m is
contingent on the trait value for parameter n (and vice versa). Left panel: a dome-shaped selection surface,
where a combination of slightly negative parameters has the highest fitness. Middle panel: a bowl-shaped
selection surface, with the most adaptive phenotypes combining extremely high or low trait values in both
parameters. Right panel: a saddle-shaped selection surface, where phenotypes combining moderate trait
values for m and extremely low trait values for n achieve the highest relative fitness.
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3 A novel solution198

Given the limitations of relying solely on covarying random effects, behavioral ecologists stand to benefit199

from adding an additional modeling approach to their toolkit, one capable of directly estimating nonlinear200

RN effects of arbitrary complexity. Here I propose a novel solution that is a straightforward extension of201

Houslay and Wilson (2017) ‘s previous work: Bayesian multi-response GLMMs in which individuals’ RNs202

are simultaneously treated as random effects on their observed behaviors as well as fixed effects on outcome203

measures of interest (e.g. survival and reproduction, habitat choice, performance in an experimental task,204

etc.). In this section, this basic modelling approach is formally introduced, along with various extensions205

of interest for specific empirical scenarios. I also end by proposing a novel and straightforward method for206

visualizing the within-generation effects of multivariate selection on reaction norms.207

3.1 Multivariate GLMMs for nonlinear selection on RNs208

Our goal in overcoming the limitations of previous approaches is to specify a GLMM with one response model209

estimating RN parameters of a relevant behavior, as well as another response model that estimates the effects210

of these RN parameters on a fitness-relevant measure. To enhance comprehension, the RN response model is211

first considered in isolation before being integrated into a single multi-response model below.212

3.1.1 Reaction norm response model213

To model the RN parameters zp for a repeatedly measured behavior z across an environmental gradient x,214

we specify a GLMM for observation i of individual j such that215

zij ∼ f (ηij , θij)
gη (ηij) = µ0 + µj + (β1 + βj)xij

gθ (θij) = θ0 + θj

zp = [µ β θ]′ ∼ MVNormal (0,P)

(1.1)

Bold values are used to distinguish vectors and matrices from scalars and primes ′ are used to indicate the216

transpose operation. Individuals’ traits values are specified as being generated by some probability density217

function f with corresponding location η and dispersion θ parameters, such as the means and standard218

deviations of normal distributions or the means and shape parameters of gamma, negative binomial, and219

beta distributions. For GLMMs, these nonlinear parameters are modelled on a latent linear scale using link220

functions gη and gθ (e.g. identity, log, logistic, or reciprocal transformations). We therefore refer to gη(ηij)221

and gθ(θij) as the linear predictors for the respective location and dispersion parameters of observation i on222

individual j.223

Typically, personality and plasticity are modelled through the linear predictor of the location parameters,224

capturing variation in expected behavior (i.e. predicted behavior averaged over dispersion). This is accom-225

plished through the estimation of random intercept µj and random slope βj for individual j, which are226

expressed as deviations from the population-average intercept µ0 and slope β1. These parameters correspond227

to the elevation and slope of the individual’s behavioral RN. We assume that environmental exposures are228

randomized across individuals, so that there is no need to within-individual center the covariate used for229

scaling RN slopes (van de Pol and Wright 2009). Predictability is modelled through a random intercept230

effect θj on the dispersion parameters, deviating from the population-average dispersion θ0, which captures231

individual-specific variability independent of the linear predictor. The effect of each parameter in zp on232

the shape of an individual’s RN can be seen in Figure 1. For simplicity, we ignore the possibility that233

individuals may also exhibit plasticity in their predictability as a function of the environment, although this234

could be readily estimated, along with other fixed and random effects. For distributions without an explicit235

dispersion parameter, such as Poisson or binomial distributions, individual differences in predictability cannot236

be directly modelled in this way. However, this limitation can be easily avoided by using a closely related237

distribution accounting for overdispersion, such as the negative binomial and beta binomial distributions.238

The associations among RN parameters are captured by the trait covariance matrix P. Note that covariance239

and correlation matrices can always be translated to one another by P = SRS, where S is a diagonal matrix240

with standard deviations and R is a correlation matrix. This identity is often useful for efficiently estimating241

Bayesian GLMMs by separating out the scale and association parameters among random effects. We therefore242

substitute SRS for P in subsequent formula.243
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3.1.2 Multi-response model for selection analysis244

Our goal is to now specify a single multi-response model that estimates (Eq 1.1) while also estimating the245

effects of RN parameters zp on fitness. Given that researchers will often lack repeated measures of fitness or246

fitness-proxies (e.g. bodily condition, clutch size, mate choice), the presented models assume that a single247

fitness measure is available per individual, although this assumption can be relaxed by including additional248

random effects to account for unobserved heterogeneity in repeated fitness measures. For simplicity, we also249

begin by assuming that the fitness measure can be effectively described by a Gaussian distribution, which250

simplifies the estimation of selection gradients and differentials below. As is appropriate for modelling relative251

fitness (Lande and Arnold 1983), w is mean-scaled so that wj = Wj/W̄ where W̄ is the mean absolute fitness252

across individuals. For notational clarity, we now introduce superscripts (z) to distinguish parameters that253

are specific to the z behavioral response model from those in the w fitness response model.254

zij ∼ f
(
η

(z)
ij , θ

(z)
ij

)
gη

(
η

(z)
ij

)
= µ

(z)
0 + µ

(z)
j +

(
β

(z)
1 + β

(z)
j

)
xij

gθ

(
θ

(z)
ij

)
= θ

(z)
0 + θ

(z)
j

zp =
[
µ(z) β(z) θ(z)]′ ∼ MVNormal (0,SRS)

wj ∼ Normal (µj , σj)

µj = µ0 + β1

(
µ

(z)
j

)
+ β2

(
β

(z)
j

)
+ β3

(
θ

(z)
j

)
+β4

(
µ

(z)
j µ

(z)
j

)
+ β5

(
β

(z)
j β

(z)
j

)
+ β6

(
θ

(z)
j θ

(z)
j

)
+β7

(
µ

(z)
j β

(z)
j

)
+ β8

(
µ

(z)
j θ

(z)
j

)
+ β9

(
β

(z)
j θ

(z)
j

)

(1.2)

Readers familiar with structural equation modelling (Araya-Ajoy and Dingemanse 2014; Martin et al. 2019)255

may note that each RN parameter in this model can be conceptualized as an exogenous latent variable, with256

its loading on trait z fixed to 1, thus scaling the zero-centered latent variable, and its loadings on trait w257

estimated with the regression coefficients. These latent variables separate out the portions of variance in trait258

z due to each latent RN parameter and, therefore, isolate distinct RN effects on fitness from all other sources259

of non-repeatable variation in the raw trait values. The proposed model can also be conceptualized as an260

extension of the so-called ‘errors-in-variables’ models discussed by Dingemanse, Araya-Ajoy, and Westneat261

(2021), which do not disentangle repeatable variation in raw measurements due to personality, plasticity, and262

predictability. This multi-response GLMM thus provides a flexible and intuitive means of integrating the263

benefits as well as overcoming the limitations of multiple previously suggested statistical approaches. It is264

also important to note that the proposed model can always be simplified to facilitate studies of selection265

on individual RN parameters, should researchers lack sufficient repeated samples or environmental data to266

simultaneously address personality, plasticity, and predictability.267

When this quadratic regression model effectively approximates the individual selection surface (Lande and268

Arnold 1983; Phillips and Arnold 1989), β = [β1, β2, β3] indicates the expected direction and magnitude of269

unconstrained adaptation in the average population RN values, which are also known as directional selection270

gradients. Nonlinear effects are instead captured by γµ,µ = β4 ∗ 2, γβ,β = β5 ∗ 2, and γθ,θ = β6 ∗ 2, which271

indicate convex or concave curvature in the selection surfaces of RN parameters (Stinchcombe et al. 2008),272

and γµ,β = β7, γµ,θ = β8, and γβ,θ = β9, which indicate further curvature due to the presence of correlational273

selection between trait pairs. The regression coefficients capturing nonlinear curvature in the selection surface274

can then be grouped into a matrix γ of quadratic selection gradients and the fitness model can be simplified275

to matrix notation for individual j such that276

µj = µ0 + β′zpj + 1
2z
′
pjγzpj

γ =
(
γµ,µ γµ,β γµ,θ
γβ,µ γβ,β γβ,θ
γθ,µ γθ,β γθ,θ

) (1.3)
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If one desires to express gradients in standardized units for effect size comparison, then z∗pj = zpj � diag(S)277

can instead be specified in the fitness response model, where the Hadamard division � indicates element-wise278

division of each parameter by its standard deviation, which are contained on the diagonal of the S matrix.279

The selection model can also be extended to account for various kinds of balancing selection (see Figure 2)280

by including additional interaction effects for the relevant state variables. For example, βI(µ(z)
j ∗ N) could be281

estimated to assess the presence of density-dependent selection on personality across differing population282

sizes N.283

It is common in selection analyses to estimate linear and nonlinear gradients on observed trait values z,284

rather than directly on RN parameters zp as proposed here. However, it is ultimately the repeatable285

individual variation in a phenotype that is available to selection, with all other trait variation effectively286

representing measurement error from the perspective of evolutionary inference at the population level (Martin287

and Jaeggi 2021). Thus, it is genetically encoded behavioral strategies (i.e. RNs) that are adapted within288

a population, rather than the specific actions animals are observed taking in any particular measurement289

context (McNamara and Leimar 2020). Moreover, when RN parameters are not completely integrated, so290

that R 6= 1, selection can further act on independent variation in each element of zp, leading to distinct291

changes in the population RN intercept, slope, and dispersion within and across generations. These adaptive292

processes will be confounded when solely considering selection on observed trait values z. The global effects of293

RN parameter selection on the shape of the population RN function can also be straightforwardly estimated294

and visualized using methods developed further below.295

3.1.3 Fully Bayesian inference296

To the best knowledge of the author, the proposed multi-response model for RN selection analysis cannot297

be straightforwardly estimated with mainstream statistical software. This does not, however, reflect any298

fundamental issue with its parameterization or interpretation, but rather pragmatic limitations of the299

estimators and/or syntax used in these software, which generally do not allow the same latent parameters to300

be specified across different GLMM response models. Fortunately, the Stan statistical programming language301

(Carpenter et al. 2017), which relies on cutting-edge and computationally efficient Markov Chain Monte302

Carlo (MCMC) algorithms, provides exceptional flexibility for specifying and straightforwardly estimating303

such atypical GLMMs within a Bayesian framework. Researchers unfamiliar with the general benefits of fully304

Bayesian inference are encouraged to see McElreath (2020) for detailed discussion, as well as Gelman et al.305

(2020) for helpful tips on developing an effective Bayesian workflow for data analysis. A brief review of some306

fundamentals will facilitate robust estimation and hypothesis testing with the proposed model.307

To estimate Eq 1.2 within a Bayesian framework, we simply need to specify prior distributions for all the
population-level parameters, which are transformed within the model to derive the individual-level RN
parameters during model estimation.

µ
(z)
0 , β

(z)
1 , θ

(z)
0 ,S,R, µ0, σ, β1, ..., β9 ∼ f(Φ)

As above, f are probability density functions for each parameter and Φ are the corresponding distributional308

parameters for all priors. Although it is common for ecology methods papers to use and/or recommend309

using highly diffuse or flat priors (e.g. Houslay and Wilson 2017; Villemereuil et al. 2016), it is also well310

established within the statistics literature that weakly informative, regularizing priors–which slightly pull311

parameters toward null values and provide low prior probability to extreme effect sizes–facilitate more robust312

inferences and should generally be preferred over flat priors whenever possible (Gelman and Tuerlinckx 2000;313

McElreath 2020; Lemoine 2019). This does not require that one has access to a relevant meta-analysis or is in314

a position to make strong a priori assumptions about the true effect size (cf. Ellison 2004). Rather, one can315

simply use general-purpose, conservative priors as a means of increasing the generalizability and robustness of316

their findings, even in a state of relative ignorance about the true effect size. For most GLMMs, priors such317

as µ, β ∼ Normal(0, 1), diag(S), σ ∼ Exponential(1), and R ∼ LKJ(2) provide effective weakly regularizing318

priors. See Lemoine (2019) for more detailed discussion and recommendations in ecological research.319

By specifying priors in the model, all parameters can subsequently be estimated as posterior distributions.
For example, zp will no longer be estimated with BLUP point estimates µ̂(z)

j , β̂(z)
j , and θ̂(z)

j , but will instead
be estimated with probability distributions capturing all of the statistical uncertainty in the BLUPs

Pr
(
µ

(z)
j | x, z,w, ...,Φ

)
, Pr

(
β

(z)
j | x, z,w, ...,Φ

)
, Pr

(
θ

(z)
j | x, z,w, ...,Φ

)
These posterior distributions are conditional on the observed measures (x, z,w) and all other model parameters
and priors (...Φ). Given that all statistical uncertainty is captured in these and other posterior distributions,
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the proposed multi-response model (Eq 1.2) provides nearly unlimited flexibility for direct forms of hypothesis
testing. For example, to quantify our confidence that positive correlational selection occurs for plasticity and
predictability, we simply need to manipulate the relevant posteriors to calculate

Pr (γβ,θ > 0 | x, z,w, ...,Φ)

When posterior distributions are estimated with Markov Chain Monte Carlo (MCMC), this value can be
quantified by assessing this inequality across the relevant vectors of posterior samples and calculating the
proportion of samples for which it is satisfied. Similarly, if we want to quantify our confidence that there is
greater positive directional selection on personality than plasticity, we can calculate

Pr (βµ > ββ | x, z,w, ...,Φ)

One could similarly perform a direct hypothesis test of a more robust null hypothesis than is typically
considered, given that true effect sizes are almost never exactly zero in reality (Amrhein, Trafimow, and
Greenland 2019; Meehl 1978; Gelman and Carlin 2017). Instead, a direct test of a null hypothesis can provide
the probability that an effect is of a biologically trivial magnitude (e.g. < |0.1| for a standardized predictor).
For instance, considering the correlation among personality and predictability in the R correlation matrix

Pr (−0.1 < Rµ,θ < 0.1 | x, z,w, ...,Φ)

Note that these tests are not indirect null hypothesis tests, which give the probability of observing the data320

under the assumption that a null hypothesis is true. Instead, these are direct tests of biologically substantive321

hypotheses given the observed data, the evaluation of which is generally the primary goal of scientific research.322

As such, intuitive interpretation can be made of the posterior probabilities, so that values closer to 1 indicate323

greater support for the tested hypotheses and values closer to 0 indicate stronger support for the opposite324

hypotheses. These Bayesian hypothesis tests help to avoid many common misinterpretations of classical325

tests, such as interpreting confidence intervals as reflecting the probable range of the true effect, interpreting326

P-values as providing the probability of the null hypothesis being true, or interpreting the rejection of a null327

hypothesis test as being indicative of the substantive (“alternative”) hypothesis being correct (Greenland328

et al. 2016; McElreath 2020; McShane et al. 2019). Furthermore, these Bayesian posteriors can be easily329

manipulated to address a variety of questions which may not be easily specified directly in a statistical model.330

This provides theoretically important benefits such as being able to easily quantify uncertainty in and perform331

direct hypothesis tests on derived quantities such as selection differentials, R2 values, and repeatabilities.332

3.1.4 Non-Gaussian fitness measures333

Despite the expected robustness of LMMs to violations of distributional assumptions, any particular study334

will be at a non-trivial risk of inferential bias when applying a linear fitness model to outcomes that are clearly335

better described by a non-Gaussian distribution (Schielzeth et al. 2020). Some common non-Gaussian data336

types used for fitness-proxies include dichotomous measures of survival or mating success, counts of offspring337

fledged or surviving to adulthood, and various forms of zero-bounded continuous performance measures such338

as growth rate or dispersal distance. When considering RN effects on other biologically relevant outcomes,339

there are of course a variety of non-Gaussian measures which may be similarly employed, such as categorical,340

mutually exclusive choices or reaction times in cognitive tasks, proportional measures of time spent in an341

activity, and so on. In all such cases, researchers will benefit from more reliable inferences and model342

predictions if they try to accurately describe the data generating process with an appropriate non-Gaussian343

distribution, rather than attempting to pigeonhole their analysis into a linear model. Fortunately, the Stan344

statistical programming language provides a plethora of possible distributions for GLMM likelihood functions,345

as well as the capacity to specify any custom likelihood functions of interest. To account for non-Gaussian346

fitness measure W , we update the fitness model in Eq 1.2 with a generalized distributional function and link347

transformation.348
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zij ∼ f
(
η

(z)
ij , θ

(z)
ij

)
g(z)
η

(
η

(z)
ij

)
= µ

(z)
0 + µ

(z)
j +

(
β

(z)
1 + β

(z)
j

)
xij

g
(z)
θ

(
θ

(z)
ij

)
= θ

(z)
0 + θ

(z)
j

zp =
[
µ(z) β(z) θ(z)]′ ∼ MVNormal (0,SRS)

Wj ∼ f (ηj , θ)

gη (ηj) = µ0 + β1

(
µ

(z)
j

)
+ β2

(
β

(z)
j

)
+ β3

(
θ

(z)
j

)
+β4

(
µ

(z)
j µ

(z)
j

)
+ β5

(
β

(z)
j β

(z)
j

)
+ β6

(
θ

(z)
j θ

(z)
j

)
+β7

(
µ

(z)
j β

(z)
j

)
+ β8

(
µ

(z)
j θ

(z)
j

)
+ β9

(
β

(z)
j θ

(z)
j

)

µ
(z)
0 , β

(z)
1 , θ

(z)
0 ,S,R, µ0, θ, β1, ..., β9 ∼ f(Φ)

(2)

Notation follows as above, with priors now specified directly in the model formula. Note that because we do349

not predict the fitness dispersion parameter θ with individual-level fixed or random effects, there is no need350

to introduce a linear predictor and corresponding link function. While it was straightforward to translate351

regression coefficients to selection gradients in the Gaussian fitness model, the link function introduced in352

the non-Gaussian model complicates matters. However, as discussed by Morrissey and Sakrejda (2013),353

appropriate gradients can nonetheless be estimated manually using partial derivative functions implemented354

in base R. In particular,355

βm =
δE
(
W̄ | z̄pm

)
δz̄pm

W̄−1

γm,n =
δ2E

(
W̄ | z̄pm

)
δz̄pmδz̄pn

W̄−1

(3)

where m and n index the mth and nth elements of the RN parameter vector zp. Morrissey and Sakrejda356

(2013) ’s method elegantly unifies LMM and GLMM approaches to estimating selection on latent behavioral357

RNs.358

3.1.5 Within-generation effects of selection359

With appropriate linear and nonlinear selection gradients, the expected within-generation effect of selection on360

the population means and covariances of behavioral RNs can be estimated. In particular, selection differentials361

can be calculated that integrate direct adaptive effects due to β and γ with indirect effects caused by trait362

integration due to P = SRS. Following Lande and Arnold (1983), linear and quadratic differentials are363

defined such that364

∆Tz̄p = Pβ,

∆TP = P
(
γ− ββ

′
)

P

(4.1)

where ∆T indicates the total (i.e. direct and indirect) within-generation effect of selection. We can also365

consider the effects of selection in the hypothetical case of complete independence between RN parameters by366

instead using a diagonal matrix V = S2 of trait variances.367

∆Dz̄p = Vβ,

∆DV = V
(
γ− ββ

′
)

V

(4.2)

Here, ∆D indicates change expected under trait independence, thus isolating the direct effects of selection on368

adaptation. Visual and quantitative comparison of the expected patterns of change between the integrated369
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total ∆T and independent direct ∆D differentials provides a useful and straightforward means of estimating370

the degree to which phenotypic integration constrains or facilitates the adaptive process through indirect371

effects (Conner 2012). Moreover, separation of these differentials allows for straightforward testing of adaptive372

hypotheses on specific behavioral parameters, even in the presence of high-dimensional data, strong phenotypic373

constraints, and highly nonlinear selection surfaces. If ∆Dz̄pm > 0 for RN parameter m, then selection is374

acting to increase the mean trait value in the population (and vice versa for negative change). Similarly,375

∆DVm,m > 0 indicates that selection is acting to increase individual variation in the population, such that376

individuality is likely to be adaptive, while ∆DVm,m < 0 indicates that individuality is being selected against.377

For the off-diagonal elements, ∆DVm,n 6= 0 indicates that selection is actively promoting positive or negative378

trait integration between RN parameters m and n, suggesting that behavioral syndromes are also adaptive. As379

shown in Figure 3, it will often be helpful to express these covariances as correlations for ease of comparison380

and visualization.381

3.1.6 Visualizing the effects of multivariate selection382

When modelling selection on a single RN parameter, it is straightforward to relate concave or convex quadratic383

gradients in Eq 1.2 or Eq 2 to the shape of the the fitness function, which is standard in presentations of384

stabilizing and disruptive selection surfaces. With two RN parameters, a response surface methodology can385

be used to visualize a variety of more complex surfaces characterized by domes, bowls, and saddles, among386

other 3-dimensional shapes. These scenarios are shown in Figure 2. Things become more complicated,387

however, when three or more parameters experience correlational selection. In such cases, some evolutionary388

biologists have argued for the use of single value decomposition methods such as canonical analysis to enhance389

interpretation of the selection process (Blows 2007; Phillips and Arnold 1989). With this approach, the390

fitness model can be re-expressed on the primary axes of correlational selection, facilitating more intuitive391

visualization of linear and quadratic selection on conditionally independent dimensions. While undoubtedly392

useful in particular empirical contexts, this method has many limitations for general application that have393

inhibited its uptake among empiricists, including sensitivity to sampling error and units of measurement394

(Morrissey 2014), as well as the general difficulty of interpreting the meaning of traits defined by their395

statistical rather than biological properties (Brodie and McGlothlin 2007; Conner 2007). While the dimension396

reduction capacities of this approach are highly desirable when considering selection on multi-trait RNs,397

more theoretically motivated approaches such as structural equation or generalized network modelling can398

instead be applied to categorize latent behavioral characters governing multiple RN parameters (Araya-Ajoy399

and Dingemanse 2014; Martin et al. 2019). In contrast to these causal modelling approaches, which seek to400

disentangle evolutionarily meaningful patterns of common and unique variance due to latent factors, methods401

such as canonical analysis are principally data reduction techniques and thus categorize axes irrespective of402

whether they confound common and unique sources of variation in fitness effects. This is why uncertainty in403

particular traits is expected to easily bias the axes characterized by canonical analysis (Morrissey 2014), while404

structural equation models are robust to trait measurement error (Bollen and Noble 2011). When causal405

modelling techniques are not well-motivated for a multi-trait RN, strong regularization techniques can instead406

be employed to enhance inferences and reduce the effective parameter space. This can be accomplished with407

the proposed models by implementing priors such as the regularized horseshoe prior (Piironen and Vehtari408

2017), which performs well under conditions where the number of parameters is greater than would otherwise409

be desirable for the sample size.410

Canonical analysis is, therefore, not considered further as a means of effectively visualizing multivariate411

selection, though the provided model code can always be modified to carry it out nonetheless. Non-parametric412

methods are also not considered herein as an alternative. While such methods are useful for hypothesis413

generation, it is ultimately parametric functions (perhaps of a highly complex nonlinear structure) that414

will facilitate robust theories of adaptation amenable to formalization and comparative biological research415

on individual variation. Non-parametric techniques such as projection-pursuit regression (Morrissey 2014;416

Schluter and Nychka 1994) should thus be considered useful and complimentary tools for the proposed417

parametric models, which can be always be elaborated upon to capture the essential features of any function418

generated through exploratory non-parametric analysis. Indeed, one can always extend a parametric GLMM419

to a generalized additive multilevel model (Pedersen et al. 2019) by including additional non-parametric420

functions such as splines and Gaussian processes into a selection analysis, facilitating biological comparison421

and straightforward hypothesis testing while also capturing any unmodelled sources of nonlinear association422

that may bias parametric inferences. This can be accomplished within a Bayesian framework in Stan using423

methods implemented in the “brms” R package (Bürkner 2017).424
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Given these considerations, how can we effectively visualize the effects of multivariate, nonlinear selection on425

behavioral RNs? I propose a simple method that considers how selection influences behavioral RNs in three426

dimensions. The motivation for this method begins by considering the unique pieces of information provided427

by the selection differentials in Eq 4.1 and Eq 4.2. Firstly, ∆z̄p inform the expected change in the mean428

of each RN parameter, while the diagonal elements of ∆P informs the change in the variance of each RN429

parameter. The off-diagonal elements of ∆P instead capture changes in the integration among RN parameters,430

which can be standardized to correlations for ease of interpretation. The effect of direct versus indirect431

selection effects caused by RN parameter integration can be further informed by the difference between ∆D432

and ∆T respectively. This allows researchers to assess adaptive hypotheses on specific trait values even when433

phenotypic integration is expected to diminish or even reverse the direction of evolutionary change caused434

by direct selection. Finally, because each element of zp is a parameter in a broader parametric behavioral435

RN function, we can also consider each of these estimates together to indicate how selection is changing the436

overall shape of the population behavioral strategy. Each of these pieces of information is to some degree437

unique and informative for our theoretical understanding of adaptive individual variation. Therefore, the438

proposed method is simply to plot all of this information together in a single figure of multivariate selection439

effects on the behavioral RN, along with the posterior uncertainty in the expected effects of selection. This440

visualization method is demonstrated in Figure 3 for a hypothetical empirical scenario characterized by441

directional, quadratic, and correlational selection on personality, plasticity, and predictability. Note that all442

of these estimates are taken on the latent linear scale defined in the model, but they can always be predicted443

on the original data scale by applying the appropriate inverse link function on the transformed absolute444

values (i.e. link-scale population RN value + expected population RN change).445

4 Simulation-based calibration of proposed models446

I used a simulation-based calibration (SBC) procedure to validate the inferential performance of the proposed447

Bayesian models and assess whether they provide unbiased estimators of selection. SBC is a procedure for448

validating the performance of any Bayesian algorithm across a broad range of possible parameter values, as449

defined by the prior distributions of a generative model. This approach removes the arbitrariness of setting450

a limited range of fixed parameter values for assessing performance, which can lead to unexpected sources451

of bias being overlooked in uninvestigated regions of parameter space (e.g. rare but possible combinations452

of RN correlations, standard deviations, and selection coefficients). Instead, random parameter values are453

repeatedly imputed during each MCMC iteration of model estimation for a large number of simulations454

and visual inspection of the correspondence between the generative distributions and subsequent posterior455

distributions is used to detect any sources of bias, such as overdispersion in the estimator or inconsistent456

performance for extreme values. While a detailed explanation of SBC implementation and interpretation457

is beyond the scope of the present study (see Talts et al. 2018 for further details), it suffices to say that458

a GLMM validated through SBC is an unbiased Bayesian estimator. This method was, therefore, used to459

ensure that empirical studies using the proposed models would be expected to arrive at unbiased estimates460

over a plausible range of possible parameter values.461

Particular attention was given to the estimation of linear and nonlinear selection coefficients during SBC,462

using 250 simulated datasets with 400 independent posterior samples each, resulting in the exploration of463

100,000 random samples of all model parameters. As recommended by Talts et al. (2018), visual inspection464

of the SBC diagnostic plots demonstrated that the ranks of posterior selection coefficients were consistent465

with a random, uniform distribution around the prior simulated values, suggesting desirable performance466

indicative of unbiased inference. Following the recommendation of Cook, Gelman, and Rubin (2006), I also467

further tested the uniformity of the rank distribution by sorting ranks into eight evenly distributed bins468

and applying a simple null-hypothesis test, χ2(7) = 6.06, P = 0.53, further suggesting that coefficient ranks469

were randomly and evenly distributed. In other words, posterior inferences were not systematically upwardly470

or downwardly biased from the true values, indicating that the proposed models are expected to provide471

unbiased estimators of selection on behavioral RNs across a broad range of parameter space.472

5 Conclusion473

Understanding the adaptive evolution of individual variation is an exciting and bustling frontier in evolutionary474

ecology. Repeatable individual differences in behavioral consistency, plasticity, and predictability have now475

been demonstrated across a broad range of taxa under a variety of ecological conditions. The challenge for476

behavioral ecologists is thus no longer to simply document and describe between-individual differences in477
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Figure 3: Proposed representation of multivariate selection on a behavioral RN. Plots are shown for the
within-generation effects of a hypothetical selection event, where selection was characterized by a combination
of directional, quadratic, and correlational fitness effects across RN parameters. Distinct outcomes are shown
for the direct effects of selection (∆D) causing adaptation independent of trait covariation, as well as the to-
tal effects of selection (∆T) accounting for indirect effects due to phenotypic integration among RN parameters.

Left panel: Three rows are shown for the distinct effects of multivariate selection on the average
population RN parameter values (∆z̄p), individual variation in population RN values (represented by the
population variance, ∆Vzp), and the integration among RN parameters (represented by the population
correlations, ∆Rzp). Uncertainty around these predicted changes is captured by posterior distributions of
each selection differential, with the posterior probability Pr(∆) supporting the expected direction of change
for total and direct effects indicated in the top corner of each plot. If individual differences are adaptive, it is
expected that selection will act to directly increase or maintain the population variance of RN parameters
(∆DVzp ≥ 0); similarly, if positive trait integration is adaptive, selection will directly increase or maintain
trait correlations (i.e. ∆DRzp ≥ 0). Adaptation may nevertheless be constrained or accelerated by indirect
effects due to phenotypic integration. In this hypothetical scenario, it can be seen that although selection
is acting to decrease individual variation in predictability, Pr(∆D = 0.98), indirect effects lead to no clear
expected change in the population variance, Pr(∆T = 0.69). Similarly, while there is only weak evidence
of direct selection to decrease the mean plasticity in the population, Pr(∆D = 0.75), indirect effects are
expected to cause a more pronounced change, Pr(∆D = 0.92).

Right panel: The expected change in the shape of the population behavioral RN following selec-
tion. The population RN prior to selection is indicated by the grey line and band. Point estimates from the
posterior distributions of ∆z̄p are used to visualize how direct and total selection effects shift the mean
population RN across the relevant environmental gradient. The dashed, shaded bands indicate the 95%
credible intervals (i.e. 1.96 ∗ θ) capturing the expected levels of behavioral predictability in the population.
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behavior, but to instead test theory explaining how and why these patterns are observed (Dingemanse and478

Wright 2020). It is now well-established that a variety of non-adaptive mechanisms can readily maintain479

repeatable phenotypic variability and trait correlations within a population, particularly for traits with480

complex genetic architectures. Therefore, the existence of such variation in itself does not provide strong reason481

to suspect that natural selection is acting to increase or maintain individuality within a population. Bierbach,482

Laskowski, and Wolf (2017), for example, found that personality emerged in activity level among clonal483

fish raised in highly controlled environmental conditions, likely as a result of developmental noise. Similar484

findings have been obtained for clonal mice, where individuality in behavior can result from subtle differences485

in neurobiological and epigenetic responses toward standardized early rearing environments (Zocher et al.486

2020). Processes such as mutation-selection balance also remain plausible explanations for the maintenance of487

non-adaptive behavioral variation even in the presence of consistent stabilizing selection (Zhang and Hill 2005),488

particularly for complex traits with large mutational target sizes caused by highly polygenic and pleiotropic489

developmental pathways (Houle 1998; Boyle, Li, and Pritchard 2017). Empirical research in humans has, for490

example, provided support for the role of mutation-selection balance in maintaining repeatable variation in491

personality (Verweij et al. 2016), psychopathology (Keller 2008; Pardiñas et al. 2018), and general intelligence492

(Hill et al. 2018). In light of these considerations, the mere existence of differential personality, plasticity,493

and/or predictability within a population should not be considered biologically surprising, nor should it be494

considered particularly informative on its own for advancing behavioral ecological theory (Beekman and495

Jordan 2017). The onus thus remains on empiricists to demonstrate the evolutionary relevance of individual496

variation within their study system, as well as to identify the common mechanisms and selection pressures497

that may facilitate or diminish its maintenance across generations. While many such studies are now available498

(e.g. Dingemanse and Réale 2005; Le Cœur et al. 2015; Le Galliard, Paquet, and Mugabo 2015), there is a499

clear need for more phenotypic selection analyses on behavioral RNs in the wild. As John Maynard Smith500

(1978) once noted, “The most direct way of testing a hypothesis about adaptation is to compare individuals501

with different phenotypes, to see whether their fitnesses vary in the way predicted by the hypothesis” (p. 45).502

A fundamental challenge for this research endeavor is to avoid inferential bias caused by using BLUP point503

estimates of individuals’ latent personality, plasticity, and predictability parameters to predict fitness (Hadfield504

et al. 2010), as these trait values are typically inferred with high degrees of uncertainty from GLMMs.505

Previous attempts to address this issue (Houslay and Wilson 2017) have proposed using random effects506

models to account for the uncertainty of BLUPs, but this approach restricts analyses to the estimation of507

linear correlations and covariances among RNs and fitness. Ignoring non-linear associations fundamentally508

inhibits researchers’ capacity to study adaptive individual differences, as persistent directional/linear selection509

is expected to diminish rather than promote individuality within a population due to the exhaustion of510

fitness-relevant additive genetic variance (Walsh and Blows 2009). To overcome this limitation, the present511

study developed and investigated the properties of novel Bayesian models for studying nonlinear selection on512

behavioral RNs. These models synthesize the Lande-Arnold selection framework (Lande and Arnold 1983)513

with the GLMM framework for quantifying individual variation (Dingemanse and Dochtermann 2013) into a514

single multi-response model, thus integrating uncertainty in BLUPs and their effects into a comprehensive515

analysis. As a consequence, various complex forms of nonlinear selection–such as stabilizing, disruptive,516

balancing, and/or correlational selection–can be estimated to test competing hypotheses of why variation517

in RNs persists within a population. Given the challenge of visualizing high-dimensional selection surfaces518

(Phillips and Arnold 1989), I further proposed a simple method for visualizing the expected direct and total519

effects of selection on the evolution of behavioral RNs. This approach facilitates intuitive tests of adaptive520

hypotheses on specific behavioral parameters, even in the presence of high-dimensional phenotypes and521

complex selection surfaces.522

It is important to note that selection differentials estimated from the proposed models (Eq 1.2 & Eq 2) will523

be sensitive to missing fitness-relevant phenotypes or functional relationships, which is a deeper issue with524

any trait-based model of selection and evolutionary change (Morrissey, Kruuk, and Wilson 2010). However,525

behavioral ecologists are generally interested in developing and testing adaptive theory of selection, rather526

than most accurately predicting patterns of microevolutionary change within a population. By focusing527

on trait-based models, rather than pure variance-partitioning analyses, broader comparative patterns of528

adaptation and selection can be better recognized and evaluated (e.g. Kingsolver et al. 2001). Nevertheless,529

it is often useful to compare the predicted mean changes in phenotypic values between trait- and variance-530

partitioning models, which can be used to assess the magnitude of effects that are being overlooked with the531

fixed effects analysis (Morrissey et al. 2012). The random effect correlation models proposed by Houslay532

and Wilson (2017) can thus provide complimentary analyses to the models presented here. As discussed533

above, exploratory, non-parametric analyses can then be employed to detect and better characterize any534

unspecified nonlinear functions on fitness, which can subsequently be integrated into the parametric model.535
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In this way, the goals of prediction and explanation, while distinct and in many cases best suited to different536

modelling approaches (Shmueli 2010), can nonetheless be integrated to better inform our understanding of537

microevolutionary change. The proposed modeling framework should, therefore, readily enhance tests of538

adaptive theory in the wild.539
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