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Abstract 25 

1. Individual reaction norms describe how labile phenotypes vary as a function of organisms’ 26 

expected trait values (intercepts) and plasticity across environments (slopes), as well as 27 

their degree of stochastic phenotypic variability or predictability (residuals). These reaction 28 

norms can be estimated empirically using multilevel, mixed-effects models and play a key 29 

role in ecological research on a variety of behavioral, physiological, and morphological 30 

traits. Many evolutionary models have also emphasized the importance of understanding 31 

reaction norms as a target of selection in heterogeneous and dynamic environments.  32 

2. However, it remains difficult to empirically estimate nonlinear selection on reaction norms, 33 

inhibiting robust tests of adaptive theory and accurate predictions of phenotypic evolution. 34 

To address this challenge, we propose generalized multilevel models for estimating 35 

stabilizing, disruptive, and correlational selection on the reaction norms of labile traits, 36 

which can be applied to any repeatedly measured phenotype using a flexible Bayesian 37 

framework.  38 

3. Our modelling approach avoids inferential bias by simultaneously accounting for 39 

uncertainty in reaction norm parameters and their potentially nonlinear fitness effects. We 40 

formally introduce these nonlinear selection models and provide detailed discussion on 41 

their interpretation and potential extensions. We then validate their application in a 42 

Bayesian framework using simulation-based calibration and power analyses. 43 

4. We find that our models facilitate unbiased Bayesian inference across a broad range of 44 

effect sizes and desirable power for hypothesis tests with large sample sizes. Coding 45 

tutorials are further provided to aid empiricists in applying these models to any phenotype 46 

of interest using the Stan statistical programming language in R. The proposed modeling 47 

framework should, therefore, readily enhance tests of adaptive theory for a variety of labile 48 

traits in the wild. 49 

Keywords:  50 

phenotypic evolution, complex trait, multivariate, adaptation, personality, flexibility  51 



3 

Introduction 52 

A population will evolve by natural selection whenever heritable variation occurs in fitness-53 

relevant phenotypes (Darwin 1859). Measuring the fitness consequences of individual differences 54 

in highly labile behavioral, physiological, and morphological traits is, therefore, fundamental for 55 

explaining their adaptive evolution. Across a variety of phenotypes and taxa, repeatable individual 56 

differences have been observed in organisms’ average trait values (Bell, Hankison, & Laskowski 57 

2009; Fanson & Biro 2015; Cauchoix et al. 2018) and in their plasticity across environments 58 

(Dingemanse et al. 2010; Stamps 2016; Arnold, Nicotra, & Kruuk 2019), with some individuals 59 

consistently being more or less responsive to environmental change than others. In addition, it is 60 

increasingly appreciated that individuals may repeatably differ in their degree of stochastic 61 

phenotypic variability within a given environment (see Box 1 below for a conceptual overview; 62 

Biro & Adriaenssens 2013; Westneat, Schofield, & Wright 2013; Mitchell, Beckmann, & Biro 63 

2021), a phenomenon which has often been ignored in ecological research (Hansen, Carter & 64 

Pélabon 2006). These individual-specific patterns reflect distinct but potentially integrated 65 

parameters (intercepts, slopes, and within-individual residuals) of the reaction norms (RNs, i.e. 66 

state-dependent functions relating phenotype to environment, Table 1) evolving in a population 67 

(Figure 1). RN models provide a highly generalizable, quantitative framework for investigating the 68 

evolution and development of labile traits, with broad applications ranging from social behaviors 69 

(Dingemanse & Araya-Ajoy 2015; McNamara & Leimar 2020; Martin, Jaeggi, & Koski, 2023) and 70 

learning processes (Wright, Haaland, Dingemanse, & Westneat 2022) to thermal performance 71 

curves (Svensson, Gomez-Llano, & Waller 2020) and extended phenotypes (Munar-Delgado, 72 

Araya-Ajoy, & Edelaar, 2023), such as gall size in insect-host plant interactions (Weis & Gorman 73 

1990). Interest in the evolutionary ecology of RNs has grown steadily across a diverse range of 74 

fields in recent decades (e.g. Brommer, Kontiainen, & Pietiäinen 2012; Strickland et al. 2021; 75 

Newediuk, Prokopenko, & Wal 2022), generating methodological innovations for estimating RNs 76 

subject to measurement error (e.g. Nussey, Wilson, & Brommer 2007; Dingemanse & 77 

Dochtermann 2013; Gomulkiewicz et al. 2018; O’Dea, Noble, & Nakagawa 2021; Martin & Jaeggi 78 

2022), as well as theoretical models for explaining the selection pressures shaping and 79 

maintaining individual variation in RNs within populations (e.g. Wolf & Weissing 2010; Dall & 80 

Griffith 2014; Sih et al. 2015; Wright et al. 2019). Attention to RNs has also increased in related 81 

fields of inquiry such as personality psychology (Denissen & Penke 2008; Nettle & Penke 2010) 82 

and evolutionary anthropology (Jaeggi et al. 2016).  83 
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RN models are not only useful statistical tools for describing phenotypic variation. Classic 84 

theoretical models often assumed that selection acted independently on phenotypes expressed 85 

in discrete states of the environment (so-called character states), where the evolution of RN 86 

parameters and thus phenotypic plasticity across environments was interpreted as a byproduct 87 

of state-specific selection (Via & Lande 1985; Gomulkiewicz & Kirkpatrick 1992). Many biologists 88 

disagreed with this perspective on empirical and theoretical grounds, resulting in historical 89 

debates about whether RN parameters should be conceptualized as direct or indirect targets of 90 

natural selection (Gavrilets & Sheiner 1993; Scheiner 1993a; Via et al. 1995; Nicoglou 2015). 91 

Fortunately, this disagreement is now largely resolved (Futuyma 2021), with evolutionary 92 

quantitative genetic theory demonstrating the mathematical equivalence and thus conceptually 93 

complementarity of models emphasizing selection on expressed character states or the RNs 94 

producing them (de Jong 1995). As such, many contemporary evolutionary frameworks 95 

emphasize RNs parameters (intercepts, slopes, and residuals) and their underlying mechanisms 96 

as putative targets of selection, leading to differential patterns of adaptation and extinction in 97 

changing environments (Schlichting & Piglucci 1998; Ghalambor, McKay, Carroll, & Reznick 98 

2007; Fox et al. 2019).  For instance, evolutionary ecologists have long investigated the unique 99 

role of both cue-induced and stochastic phenotypic plasticity in the colonization of novel habitats 100 

(Caño et al. 2008; Volis, Ormanbekova, & Yermekbayev 2015; Hendry 2016; Wang & Althoff 101 

2019). In addition, evolutionary geneticists have shown how plasticity in social environments can 102 

magnify heritable variation in mean trait values, accelerating or inhibiting phenotypic evolution in 103 

comparison to unresponsive phenotypes (Moore et al. 1997; Bijma & Wade 2008; McGlothlin et 104 

al. 2010; Kazancıoğlu, Klug, & Alonzo 2012). Game theorists and behavioral ecologists have 105 

further emphasized the importance of understanding selection on RNs due to the prevalence of 106 

fluctuating density- and frequency-dependent selection in social environments (Araya-Ajoy, 107 

Westneat, & Wright 2020; McNamara & Leimar 2020; Martin, Jaeggi, & Koski 2023), as well as 108 

the role of dynamic environments more generally in selecting for learning mechanisms and 109 

emotional states rather than specific behaviors per se (Skinner, 1966; Henrich & McElreath 2003; 110 

McNamara & Houston 2009; Fawcett, Hamblin, & Giraldeau 2013; Nakahashi & Ohtsuki 2015; 111 

Wright et al. 2022). Distinct genetic control of phenotypic stability and change has also been 112 

experimentally demonstrated for diverse phenomena from cold tolerance (Ørsted, Rohde, 113 

Hoffmann, Sørensen, & Kristensen 2018) to body size (Scheiner & Lyman, 1991) and various 114 

forms of developmental polyphenism (Suzuki & Nijhout 2006; Projecto-Garcia, Biddle, Ragsdale 115 

2017), suggesting that differential selection on heritable variation in RN intercepts, slopes, and 116 

residuals, as well as differential patterns of genetic integration between RN parameters (Wagner, 117 
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Booth, & Bagheri-Chaichian, 1997; Tonsor, Elnaccash, & Scheiner, 2013), can in turn have 118 

distinct consequences for the evolutionary response to selection (de Jong 1995: Martin et al. 119 

2024). Accordingly, divergence has been observed in the RNs of many naturally occurring 120 

populations, such as differential plasticity in the growth rates of phytoplankton (Thalassiosira 121 

pseudonana; Schaum, Buckling, Smirnoff, & Yvon-Durocher 2022), ponderosa pine (Pinus 122 

ponderosa; de la Mata et al. 2022) and single-leaf pinyon (Pinus monophylla; Vasey, Weisberg, 123 

& Urza 2022) populations in response to temperature fluctuations and microhabitat heterogeneity. 124 

Despite this strong theoretical emphasis and empirical basis, robust statistical methods have not 125 

yet been developed for detecting complex patterns of selection on the RNs of labile traits. 126 

Many of the phenotypes commonly studied by evolutionary ecologists are highly labile (i.e. 127 

exhibit high degrees of reversible plasticity; Scheiner, 1993b) in response to the local 128 

environment. This means that repeatable individual differences in the RN underlying these traits 129 

tend to account for only a modest proportion of the total variation observed in measurements 130 

across space and time (Bell, Hankison, & Laskowski 2009; Fanson & Biro 2015; Cauchoix et al. 131 

2018). This is expected, given that labile traits are often adapted to facilitate flexible responses 132 

toward fitness-relevant variation in the environment (Scheiner 1993b), such as by up-regulating 133 

circulating testosterone in response to social challenges (Wingfield et al. 1990; Eisenegger, 134 

Haushofer, & Fehr 2011), temporarily inducing a fear state in response to odor cues of predation 135 

(Mathuru et al. 2012), or regulating alloparental care in response to the quality of the local 136 

environment (Guindre-Parker & Rubenstein, 2018; Martin et al. 2020). Conversely, labile traits 137 

may also be prone to maladaptive plasticity in response to novel or extreme environmental 138 

stressors (e.g. Ghalambor et al. 2015). As such, single measures of labile phenotypes tend to 139 

reflect within- rather than among-individual variation, potentially biasing empirical estimates of 140 

trait (co)variances and selection gradients estimated across heterogeneous environments 141 

(Brommer 2013; Dingemanse & Dochtermann 2013; Niemelä & Dingemanse 2018; Royauté et 142 

al. 2018), leading to inaccurate inferences about adaptive evolution (Dingemanse, Araya‐Ajoy, & 143 

Westneat 2021; Martin & Jaeggi 2022). Classical approaches such as the Lande and Arnold 144 

(1983) regression framework do not partition repeatable and non-repeatable differences across 145 

phenotypic measurements and, as a consequence, may lead to downwardly biased estimates of 146 

selection gradients for labile traits in field research (Dingemanse et al. 2021). Classical methods 147 

can also be biased by unmeasured, within-individual environmental effects on fitness and 148 

phenotype that generate spurious signals of selection (Scheiner et al. 2002; Stinchcombe et al. 149 

2002). Using these methods to estimate selection on labile traits with single measures, averages 150 
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of raw data, or point estimates in multi-stage analyses can, therefore, increase the risk of biased 151 

evolutionary inference (Hadfield et al. 2010), particularly when attempting to understand the 152 

adaptation of RNs underlying observed phenotypes across environments. 153 

Fortunately, generalized linear mixed-effects models (GLMMs) provide a flexible toolkit for 154 

estimating RNs from empirical data, as well as for modelling the effects of RNs on fitness and 155 

other biological outcomes of interest. Current variance-partitioning methods rely on the use of 156 

multi-response/multivariate GLMMs with covarying random effects to model selection, which 157 

effectively account for uncertainty in individuals’ RNs and their estimated effects (Hadfield et al. 158 

2010). This approach has been repeatedly introduced to selection studies of RNs in variety of 159 

contexts, demonstrating its broad applicability (e.g. Brommer, Kontiainen, & Pietiäinen 2012; 160 

Houslay & Wilson 2017; Arnold, Nicotra, & Kruuk 2019), and can be further extended to provide 161 

a veritable treasure chest of biological insights (Blows 2007). For example, such models can be 162 

used to identify trajectories of phenotypic conservation and divergence among closely related 163 

populations (Royauté, Hedrick, & Dochtermann 2020), discover latent behavioral characters 164 

among multiple traits (Araya-Ajoy & Dingemanse 2014; Martin et al. 2019), or calculate genetic 165 

responses to directional selection (Stinchcombe, Simonsen, & Blows 2014). Therefore, multi-166 

response GLMMs with covarying random effects can be used to accomplish many empirical goals 167 

with relative ease, while also avoiding statistical bias due to uncertainty in RNs.  168 

Despite their benefits, these commonly used GLMMs cannot detect nonlinear selection on 169 

RNs (i.e. disruptive, stabilizing, and correlational selection) because the random effect covariance 170 

is defined as an average measure of linear dependency among fitness and phenotype. By failing 171 

to describe the curvature of the adaptive landscape, and thus the ecological phenomena 172 

generating fitness saddles, ridges, domes, and cliffs (Lande & Arnold, 1983; Blows & Brooks, 173 

2003; Blows 2007; Vercken et al., 2012), random effect models can provide an incomplete and 174 

potentially misleading perspective on the biological processes driving and constraining 175 

multivariate evolution. In non-randomized experiments or field settings, ignoring nonlinear 176 

selection can further generate biased estimates of directional selection gradients, in addition to 177 

biased predictions of the evolutionary response to selection on the expectations and 178 

(co)variances of RN parameters (Arnold et al., 2001; Morrissey et al., 2012; Pick et al., 2022). 179 

Therefore, despite their clear utility, current covarying random effects models can also limit robust 180 

tests of adaptive theory, which often predicts that stabilizing, disruptive, and/or correlational 181 

selection will shape RN evolution (e.g. Wagner et al., 1997; Gavrilets & Hastings, 1994). This 182 
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inhibits accurate predictions of phenotypic evolution more generally (Bulmer 1971; Lande & 183 

Arnold 1983; Arnold, Pfrender, & Jones, 2001; Villemereuil et al., 2020).  184 

Here we address this challenge by introducing multi-response/multivariate GLMMs for 185 

unbiased estimation of nonlinear selection on RNs, building on well-established approaches to 186 

estimating linear selection (e.g. Brommer, Kontiainen, & Pietiäinen 2012; Houslay & Wilson 2017; 187 

Arnold, Nicotra, & Kruuk 2019; Araya-Ajoy, Dingemanse, Westneat, & Wright 2023). The 188 

proposed GLMMs are applicable to any labile and repeatedly measured phenotype. We begin by 189 

reviewing so-called double hierarchical GLMMs for estimating RNs from longitudinal, repeated 190 

measures data (Westneat, Schofield, & Wright, 2013; O’Dea et al. 2021) and formally introduce 191 

multi-response/multivariate models estimating linear and nonlinear selection on RNs, applicable 192 

to both Gaussian and non-Gaussian measurements. We then consider their implementation in a 193 

Bayesian framework, using a simulation-based calibration procedure to validate that the proposed 194 

models are unbiased for statistical inference. We also explore statistical power for Bayesian 195 

hypothesis tests across a range of sampling designs and selection effect sizes. Guided tutorials 196 

are further provided (see data availability) to aid researchers in implementing and interpreting 197 

these models for their own data using the Stan statistical programming language (Carpenter et 198 

al. 2017). 199 

Figure 1. Empirical estimation of reaction norms. Repeatable among-individual differences var(𝜼) (top 200 

left) in the expected value 𝝁 and dispersion 𝝈 of observed phenotype z can be predicted with a RN model 201 

(top right) using link functions g and three (or more) distinct parameters: RN intercept parameters 𝝁𝟎 202 

describing each individual’s average phenotype across a mean-centered environment or in the absence of 203 

the environment (i.e. when the environmental state x = 0); RN slope parameters 𝜷𝒙  describing each 204 

individual’s systematic change in phenotype across environmental states x; and RN residual parameters 205 

𝝈𝟎 reflecting each individual’s degree of stochastic variability (or, conversely, their predictability/precision) 206 

in phenotype within a given environment. See Eq. 1 for index rather than matrix notation. These parameters 207 

will be unknown in empirical research and must be estimated using raw measurements (teal circles) across 208 

environmental states (bottom left). An example is shown for a simple linear RN with a log-link on the 209 

dispersion of a normal distribution, so that an individual’s residual parameter, expressed as a variance on 210 

the squared log scale sqrt (exp(𝜎0 + 𝜎0𝑗)), is proportional to (∝) the spread of observed residuals on the 211 

original data scale, as shown here by a 95% credible interval. Failure to account for uncertainty around 212 

point estimates of individual j’s RN parameters (bottom right) leads to anti-conservative inference and 213 

increased risk of false positives (Hadfield et al. 2010).  214 
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Table 1. Notation and terminology. 216 

Term Symbol Description 

Individual  

reaction norm (RN) 
𝑓(𝜇, 𝜎) 

A probabilistic function 𝑓 with parameters predicting the 

expectation 𝜇 and dispersion 𝜎 of an individual’s phenotype in 

response to a measurable aspect of the environment. 

RN intercept 𝜇0, 𝜇0𝑗 

The expected phenotype in the average environment or in the 

absence of an environmental factor. Individual RN intercept 𝜇0𝑗 

is expressed as a deviation from population RN intercept 𝜇0. 

RN slope 𝛽𝑥 , 𝛽𝑥𝑗
 

The expected change in phenotype in response to a measured 

environment x. Individual RN slope 𝛽𝑥𝑗 is expressed as a 

deviation from the population average slope 𝛽𝑥.  

RN residual 𝜎0, 𝜎0𝑗 

The magnitude of stochastic variability in phenotype within a 

given environment, i.e. the inverse of predictability (O’Dea et al., 

2021) and precision (Hansen et al., 2006). Individual RN 

residual parameter 𝜎0𝑗 is expressed as a deviation from 

population average residual parameter 𝜎0, which together 

determine the magnitude of variation in observed residuals. 

RN trait value/ 

character state 
𝜂𝑗𝑡 

The repeatable trait value predicted by individual j’s reaction 

norm being expressed within the environmental state at time t. 

This context-specific trait value is also referred to as a character 

state in quantitative genetics. 

Repeatable  

among-individual 

differences 

var(𝜼) 

The total amount of among-individual variation in the phenotype 

available to natural selection over the sampling period, which 

reflects consistent individual differences in RN expression 

across environments (i.e. the variance of character states). 

Link functions 𝑔𝜇 , 𝑔𝜎 , 𝑔𝜃 
Transformations that facilitate modelling of non-Gaussian 

phenotypes and fitness measures on a linear scale. 

Fitness 𝑊, 𝑓(𝜃, 𝛿) 

A measure of an individual’s observed survival, reproduction, 

and/or performance W, as predicted by the expectation 𝜃 and 

dispersion 𝛿 parameters of distribution f. These quantifiable 

‘fitness components’ are used to approximate the repeatable, 

differential rate of zygote production across individuals. 

Directional selection 𝐛, 𝜷 

Selection gradients 𝜷 quantify the magnitude of direct selection 

on the population means of reaction norm parameters. 

Regression coefficients b approximate these effects on the 

transformed scale of a GLMM. 

Quadratic selection 𝐪, 𝜸 

Selection gradients 𝛄 quantify the magnitude of direct selection 

on the (co)variances of reaction norm parameters. Regression 

coefficients q approximate these effects on the transformed 

scale of a GLMM. 

Fluctuating selection 𝚫𝜷, 𝚫𝜸 
Environmental change that shifts the magnitude of selection on 

RNs 𝚫𝜷, 𝚫𝜸 across space and/or time 
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Modelling nonlinear selection on labile traits 217 

The models we propose in this section are straightforward extensions of the multi-218 

response/multivariate random effects GLMMs discussed above. Our trait-based approach shifts 219 

estimation of fitness effects from random effect covariances to flexibly parameterized linear and 220 

nonlinear selection coefficients. This approach builds on a long tradition of measurement error 221 

models in biostatistics (Loken & Gelman 2017; Ponzi et al. 2018; Martin & Jaeggi 2022), also 222 

known as structural equation (Bollen & Noble 2011; Araya-Ajoy & Dingemanse 2014; Martin et 223 

al. 2019) or errors-in-variables models (Dingemanse et al. 2021), which allow for latent trait values 224 

such as RN intercept, slope, and residual parameters to simultaneously affect multiple response 225 

models. The basic structure of these models has been previously introduced in the broader 226 

context of phenotypic selection analysis by Ponzi et al. (2018), Dingemanse et al. (2021), and 227 

Araya‐Ajoy et al. (2023), who considered Gaussian models of selection on repeatable trait values. 228 

Here, we generalize and extend these models to allow for estimating (non)linear selection on RN 229 

intercepts, slopes, and residuals (and any other distributional parameters of interest), as well as 230 

to estimate directional and quadratic selection gradients on RN parameters with non-Gaussian 231 

phenotype and fitness measures.  232 

Reaction norm model 233 

The first step in any selection analysis is to define the trait of interest. For repeatedly 234 

expressed traits that exhibit plasticity, the ‘traits’ of interest may be latent properties of a RN, 235 

which researchers can estimate as functional parameters. As shown in Figure 1, individual 236 

variation in a linear RN can be decomposed into underlying repeatable differences in individuals’ 237 

RN intercept 𝝁𝟎, slope 𝜷𝒙, and residual parameters 𝝈𝟎. Note that we use 𝜷𝒙 here to reference 238 

any slope defined over a non-social environmental state (see Martin & Jaeggi, 2022 for a 239 

treatment of social effects). Table 1 provides a glossary of formal notation and terminology used 240 

throughout the paper. GLMMs effectively describe the RNs of non-Gaussian phenotypes using 241 

additive linear functions on a transformed latent scale (Bolker et al., 2009; Villemereuil et al., 242 

2016). Extensive prior work has been done on appropriate study design and GLMM 243 

implementation for RN research in evolutionary ecology (e.g. see Nussey, Wilson, & Brommer 244 

2007; Martin, Nussey, Wilson, & Réale, 2010; Dingemanse & Dochtermann 2013; O’Dea et al. 245 

2021 among others). Therefore, we avoid reviewing this material in detail here, instead focusing 246 

on the introduction of a general form and notation for RN models of any labile trait. 247 
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Consider a GLMM for repeated measure t of individual j, who expressed labile phenotype 248 

𝑧𝑗𝑡  in environmental state 𝑥𝑗𝑡 . The distribution of measurements can be predicted using a 249 

probability function 𝑓(𝜇, 𝜎) with mean, location, or rate parameter 𝜇 and dispersion, shape, or 250 

scale parameter 𝜎 (e.g. as with normal, gamma, and beta distributions). Link functions 𝑔𝜇 and 𝑔𝜎 251 

are used for modelling the vectors 𝝁 and 𝝈 across observations so that the RN parameters 𝝁𝟎, 252 

𝜷𝒙, and 𝝈𝟎 can be expressed as additive linear effects on a transformed scale, irrespective of the 253 

assumed distribution of the raw data. For instance, 𝑔𝜇 = identity(𝜇)  and 𝑔𝜎 = log (𝜎2)  are 254 

sensible choices for a Gaussian measure. The generalized form of the model is given by  255 

 𝑧𝑗𝑡 ∼ 𝑓(𝜇𝑗𝑡
 , 𝜎𝑗

 ) (𝟏) 256 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + (𝛽𝑥 + 𝛽𝑥𝑗)𝑥𝑡  257 

𝑔𝜎(𝜎𝑗) = 𝜎0 + 𝜎0𝑗
 258 

[𝝁𝟎
⊤, 𝜷𝒙

⊤, 𝝈𝟎
⊤]⊤ ∼ MVN(𝟎, 𝐏):  𝐏 =  [

var(𝝁𝟎) … …
cov(𝜷𝒙, 𝝁𝟎) var(𝜷𝒙)  ⋮
cov(𝝈𝟎, 𝝁𝟎) cov(𝝈𝟎, 𝜷𝒙) var(𝝈𝟎)

]    259 

where ⊤ indicates the transpose operator. Here 𝜇0 , 𝛽𝑥 , 𝜎0 are the average values for the RN 260 

intercept, slope, and residual parameters in the population, expressed on the scale of the link 261 

functions. Repeatable individual differences in RN parameters are in turn estimated as deviations 262 

from these averages using random effects 𝜇0𝑗, 𝛽𝑥𝑗, and 𝜎0𝑗. For simplicity, the model assumes 263 

environmental exposures x are randomized across individuals, but it may be necessary in non-264 

experimental contexts to center covariates within individuals for appropriate scaling of RN slopes 265 

(Schaeffer, 2004; van de Pol & Wright 2009; Araya-Ajoy, Mathot, & Dingemanse, 2015; Westneat 266 

et al., 2020; Fay, Martin, & Plard 2022). The magnitude of among-individual (co)variance in these 267 

RN parameters is described by the P matrix.  See Box 1 for further discussion of the RN residual 268 

parameter.  269 
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Box 1. Interpreting among-individual differences in RN residuals. 270 

The functional role of the RN residual parameters 𝝈𝟎 can be ambiguous because these individual 271 

effects are modelled on the dispersion 𝝈 of the phenotypic distribution, rather than the expectation 272 

𝝁 (Eq. 1). Phenotypic variance due to dispersion is generally interpreted as noise or measurement 273 

error around individuals’ repeatable mean trait values (Brommer 2013), which are determined by 274 

the expression of RN intercepts 𝝁𝟎 and slopes 𝜷𝒙 across measured environments. However, the 275 

residuals of labile traits may also contain repeatable and fitness-relevant variation in how 276 

organisms intrinsically regulate their phenotype (Westneat, Wright, & Dingemanse 2015), such 277 

as in their assessment and response toward developmental noise within a given environment 278 

(Gavrilets & Hastings, 1994; Hansen et al., 2006; Mitchell et al. 2021). Such repeatable among-279 

individual differences in within-individual variation, described by 𝝈𝟎, may arise from a variety of 280 

mechanisms regulating patterns of stochastic expression in behavior or other labile traits 281 

(Prentice, Houslay, Martin & Wilson, 2020). For instance, stochasticity can be generated through 282 

the repeatable activities of the organism, such as by random sampling of the environment, which 283 

can be shaped via reinforcement and punishment to facilitate adaptive learning in novel or 284 

uncertain environments (Niv et al. 2002; Barrett 2011; Wright et al., 2022). Consequently, intrinsic 285 

variability may evolve in conjunction with learning mechanisms to track unpredictable shifts in 286 

fitness optima during development (Borenstein, Feldman, & Aoki 2008). Predation may also select 287 

for greater variability in movement, so as to reduce predators’ capacity to predict prey escape 288 

trajectories (Hugie, 2003; Moore et al. 2017), while reduced variability may instead be adaptive 289 

for reputation formation and trust in repeated social interactions (McNamara & Leimar, 2010). 290 

Stochasticity may also result from exogenous factors, such that individual differences in 𝝈𝟎  reflect 291 

how organisms regulate in response to the environment. For example, when environmental states 292 

fluctuate rapidly in an unpredictable and uncontrollable manner, negative selection may act on 293 

the RN residual parameter to promote phenotypic canalization, decreasing susceptibility of the 294 

phenotype to developmental perturbation (Flatt 2005; Siegal & Leu 2014; Westneat et al., 2015). 295 

In empirical research, it will often be challenging to distinguish variance in residuals due to 296 

intrinsically stochastic variability or unmeasured processes of cue-induced plasticity and 297 

individual-by-environment interaction (Westneat et al. 2015; Prentice et al., 2020). Estimates of 298 

var(𝝈𝟎)  in the field may, for example, reflect repeatable functional interactions between 299 

unmodelled RN slopes and stochastic environmental exposures. Therefore, caution is warranted 300 

when inferring the mechanistic underpinnings of 𝝈𝟎 outside of well-controlled experiments. Poorly 301 

specified statistical models, in which predicted residual processes do not accurately describe 302 
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observed phenotypic variance, will also inhibit accurate biological inference of RNs (Mitchell, 303 

Dujon, Beckmann, & Biro, 2020; Ramakers, Visser, & Gienapp, 2020). Nonetheless, to the degree 304 

that individual differences in residuals are repeatable across time and not due to unbalanced 305 

sampling or pseudo-repeatability (Dingemanse & Dochtermann 2013), selection can still shape 306 

RN residuals, irrespective of whether within-individual deviations arise from mechanisms of 307 

intrinsically stochastic or cue-induced trait expression. Therefore, we suggest that researchers in 308 

both observational and experimental systems focus their attention on functionally interpreting and 309 

operationally defining RN residual parameters with respect to theoretically motivated RN slopes, 310 

defined over measured dimensions of environmental change (Figure 1). 311 

 312 

Box 2. Repeatable among-individual differences due to RNs. 313 

Selection on the RNs of labile traits can only occur if individuals differ in their intercepts, slopes, 314 

and residual parameters across time. The covariance matrix P in Eq. 1 describes these 315 

repeatable among-individual differences and, therefore, ultimately determines the total amount of 316 

trait (co)variation available to natural selection on phenotype z over the sampling period of 317 

interest, given that RN parameters 𝝁𝟎, 𝜷𝒙, and 𝝈𝟎 predict how organisms will repeatedly express 318 

their phenotype within and across environments. We denote the total magnitude of repeatable 319 

among-individual differences in z due to RNs as var(𝜼), which in the general case sets an upper 320 

limit on the heritability of a phenotype due to direct genetic effects (see Bijma, 2011 for social 321 

traits) and thus provides a useful phenotypic proxy of the evolvability of a trait (Martin et al., 2023). 322 

The trait values 𝜼 represent the repeatable character states that organisms are expected to 323 

express within and across sampled environments, as predicted by their individual RNs (Fig. 1 top 324 

left).  Conversely, any variance in observed trait values z due to non-repeatable effects var(𝛏) =325 

var(𝒛) − var(𝜼)  introduces noise into the estimation of selection gradients defined across 326 

sampled environments. Failure to distinguish non-repeatable var(𝛏)  and repeatable var(𝜼) 327 

variance in measured phenotypes var(𝐳) = var(𝜼) + var(𝝃) can thus lead to biased estimates of 328 

directional 𝜷  
∗
 and quadratic 𝜸 

∗  selection gradients (Figure 2). For evolutionary ecologists, 329 

correlations between fitness and phenotype that are repeatable over time and potentially heritable 330 

across generations will generally be of primary interest, motivating partitioning of var(𝜼) from 331 

var(𝐳) with a GLMM (Martin & Jaeggi 2022).  332 

O’Dea et al. (2022) and de Villemereuil et al. (2016), among others, provide exact analytic 333 

solutions and numeric methods for calculating var(𝜼) with many commonly used GLMMs. For the 334 
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general case, var(𝜼) can always be approximated on the original data scale, irrespective of model 335 

complexity, by using simulation to compare the variance of model predicted phenotypic 336 

distributions in the presence var(𝒛pred)
𝜼

 and absence var(𝒛pred)
−𝜼

 of repeatable individual 337 

effects 𝝁𝟎 
, 𝜷𝒙, and 𝝈𝟎, using a large number of random samples. 338 

var(𝜼) ≈ var(𝒛pred)
𝜼

− var(𝒛pred)
−𝜼

  (𝟐)339 

Model predictions can also be used to approximate the total repeatability of among-individual 340 

differences in the phenotype on the original data scale for any GLMM 341 

R𝜂 ≈
var(𝜼) 

var(𝒛pred)
𝜼

(𝟑) 342 

The bias of estimated selection gradients will increase as the R𝜂 of a phenotype decreases and 343 

var(𝛏)  in turn increases (Spearman, 1904; Searle, 1961). Therefore, failure to remove non-344 

repeatable causes of variation from observed phenotypic measures is a particularly serious issue 345 

when estimating selection on labile traits across heterogeneous environments (Figure 2; 346 

Dingemanse et al. 2021).  347 
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(Non)linear selection model 348 

To model selection on the individual-specific RN parameters 𝜇0𝑗
, 𝛽𝑥𝑗, and 𝜎0𝑗

, the RN 349 

GLMM in Eq. 1 can be expanded to include an additional response model predicting measure t 350 

of fitness component or proxy W. Linear b and quadratic q selection coefficients, as well as other 351 

more complex forms of nonlinear selection, can then be estimated directly for the RN parameters. 352 

 𝑧𝑗𝑡 ∼ 𝑓(𝜇𝑗𝑡
 , 𝜎𝑗

 ) (𝟒) 353 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + (𝛽𝑥 + 𝛽𝑥𝑗)𝑥𝑡  354 

𝑔𝜎(𝜎𝑗) = 𝜎0 + 𝜎0𝑗
 355 

[𝝁𝟎
⊤, 𝜷𝒙

⊤, 𝝈𝟎
⊤]⊤ ∼ MVN(𝟎, 𝐏) 357 

 356 

𝑊𝑗𝑡 ∼ 𝑓(𝜃𝑗𝑡
 , 𝛿) 358 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 +  𝑏1𝜇0𝑗 + 𝑏2𝛽𝑥𝑗 + 𝑏3𝜎0𝑗 359 

+𝑞1𝜇0𝑗
2 + 𝑞2𝛽𝑥𝑗

2 + 𝑞3𝜎0𝑗
2  +  𝑞4𝜇0𝑗𝛽𝑥𝑗 + 𝑞5𝜇0𝑗𝜎0𝑗 + 𝑞6𝛽𝑥𝑗𝜎0𝑗     360 

𝑾𝟎~N(0, sd(𝑾𝟎)) 361 

Fitness W for individual j at measurement t is described by a GLMM with expectation parameter 362 

𝜃  and dispersion parameter 𝛿 . The full model thus estimates the RN parameters and their 363 

accompanying selection coefficients in the fitness model simultaneously using a multivariate 364 

analysis. Figure 2 visualizes this model structure and explains how it avoids bias by partitioning 365 

repeatable sources of (non)linear association between phenotype and fitness. Parameter 𝑊0 is 366 

the average fitness on the transformed scale given by link function 𝑔𝜃. When repeated fitness 367 

measures t are available, an individual random effect 𝑊0𝑗  should be estimated to capture 368 

repeatable among-individual differences in fitness that are not due to the modelled phenotypes 369 

(i.e. unexplained selection). If only a single fitness measure is available, sd(𝑾𝟎)  cannot be 370 

identified separately from fitness residual dispersion 𝛿 , so these effects should instead be 371 

excluded from the analysis. 372 

The polynomial regression in Eq. 4 can be used to infer short-term population trajectories 373 

on the adaptive landscape, under the assumption that a quadratic function effectively 374 

approximates the local shape of the individual selection surface on the latent transformed scale 375 

(Lande & Arnold 1983; Phillips & Arnold 1989). However, the values of the b and q regression 376 
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coefficients should only be interpreted as measures of directional and quadratic selection 377 

gradients when fitness is a mean-scaled Gaussian response, after appropriately scaling the 378 

coefficients (see Stinchcombe et al. 2008; Dingemanse et al. 2021 for details). Analytic 379 

expressions can also be used for direct interpretation of coefficients in a log-normal fitness model 380 

(Bollen, Morrissey, & Kruuk 2019). However, in the general case, it will be necessary to further 381 

process regression coefficients from the fitness model before making quantitative inferences 382 

about directional and quadratic selection on the scale of the original data, which is generally of 383 

greater biological interest. 384 

Following Lande and Arnold (1983) and Morrissey and Sakrejda (2013), directional 𝜷 and 385 

quadratic 𝛄 selection gradients can be numerically calculated for any GLMM by taking the first ∂ 386 

and second ∂
2
 partial derivatives of the estimated fitness function with respect to the expected 387 

population-level RN parameters  𝜇̅0, 𝛽̅𝑥 , and 𝜎̅0. 388 

 𝛽𝜇0
=

∂ E(𝑊̅, 𝜇̅0)

∂ 𝜇̅0

 𝑊̅−1 . . .  𝛾𝜇0
=

∂
2

 E(𝑊̅, 𝜇̅0)

∂ 𝜇̅0 𝛿 𝜇̅0

𝑊̅−1. . .  𝛾𝛽𝑥𝜎0
=

∂
2

 E(𝑊̅, 𝛽̅𝑥)

∂ 𝛽̅𝑥  𝛿 𝜎̅0

𝑊̅−1 (𝟓. 𝟏) 389 

where 𝑊̅ is the expected population fitness on the original data scale, as predicted by the fitness 390 

function defined with b and q coefficients on the link scale in Eq. 4. The directional gradients 𝛽𝜇0
, 391 

𝛽𝛽𝑥
, and 𝛽𝜎0

 indicate the direction and magnitude of selection on the expected values of 392 

population RN parameters, with respect to the original untransformed scale of the data. Quadratic 393 

selection gradients 𝛾𝜇0
,  𝛾𝛽𝑥

 and 𝛾𝜎0
 in turn indicate convex or concave curvature in the selection 394 

surface shaping the variance of RN parameters (Stinchcombe et al. 2008); and 𝛾𝜇0𝛽𝑥
,  𝛾𝜇0𝜎0

, and 395 

𝛾𝛽𝑥𝜎0
 indicate further curvature due to the presence of correlational selection between RN 396 

parameters (Blows & Brooks 2003). These gradients can be expressed in standardized units for 397 

effect size comparison between traits and parameters using the appropriate variances and 398 

standard deviations (Lande & Arnold 1983) 399 

𝛽𝜇0
sd = 𝛽𝜇0 

sd(𝝁𝟎)  . . .  𝛾𝜇0
sd = 𝛾𝜇0

var(𝝁𝟎) . . .  𝛾𝛽𝑥𝜎0

sd = 𝛾𝛽𝑥𝜎0
sd(𝜷𝒙)sd(𝝈𝟎) (𝟓. 𝟐) 400 

Standardized gradients are particularly useful for GLMMs because the magnitude of variances 401 

may differ appreciably between the distinct transformed link scales used for estimating RNs and 402 

selection, which makes it challenging to meaningfully distinguish between small and large effect 403 

sizes across models.  404 
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 405 

Figure 2. Removing non-repeatable effects from selection gradients. The diagram shows causal 406 

pathways (directional arrows) by which repeatable (green) and non-repeatable (grey) effects can 407 

influence selection gradients of fitness (W) on phenotype (z). Non-repeatable, stochastic effects 408 

influence both fitness and phenotype (directional arrows) and may be correlated (double-headed 409 

arrow), introducing statistical noise into the selection analysis. This leads to biased directional 𝜷 
∗ and 410 

quadratic gradients 𝜸 
∗ when observed variance in the phenotype var(z) is used to estimate selection 411 

across environments. However, if the (non)linear relationships between phenotype and fitness are 412 

modelled independently of stochastic effects on the phenotype var(𝝃), using RN parameters 𝝁𝟎, 𝜷𝒙, 413 

and 𝝈𝟎  (Eq. 1-4), unbiased selection gradients 𝜷  and 𝜸  can be estimated (Eq. 5) directly for 414 

repeatable among-individual differences in the phenotype var( 𝜼 ) (see Box 2). Spatiotemporal 415 

fluctuations Δ in these selection gradients can also be described by additional coefficients (Eq. 6), and 416 

any repeatable among-individual differences in fitness unexplained by RN parameters can be 417 

estimated with random effects 𝑾𝟎 when repeated fitness measures are available (Eq. 4).  418 
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Model extensions 419 

Simplified models are presented above (Eq. 1, Eq. 4) to aid interpretation, but it will often 420 

be necessary to specify more complex models for explaining empirically observed variation in 421 

fitness and phenotype. Various model extensions can be straightforwardly accomplished using 422 

the basic toolkit of GLMMs and related regression frameworks, along with appropriate study 423 

design and sufficient repeated sampling for reliable estimation. Below we briefly consider three 424 

key areas for model extension and provide references for further consideration. Implementation 425 

for social traits and interactions is discussed by Martin and Jaeggi (2022). 426 

Fluctuating selection 427 

Fluctuating selection on RNs may occur due to variation in the density of mates and 428 

competitors, resource availability and seasonality, bodily condition and age, the availability of local 429 

niches, or any other state that modulate the fitness costs and benefits of labile traits (Houston & 430 

McNamara, 1999; Sih et al., 2015). Fluctuating selection is also expected to be a key mechanism 431 

for explaining patterns of macroevolutionary stasis (Estes & Arnold, 2007), the adaptive evolution 432 

of phenotypic plasticity (de Jong, 1995; King & Hadfield, 2019; Martin et al., 2024), and the 433 

evolutionary maintenance of individual and genetic variation within populations more generally 434 

(e.g. Sasaki & Ellner, 1997; Dingemanse & Wolf, 2010; Wolf & Weissing, 2010; Wright et al., 435 

2019; Abdul-Rahman, Tranchina, & Gresham, 2021; Martin et al., 2023). As previously noted, 436 

quantitative genetic theory has demonstrated the mathematical equivalence of models for 437 

selection on character states and RNs. A key finding from this theoretical work is that fluctuating 438 

selection on character states expressed within environments generates directional and quadratic 439 

selection on RN parameters across environments (Gavrilets & Scheiner, 1993; de Jong, 1995). 440 

Therefore, estimating non-zero directional and quadratic selection on a RN parameter via Eq. 4-441 

5 implies that selection on the phenotype is fluctuating with respect to the environment over which 442 

the RN parameter is defined (Martin et al., 2024). For example, the degree to which density-443 

dependent selection on character states fluctuates across the environments encountered by a 444 

population will be proportional the average directional and quadratic selection on the RN slope 𝛽𝑥 445 

defining how the phenotype changes with respect to density x. In general, this means that the RN 446 

selection model can be used to infer the presence of fluctuating phenotypic selection with much 447 

fewer parameters than an equivalent character state model (de Jong, 1995). 448 
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These considerations suggest that RN selection analyses will often not require estimating 449 

additional parameters beyond the main linear b and nonlinear q effects on RN parameters to 450 

accurately describe patterns of fluctuating selection on the expressed phenotype. However, in the 451 

presence of environmental change, the magnitude and pattern of fluctuating character state 452 

selection experienced by a population may also vary across space and time, which is expected 453 

to result in fluctuating selection on RN parameters (Figure 2). In some systems, the putative 454 

environmental causes of fluctuating selection will be directly measured, while in others, it may be 455 

informative to estimate spatiotemporal heterogeneity in RN selection even if the underlying 456 

causes are not directly measured (Reynolds, de Los Campos, Egan, & Ott 2016). For example, 457 

long-term field studies can be used to investigate the adaptive maintenance of RN variation by 458 

yearly fluctuations in selection, even if the mechanisms underpinning these fluctuations remain 459 

unclear (de Villemereuil et al., 2020; Mouchet et al., 2021). To incorporate such effects, the basic 460 

fitness model (Eq. 4) can be extended by including fixed or random interaction effects on the 461 

selection coefficients, which will estimate continuous or discrete fluctuations 𝚫𝜷 and 𝚫𝜸 (Figure 462 

2) across space and time. For example, 463 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 + (𝑏1 + 𝑏1𝑥𝑥𝑡 + 𝑢𝑡𝑏1
)𝜇0𝑗 + ⋯ (𝑞1 + 𝑞1𝑥𝑥𝑡 + 𝑢𝑡𝑞1

)𝜇0𝑗
2 + ⋯ (𝟔) 464 

where 𝑏1𝑥 and 𝑞1𝑥 describe how the (non)linear selection coefficients change as a function of 𝑥𝑡, 465 

and  𝑢𝑡𝑏1
 and 𝑢𝑡𝑞1

 describe changes due to a random factor at time t. 466 

Adjusted and nonlinear effects 467 

As with any regression analysis, additional fixed and random effects may need to be 468 

adjusted for to facilitate appropriate biological inference. Predation may, for instance, cause 469 

differential mortality as a function of repeatable differences in behavior across sex and age 470 

classes, but this selection will not generate an evolutionary response on behavioral variation 471 

within sexes or age classes. This motivates estimating repeatable individual variation adjusted for 472 

the effects of sex and age, among other commonly studied factors such as size and morphology 473 

(Bolnick et al., 2003). Unadjusted environmental effects on fitness and phenotype can also bias 474 

estimates of selection and among-individual variation in both field and laboratory settings 475 

(Scheiner et al. 2002; Stinchcombe et al., 2022; Kinsler et al., 2023; Munar-Delgado et al., 2023). 476 

It is, therefore, often useful to include additional environmental covariates (e.g. average 477 

temperature and rainfall, date within season, resource availability), including potential interaction 478 

effects, and random factors (e.g. nesting site, spatial position, batch, observer identity) to adjust 479 
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fitness variation during the selection analysis. As discussed in Box 2, model predictions can 480 

always be used to quantify and better understand how adjusting for these effects changes the 481 

repeatable variation available to selection in any multivariate GLMM.  482 

Relationships between fitness, phenotype, and the local environment may also be best 483 

described by additional terms beyond quadratic regression coefficients. For example, RN slopes 484 

of thermoregulatory and life history traits such as growth rate are often highly nonlinear in 485 

response to temperature (Oomen & Hutchings, 2022), violating the assumption of Eq. 4 that 486 

individuals’ phenotypic deviations from the linear RN slope 𝛽𝑥  are multivariate normally 487 

distributed. Polynomials (Henderson, 1982; Yamahira, Kawajiri, Takeshi, & Irie, 2007) or 488 

generalized additive effects such as splines or Gaussian processes (Schluter & Nychka, 1994; 489 

Sigourney, Munch, & Letcher, 2012; Pederson, Miller, Simpson, & Ross, 2019; Catalina, Bürkner, 490 

& Vehtari, 2020) can be used to account for nonlinearity in the population RN and ensure the 491 

statistical model more accurately predicts observable phenotypic and fitness variation. In the 492 

general case, the basic model (Eq. 4) can be expanded to include any generalized additive 493 

function s() describing how expected phenotypic 𝜇𝑗𝑡 or fitness values 𝜃𝑗𝑡 change in response to 494 

the environment 495 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + 𝑠(𝑥𝑡) + 𝛽𝑥𝑗𝑥𝑡 (𝟕) 496 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 +  𝑠(𝑥𝑡) + 𝑏1𝜇0𝑗 + 𝑏2𝛽𝑥𝑗
+ 𝑏3𝜎0𝑗 … 497 

Extensive tutorials for incorporating such nonlinear effects into Bayesian regression 498 

models in Stan are freely available online (see https://mc-stan.org/documentation/case-studies 499 

for worked examples of fitting splines and Gaussian processes). Code from Stan models 500 

constructed using familiar R syntax in the brms package (Bürkner, 2019) also provides a helpful 501 

reference point for getting started. By allowing for arbitrarily complex average RN shapes across 502 

subjects, individual deviations from the average slope for phenotype as well as for fitness are 503 

much more likely to exhibit multivariate normality.  This general approach allows researchers to 504 

accurately describe trait change across complex and dynamic environments, while still using 505 

standard theory from quantitative genetics to quantify selection gradients and predict short-term 506 

evolutionary responses. 507 
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Additional individual effects 508 

The RN model presented in the main text (Eq. 1) does not account the fact that phenotypic 509 

dispersion 𝜎 may also be plastic across environments, a phenomenon broadly referred to as 510 

‘malleability’ (see O’Dea, Noble, & Nakagawa 2021 for discussion). Malleability in residuals can 511 

be estimated by including population- and individual-level slopes in the linear predictor of the 512 

dispersion parameter (Westneat et al., 2013). For example, 513 

𝑔𝜎(𝜎𝑗𝑡) = 𝜎0 + 𝜎0𝑗 + (𝜌 + 𝜌𝑗)𝑥𝑡 (𝟖) 514 

if observation-level variation in environmental measure x is expected to have effect 𝜌 on average 515 

differences in phenotypic residuals. Malleability can then be treated as a further RN parameter 516 

that is also potentially under selection. Some statistical distributions such as the Poisson lack an 517 

explicit dispersion parameter, due to deterministic mean-variance relationships, and thus at first 518 

glance only provide scope for selection on the RN intercepts and slopes of expected values. 519 

However, in many empirical datasets, there is more variance observed in the phenotype than 520 

predicted by these distributions (overdispersion), which can be accounted for through the 521 

inclusion of further random effects capturing stochastic, observation-level deviations from model 522 

expectations (i.e. residuals; Harrison, 2014). The dispersion of these observation-level random 523 

effects can then be modelled as a function of individual-level intercepts and slopes, similar to a 524 

standard Gaussian model, providing scope for estimating selection on phenotypic variability using 525 

a broad range of RN GLMMs.  526 

More generally, any theoretically relevant component of a statistical distribution may be 527 

modelled as a function of further individual-level effects and conceptualized as a RN parameter 528 

regulating the expression of phenotypes within and across environments. Hurdle models, for 529 

example, combine multiple distributions together to distinguish effects on the presence/absence 530 

of trait expression from effects on the subsequent magnitude or intensity of trait expression 531 

(Mullahy 1986; Heilbron 1994). This is particularly useful for phenotypes such as allogrooming 532 

behavior in primates, which can vary repeatably among individuals both in its probability of 533 

occurring as well as its intensity and duration once expressed (Silk et al., 2017). These processes 534 

are interdependent but may nonetheless be subject to distinct selection pressures (e.g. whom 535 

should be groomed and how much), which can be investigated by estimating separate RN 536 

intercepts and/or slopes on both model components. 537 
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Statistical inference 538 

Bayesian estimation 539 

The proposed models cannot currently be estimated using popular GLMM software 540 

packages, due to the need for latent RN parameters to be simultaneously estimated with random 541 

and fixed effects across different response models. Fortunately, the Stan statistical programming 542 

language (Carpenter et al. 2017), which relies on cutting-edge and computationally efficient 543 

Markov Chain Monte Carlo (MCMC) sampling algorithms, provides the flexibility needed for 544 

estimating these novel GLMMs within a Bayesian framework. Researchers unfamiliar with the 545 

general motivations of Bayesian inference are encouraged to see McElreath (2020) and Gelman 546 

et al. (2020) for helpful tips on developing an effective workflow for data analysis. The brms 547 

package (Bürkner, 2018) is also a very helpful bridge for writing complex (non)linear Bayesian 548 

GLMMs in Stan using familiar R formula syntax. We provide guided tutorials (see data 549 

availability) for various implementations of the models presented here in Stan. 550 

Prior distributions need to be specified for all the population-level parameters in a 551 

Bayesian model. While flat or highly diffuse priors are often recommended in the literature (e.g. 552 

Ellison 2004; Villemereuil et al. 2016; Houslay and Wilson 2017), weakly informative or 553 

regularizing priors, which place relatively low probability on extreme effect sizes, facilitate more 554 

robust inferences with limited sample sizes and should generally be preferred over flat priors 555 

(Gelman & Tuerlinckx 2000; Lemoine 2019; McElreath 2020). This does not necessarily require 556 

strong a priori assumptions; general-purpose priors can be used to increase the generalizability 557 

and robustness of parameter estimates, even in a state of relative ignorance about the true effect 558 

size. See Lemoine (2019) for more detailed discussion and recommendations. 559 

Model validation 560 

Previous work has validated the performance of our general approach in Stan for modest 561 

effect sizes, showing robust estimates of directional selection on RN intercepts and slopes with 562 

many repeated measures and sample sizes of N = 100 - 300 (Martin & Jaeggi, 2022). To provide 563 

more general validation, we further conducted a simulation-based calibration (SBC; Talts et al. 564 

2018; Säilynoja, Bürkner, & Vehtari, 2022) procedure to assess whether the proposed models are 565 

unbiased estimators of nonlinear selection under a broader range of scenarios. SBC is a 566 
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procedure for validating the performance of any Bayesian algorithm across many possible 567 

parameter values, as defined by the prior distributions of a generative model. This approach 568 

removes the arbitrariness of setting a limited range of fixed parameter values for assessing 569 

performance, which can lead to unexpected sources of bias being overlooked in uninvestigated 570 

regions of parameter space (e.g. rare but possible combinations of phenotypic variances and 571 

selection coefficients). Instead, random parameter values are repeatedly sampled across many 572 

simulated datasets. Visual inspection of the correspondence between the generative distributions 573 

used to simulate datasets and the subsequent posterior distributions inferred from these datasets 574 

allows for detecting sources of bias such as overdispersion, overestimation, or inconsistent model 575 

performance for extreme values. A GLMM validated through SBC is thus an unbiased Bayesian 576 

estimator with respect to the range of effect sizes described by the prior generative model. 577 

Particular attention was given to the estimation of directional and quadratic selection 578 

coefficients during SBC, using 300 simulated datasets assuming conditions of very minimal 579 

sampling effort (N = 100 subjects with 3 repeated phenotypic measurements and 2 repeated 580 

fitness measures). Parameters were simulated such that 581 

𝜇0, 𝛽𝑥, 𝜎0, 𝒃, 𝒒~𝑁(0,1), sd([𝝁𝟎, 𝜷𝒙, 𝝈𝟎, 𝑾𝟎]), 𝛿~exponential(2), and cor([𝝁𝟎, 𝜷𝒙, 𝝈𝟎])~LKJ(2).  Note 582 

that LKJ refers to the Lewandowski-Kurowicka-Joe distribution, which is useful for generating 583 

positive-definite correlation matrices (Gelman et al., 2013). These priors led to a broad range of 584 

very small to large selection effect sizes, as well as very small to large effects for the standard 585 

deviations and correlations of RNs and the residual fitness standard deviation (𝛿). Phenotype and 586 

fitness were assumed to be Gaussian for computational efficiency, with mean fitness fixed to 1. 587 

Following the recommendations of Säilynoja et al. (2022), we computed and visualized the 588 

difference in expected cumulative distribution functions between the generative and inferred 589 

parameters to perform a quantitative graphical test of the model’s performance. As shown in 590 

Figure 3, our results demonstrated with probability ≥ 0.95 that the posterior distributions of 591 

inferred selection coefficients were not systematically higher or lower than the prior distributions 592 

used to generate expected selection coefficients. The proposed model thus provides unbiased 593 

inference of nonlinear selection on RNs across a broad range of effect sizes, even under 594 

conditions of minimal sampling effort.  595 

 596 

 597 
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 598 

Figure 3. Simulation-based calibration of the nonlinear selection model. Results are shown for 599 

analyses of 300 simulated datasets (N = 100 subjects, 3 repeated phenotype measures and 2 repeated 600 

fitness measures) generated from prior distributions defined over the parameters of a Gaussian nonlinear 601 

selection model for RNs (Eq. 4). Plots show the difference between the expected cumulative density 602 

functions (y-axis) for directional and quadratic selection gradients, based on their generative prior 603 

distributions 𝑁(0,1) , and the estimated cumulative density functions based on inferred posterior 604 

distributions. The x-axis indicates the ordered fractional ranks across posterior samples used for computing 605 

these comparisons. Blue circles show 90% Bayesian credible intervals for regions of concordance between 606 

the estimated and expected parameter distributions, and the black line reflects the observed difference 607 

between the expected and inferred distribution (a perfectly horizontal line would thus indicate perfect 608 

concordance with the simulated parameters in every dataset). Consistent deviations of the black line 609 

beyond the blue region would provide evidence of systematic inferential bias during model estimation. Note 610 

that due to stochasticity, fluctuations of the black line within the blue circle are expected at computationally 611 

efficient sample sizes.  612 
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Power analysis 613 

The SBC procedure demonstrated that our model facilitates unbiased Bayesian estimation 614 

across a broad range of parameter values (Figure 3). We also conducted an additional simulation 615 

study to provide concrete guidelines for empiricists designing studies to assess nonlinear 616 

selection on RNs, investigating how the power to detect the direction of selection gradients is 617 

influenced by the number of subjects and repeated measures per subject for phenotypes and 618 

fitness proxies. For simplicity and ease of effect size comparison, we modelled Gaussian 619 

phenotype and fitness measures. Fitness effects for the nonlinear selection model were simulated 620 

such that 𝒃, 𝒒 ~ 𝑈(0.1, 0.5), resulting in selection effects ranging from statistically weak to strong 621 

in strength, with a mean effect size of |0.3| across datasets. For simplicity, we assumed 𝑊0 = 𝛿 =622 

1 and 𝜇0 = 𝛽0 = 0. Continuous environmental variation (x) for quantifying reaction norm slopes 623 

was treated as a standardized variable drawn from 𝒙~𝑁(0,1) . Repeatable among-individual 624 

differences in RNs were fixed to  sd([𝛍𝟎, 𝛃, 𝛔𝟎]) = 0.55  with correlations drawn from 625 

cor([𝛍𝟎, 𝛃, 𝛔𝟎])~𝐿𝐾𝐽(5) , and the residual standard deviation of the phenotype was fixed to 626 

sqrt(exp(𝜎0)) = 0.77, so that repeatable and residual random effect variances were 0.3 and 0.6 627 

respectively. This resulted in each RN parameter exhibiting modest repeatability, 𝑅 = 0.2 =628 

0.3

3(0.3)+0.6
 in the absence of phenotypic correlations. Unexplained selection was also fixed to 629 

sd(𝐖𝟎) = 0.55 for the fitness model. 630 

Power to detect the appropriate direction of selection coefficients was explored with 1000 631 

datasets of varying size drawn from 𝑁~𝑈(200, 1000)  subjects with 𝑡𝑧~𝑈(3,7)  repeated 632 

phenotype and 𝑡𝑤~𝑈(1,5) repeated fitness measures per subject. Classical frequentist methods 633 

define power with respect to a binary decision rule based on the desired significance level of a 634 

null hypothesis test.  In Bayesian analysis, ‘power’ is not precisely defined but may instead refer 635 

to the continuous level of support provided for a direct (rather than null) hypothesis test, such as 636 

the posterior probability of positive selection occurring on a trait. The power of a Bayesian analysis 637 

thus reflects how confident a model is likely to be in the existence and direction of a true selection 638 

effect, with p = 0.5 indicating no confidence (+ and – values are equally likely) and p = 1.0 639 

indicating complete confidence in the effect. We herein use ‘power’ in this sense to refer to the 640 

expected posterior probability supporting positive directional and quadratic selection effects on 641 

RN parameters. 642 

Power for detecting selection across simulated scenarios is visualized in Figure 4, with 643 

second-order polynomial lines plotted across datasets to infer general patterns expected in 644 
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empirical research. As expected, we find that Bayesian power for inferring directional and 645 

quadratic selection increases with a greater number of subjects (N) and repeated phenotype (𝑡𝑧) 646 

and fitness measures (𝑡𝑤 ), as well as with greater selection effect sizes (𝒃, 𝒒), while larger 647 

absolute phenotypic correlations among RN parameters (cor̅̅ ̅̅ ) reduce power, particularly for 648 

detecting quadratic selection. Power to detect quadratic selection is lower than for directional 649 

selection across small to moderate sample and effect sizes, with power for correlational selection 650 

also being relatively lower than stabilizing/disruptive selection except under ideal conditions. This 651 

implies that research particularly focused on detecting correlational selection of RNs will require 652 

larger samples to attain confident inferences. Power is also consistently lower for detecting all 653 

types of selection on RN residual parameters in comparison to RN intercepts and slopes, 654 

indicating a need for greater sampling effort in selection studies on phenotypic variability. As with 655 

any multivariate selection model, these results show that large sample sizes and sufficient 656 

repeated measurements are crucial for robust hypothesis testing, particularly in the presence of 657 

weak selection. As a rule of thumb, sample sizes of at least N = 500-1000 will be desirable to 658 

appropriately reduce the risk of false negatives, particularly in the absence of many repeated 659 

phenotype and/or fitness measures. The negative effect of RN parameter correlations on power 660 

also shows that (non)linear selection will be much easier to detect when RN parameters vary 661 

quasi-independently among individuals within a population. 662 
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 663 

Figure 4. Bayesian power analysis of the nonlinear selection model. Results are shown for 664 

directional hypothesis tests of selection effects across 1000 simulated datasets used to estimate 665 

the nonlinear selection model for RNs (Eq. 4) with Gaussian phenotype and fitness measures. 666 

Plots show the expected posterior probability (‘power’, y-axis) supporting selection effects as a 667 

function of variation in sampling conditions across simulated datasets (x-axis): the number of 668 

subjects/sample size (N), the number of phenotypic measures per subject (tz), the number of 669 

fitness measures per subject (tw), the mean absolute correlation among RN parameters (cor̅̅ ̅̅ ), and 670 

the size of linear (b) and nonlinear (q) selection effects. General patterns were inferred using 671 

second-order polynomials across conditions, which are color-coded by RN parameter (red = 672 

intercepts, blue = slopes, yellow = residuals, purple = intercepts x slopes, orange = intercepts x 673 

residuals, and green = slopes x residuals). 674 
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Conclusion 675 

Studying selection on highly labile traits is essential for explaining how and why organisms 676 

adapt to environmental change. RN models are a crucial tool for characterizing such phenotypes, 677 

but their application to selection analysis remains hampered by the limitations of current methods. 678 

A major challenge is to avoid inferential bias caused by non-repeatable, stochastic effects and 679 

other sources of measurement error in RNs and their fitness effects (Hadfield et al. 2010; FIGURE 680 

1-2). A common solution is to use multi-response/multivariate random effect GLMMs to account 681 

for uncertainty in selection on RNs. However, this approach restricts analyses to focus on linear 682 

effects and directional selection. Ignoring quadratic selection caused by nonlinear effects 683 

fundamentally inhibits researchers’ capacity to study the adaptive landscape of labile traits 684 

(Bulmer 1971; Arnold et al., 2001; Blows & Brooks, 2003). 685 

To overcome this limitation, we proposed a novel Bayesian GLMM framework for studying 686 

complex patterns of nonlinear selection on RNs, which we validated over a broad range of 687 

possible parameter values using a simulation-based calibration approach (Figure 3). We also 688 

found that these models exhibited desirable statistical power under reasonable sampling 689 

conditions for many long-term field research projects (Figure 4). This modeling framework 690 

synthesizes the well-established Lande and Arnold (1983) approach to error-free selection 691 

analysis with measurement error or error-in-variables models (Ponzi et al. 2018; Dingemanse et 692 

al. 2021; Martin & Jaeggi 2022) and double hierarchical (Westneat et al. 2013; O’Dea et al. 2021), 693 

multi-response GLMMs (Brommer et al. 2012; Houslay & Wilson 2017; Arnold et al. 2019). These 694 

models can be applied to estimate directional and quadratic selection irrespective of the 695 

distribution of the data and the potential nonlinearity of the RN or fitness function, allowing 696 

researchers to construct more realistic models of the processes underlying their measurements. 697 

This focuses attention on accurate description of observed data rather than the restrictive 698 

assumptions of linear regression. With the analytic toolkit of quantitative genetics (Lande & Arnold 699 

1983; Morrissey & Sakrejda 2013), estimates from these models can also be transformed to 700 

quantify selection gradients, visualize multivariate selection, and predict ongoing adaptation. The 701 

proposed modeling framework should, therefore, readily enhance tests of adaptive theory for 702 

labile traits in the wild. 703 
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