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Abstract 22 

Individual reaction norms describe how labile phenotypes vary as a function of organisms’ 23 

expected trait values (intercepts) and plasticity across environments (slopes), as well as 24 

their degree of stochastic phenotypic variability or predictability (residuals). These 25 

reaction norms can be estimated empirically using multilevel, mixed-effects models and 26 

play a key role in ecological research on a variety of behavioral, physiological, and 27 

morphological traits. Many evolutionary models have also emphasized the importance of 28 

understanding reaction norms as a target of selection in heterogeneous and dynamic 29 

environments. However, it remains difficult to empirically estimate nonlinear selection on 30 

reaction norms, inhibiting robust tests of adaptive theory and accurate predictions of 31 

phenotypic evolution. To address this challenge, we propose generalized multilevel 32 

models for estimating stabilizing, disruptive, and correlational selection on the reaction 33 

norms of labile traits, which can be applied to any repeatedly measured phenotype using 34 

a flexible Bayesian framework. These models avoid inferential bias by accounting for 35 

uncertainty in reaction norm parameters and their potentially nonlinear fitness effects. We 36 

validate these models in a Bayesian framework using multiple simulation techniques, 37 

demonstrating unbiased inference across a broad range of effect sizes and desirable 38 

power for large sample sizes. Coding tutorials are further provided to aid empiricists in 39 

applying these models to any phenotype of interest using the Stan statistical programming 40 

language in R. 41 

Keywords 42 

phenotypic evolution, complex trait, multivariate, adaptation, personality, flexibility  43 
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Introduction 44 

A population will evolve by natural selection whenever heritable variation occurs in 45 

fitness-relevant phenotypes (Darwin 1859). Measuring the fitness consequences of 46 

individual differences in highly labile behavioral, physiological, and morphological traits 47 

is, therefore, fundamental for explaining their adaptive evolution. Across a variety of 48 

phenotypes and taxa, repeatable individual differences have been observed in organisms’ 49 

average trait values (Bell, Hankison, & Laskowski 2009; Fanson & Biro 2015; Cauchoix 50 

et al. 2018) and in their plasticity across environments (Dingemanse et al. 2010; Stamps 51 

2016; Arnold, Nicotra, & Kruuk 2019), with some individuals consistently being more or 52 

less responsive to environmental change than others. In addition, it is increasingly 53 

appreciated that individuals may repeatably differ in their degree of stochastic phenotypic 54 

variability within a given environment (see Box 1 below for a conceptual overview; Biro & 55 

Adriaenssens 2013; Westneat, Schofield, & Wright 2013; Mitchell, Beckmann, & Biro 56 

2021), a phenomenon which has often been ignored in ecological research (Hansen, 57 

Carter & Pélabon 2006). These individual-specific patterns reflect distinct but potentially 58 

integrated parameters (intercepts, slopes, and within-individual residuals) of the reaction 59 

norms (RNs, i.e. state-dependent functions relating phenotype to environment, Table 1) 60 

evolving in a population (Figure 1). RN models provide a highly generalizable, 61 

quantitative framework for investigating the evolution and development of labile traits, 62 

with broad applications ranging from social behaviors (Dingemanse & Araya-Ajoy 2015; 63 

McNamara & Leimar 2020; Martin, Jaeggi, & Koski 2023) and learning processes (Wright, 64 

Haaland, Dingemanse, & Westneat 2022) to thermal performance curves (Svensson, 65 

Gomez-Llano, & Waller 2020) and extended phenotypes (Munar-Delgado, Araya-Ajoy, & 66 

Edelaar, 2023), such as gall size in insect-host plant interactions (Weis & Gorman 1990). 67 

Interest in the evolutionary ecology of RNs has grown steadily across a diverse range of 68 

fields in recent decades (e.g. Brommer, Kontiainen, & Pietiäinen 2012; Strickland et al. 69 

2021; Newediuk, Prokopenko, & Wal 2022), generating methodological innovations for 70 

estimating RNs subject to measurement error (e.g. Nussey, Wilson, & Brommer 2007; 71 

Dingemanse & Dochtermann 2013; Gomulkiewicz et al. 2018; O’Dea, Noble, & 72 

Nakagawa 2021; Martin & Jaeggi 2022), as well as theoretical models for explaining the 73 
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selection pressures shaping and maintaining individual variation in RNs within 74 

populations (e.g. Wolf & Weissing 2010; Dall & Griffith 2014; Sih et al. 2015; Wright et al. 75 

2019). Attention to RNs has also increased in related fields of inquiry such as personality 76 

psychology (Denissen & Penke 2008; Nettle & Penke 2010) and evolutionary 77 

anthropology (Jaeggi et al. 2016).  78 

RN models are, of course, not only useful for describing phenotypic variation. 79 

While classical models largely focused on the consequences of phenotypic selection for 80 

RN evolution (e.g. Gavrilets & Sheiner, 1993), many evolutionary frameworks also 81 

emphasize that the parameters of RNs (intercepts, slopes, and residuals) may be direct 82 

targets of selection, leading to differential patterns of adaptation and extinction in 83 

changing environments (Via et al. 1995; Schlichting & Piglucci 1998; Ghalambor, McKay, 84 

Carroll, & Reznick 2007; Fox et al. 2019).  For instance, evolutionary ecologists have long 85 

investigated the role of both cue-induced and stochastic phenotypic plasticity in the 86 

colonization of novel habitats (Caño et al. 2008; Volis, Ormanbekova, & Yermekbayev 87 

2015; Hendry 2016; Wang & Althoff 2019). In addition, evolutionary geneticists have 88 

shown how plasticity in social environments can magnify heritable variation in mean trait 89 

values, accelerating or inhibiting phenotypic evolution in comparison to unresponsive 90 

phenotypes (Moore et al. 1997; Bijma & Wade 2008; McGlothlin et al. 2010; Kazancıoğlu, 91 

Klug, & Alonzo 2012). Game theorists and behavioral ecologists have further emphasized 92 

the importance of understanding selection on RNs due to the prevalence of fluctuating 93 

density- and frequency-dependent selection in social environments (Araya-Ajoy, 94 

Westneat, & Wright 2020; McNamara & Leimar 2020; Martin, Jaeggi, & Koski 2023), as 95 

well as the role of dynamic environments more generally in selecting for learning 96 

mechanisms and emotional states rather than specific behaviors per se (Skinner, 1966; 97 

Henrich & McElreath 2003; McNamara & Houston 2009; Fawcett, Hamblin, & Giraldeau 98 

2013; Nakahashi & Ohtsuki 2015; Wright et al. 2022). Distinct genetic control of 99 

phenotypic stability and change has also been experimentally demonstrated for diverse 100 

phenomena from cold tolerance (Ørsted, Rohde, Hoffmann, Sørensen, & Kristensen 101 

2018) to body size (Scheiner & Lyman, 1991) and various forms of developmental 102 

polyphenism (Suzuki & Nijhout 2006; Projecto-Garcia, Biddle, Ragsdale 2017), 103 

suggesting that differential selection on heritable variation in RN intercepts, slopes, and 104 
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residuals, as well as differential patterns of genetic integration between RN parameters 105 

(Wagner, Booth, & Bagheri-Chaichian, 1997; Tonsor, Elnaccash, & Scheiner, 2013), can 106 

in turn have distinct consequences for phenotypic evolution. Accordingly, divergence has 107 

been observed in the RNs of many naturally occurring populations, such as differential 108 

plasticity in the growth rates of phytoplankton (Thalassiosira pseudonana; Schaum, 109 

Buckling, Smirnoff, & Yvon-Durocher 2022), ponderosa pine (Pinus ponderosa; de la 110 

Mata et al. 2022) and single-leaf pinyon (Pinus monophylla; Vasey, Weisberg, & Urza 111 

2022) populations in response to temperature fluctuations and microhabitat 112 

heterogeneity. Despite this strong theoretical emphasis and empirical basis, robust 113 

statistical methods have not yet been developed for detecting complex patterns of 114 

selection on the RNs of labile traits. 115 

Many of the phenotypes commonly studied by evolutionary ecologists are highly 116 

labile (i.e. exhibit high degrees of reversible plasticity; Scheiner, 1993) in response to the 117 

local environment. This means that repeatable individual differences in the RN underlying 118 

these traits tend to account for only a modest proportion of the total variation observed in 119 

measurements across space and time (Bell, Hankison, & Laskowski 2009; Fanson & Biro 120 

2015; Cauchoix et al. 2018). This is expected, given that labile traits are often adapted to 121 

facilitate flexible responses toward fitness-relevant variation in the environment (Scheiner 122 

1993), such as by up-regulating circulating testosterone in response to social challenges 123 

(Wingfield et al. 1990; Eisenegger, Haushofer, & Fehr 2011), temporarily inducing a fear 124 

state in response to odor cues of predation (Mathuru et al. 2012), or regulating 125 

alloparental care in response to the quality of the local environment (Guindre-Parker & 126 

Rubenstein, 2018; Martin et al. 2020). Conversely, labile traits may also be prone to 127 

maladaptive plasticity in response to novel or extreme environmental stressors (e.g. 128 

Ghalambor et al. 2015). As such, any particular measurement of a labile phenotype will 129 

tend to reflect within- rather than among-individual variation, potentially biasing empirical 130 

estimates of trait (co)variances and selection gradients estimated across heterogeneous 131 

environments (Brommer 2013; Dingemanse & Dochtermann 2013; Niemelä & 132 

Dingemanse 2018; Royauté et al. 2018), leading to inaccurate inferences about adaptive 133 

evolution (Dingemanse, Araya‐Ajoy, & Westneat 2021; Martin & Jaeggi 2022). Classical 134 

approaches such as the Lande and Arnold (1983) regression framework do not partition 135 
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repeatable and non-repeatable differences across phenotypic measurements and, as a 136 

consequence, may lead to downwardly biased estimates of selection gradients for labile 137 

traits in field research (Dingemanse et al. 2021). Classical methods can also be biased 138 

by unmeasured, within-individual environmental effects on fitness and phenotype that 139 

generate spurious signals of selection (Scheiner et al. 2002; Stinchcombe et al. 2002). 140 

Using these methods to estimate selection on labile traits with single measures, averages 141 

of raw data, or point estimates in multi-stage analyses can, therefore, increase the risk of 142 

biased evolutionary inference (Hadfield et al. 2010), particularly when attempting to 143 

understand the adaptation of RNs underlying observed phenotypes across environments. 144 

Fortunately, generalized linear mixed-effects models (GLMMs) provide a flexible 145 

toolkit for estimating RNs from empirical data, as well as for modelling the effects of RNs 146 

on fitness and other biological outcomes of interest. Current variance-partitioning 147 

methods rely on the use of multi-response/multivariate GLMMs with covarying random 148 

effects to model selection, which effectively account for uncertainty in individuals’ RNs 149 

and their estimated effects (Hadfield et al. 2010). This approach has been repeatedly 150 

introduced to selection studies of RNs in variety of contexts, demonstrating its broad 151 

applicability (e.g. Brommer, Kontiainen, & Pietiäinen 2012; Houslay & Wilson 2017; 152 

Arnold, Nicotra, & Kruuk 2019), and can be further extended to provide a veritable 153 

treasure chest of biological insights (Blows 2007). For example, such models can be used 154 

to identify trajectories of phenotypic conservation and divergence among closely related 155 

populations (Royauté, Hedrick, & Dochtermann 2020), discover latent behavioral 156 

characters among multiple traits (Araya-Ajoy & Dingemanse 2014; Martin et al. 2019), or 157 

calculate genetic responses to directional selection (Stinchcombe, Simonsen, & Blows 158 

2014). Therefore, multi-response GLMMs with covarying random effects can be used to 159 

accomplish many empirical goals with relative ease, while also avoiding statistical bias 160 

due to uncertainty in RNs.  161 

Despite their benefits, these commonly used GLMMs cannot detect nonlinear 162 

selection on RNs (i.e disruptive, stabilizing, and correlational selection) because the 163 

random effect covariance is defined as an average measure of linear dependency among 164 

fitness and phenotype. By failing to describe the curvature of the adaptive landscape, and 165 
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thus the ecological phenomena generating fitness saddles, ridges, domes, and cliffs 166 

(Lande & Arnold, 1983; Blows & Brooks, 2003; Blows 2007; Vercken et al., 2012), random 167 

effect models can provide an incomplete and potentially misleading perspective on the 168 

biological processes driving and constraining multivariate evolution. In non-randomized 169 

experiments or field settings, ignoring nonlinear selection can further generate biased 170 

estimates of directional selection gradients, in addition to biased predictions of the 171 

evolutionary response to selection on the expectations and (co)variances of RN 172 

parameters (Arnold et al., 2001; Morrissey et al., 2012; Pick et al., 2022). Therefore, 173 

despite their clear utility, current covarying random effects models can also limit robust 174 

tests of adaptive theory, which often predicts that stabilizing, disruptive, and/or 175 

correlational selection will shape RN evolution (e.g. Wagner et al., 1997; Gavrilets & 176 

Hastings, 1994). This inhibits accurate predictions of phenotypic evolution more generally 177 

(Bulmer 1971; Lande & Arnold 1983; Arnold, Pfrender, & Jones, 2001; Villemereuil et al., 178 

2020).  179 

Here we address this challenge by introducing multi-response/multivariate GLMMs 180 

for unbiased estimation of nonlinear selection on RNs, building on well-established 181 

approaches to estimating linear selection (e.g. Brommer, Kontiainen, & Pietiäinen 2012; 182 

Houslay & Wilson 2017; Arnold, Nicotra, & Kruuk 2019; Araya-Ajoy, Dingemanse, 183 

Westneat, & Wright 2023). The proposed GLMMs are applicable to any labile and 184 

repeatedly measured phenotype. We begin by reviewing so-called double hierarchical 185 

GLMMs for estimating RNs from longitudinal, repeated measures data (Westneat, 186 

Schofield, & Wright, 2013; O’Dea et al. 2021) and formally introduce multi-187 

response/multivariate models estimating linear and nonlinear selection on RNs, 188 

applicable to both Gaussian and non-Gaussian measurements. We then consider their 189 

implementation in a Bayesian framework, using a simulation-based calibration procedure 190 

to validate that the proposed models are unbiased for statistical inference. We also 191 

explore statistical power for Bayesian hypothesis tests across a range of sampling 192 

designs and selection effect sizes. Guided tutorials are further provided (see data 193 
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availability) to aid researchers in implementing and interpreting these models for their 194 

own data using the Stan statistical programming language (Carpenter et al. 2017).   195 
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Figure 1. Empirical estimation of reaction norms. Repeatable among-individual 196 

differences var(𝜼) (top left) in the expected value 𝝁 and dispersion 𝝈 of observed 197 

phenotype z can be predicted with a RN model (top right) using link functions g and three 198 

(or more) distinct parameters: RN intercept parameters 𝝁𝟎 describing each individual’s 199 

average phenotype across a mean-centered environment or in the absence of the 200 

environment (i.e. when the environmental state x = 0); RN slope parameters 𝜷𝒙 describing 201 

each individual’s systematic change in phenotype across environmental states x; and RN 202 

residual parameters 𝝈𝟎 reflecting each individual’s degree of stochastic variability (or, 203 

conversely, their predictability/precision) in phenotype within a given environment. See 204 

Eq. 1 for index rather than matrix notation. These parameters will be unknown in empirical 205 

research and must, therefore, be estimated using raw longitudinal measurements (teal 206 

circles) across environmental states (bottom left). An example is shown for a simple linear 207 

RN with a log-link on the dispersion of a normal distribution, so that an individual’s residual 208 

parameter, expressed as a variance on the squared log scale sqrt (exp(𝜎0 + 𝜎0𝑗)), is 209 

proportional to (∝) the spread of observed residuals on the original data scale, as shown 210 

here by a 95% credible interval. Failure to account for uncertainty around point estimates 211 

of individual j’s RN parameters (bottom right) leads to anti-conservative inference and 212 

increased risk of false positives (Hadfield et al. 2010).  213 
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Table 1. Notation and terminology. 214 

Term Symbol Description 

Individual  
reaction norm (RN) 

𝑓(𝜇, 𝜎) 
A probabilistic function 𝑓 with parameters predicting the 

expectation 𝜇 and dispersion 𝜎 of an individual’s phenotype in 
response to a measurable aspect of the environment. 

RN intercept 𝜇0, 𝜇0𝑗 

The expected phenotype in the average environment or in the 

absence of an environmental factor. Individual RN intercept 𝜇0𝑗 

is expressed as a deviation from population RN intercept 𝜇0. 

RN slope 𝛽𝑥 , 𝛽𝑥𝑗
 

The expected change in phenotype in response to a measured 

environment x. Individual RN slope 𝛽𝑥𝑗 is expressed as a 

deviation from the population average slope 𝛽𝑥.  

RN residual 𝜎0, 𝜎0𝑗 

The magnitude of stochastic variability in phenotype within a 
given environment, i.e. the inverse of predictability (O’Dea et al., 
2021) and precision (Hansen et al., 2006). Individual RN 

residual parameter 𝜎0𝑗 is expressed as a deviation from 

population average residual parameter 𝜎0, which together 
determine the magnitude of variation in observed residuals. 

RN trait value/ 
character state 

𝜂𝑗𝑡 

The repeatable trait value predicted by individual j’s reaction 
norm being expressed within the environmental state at time t. 
This context-specific trait value is also referred to as a character 
state in quantitative genetics. 

Repeatable  
among-individual 
differences 

var(𝜼) 

The total amount of among-individual variation in the phenotype 
available to natural selection over the sampling period, which 
reflects consistent individual differences in RN expression 
across environments (i.e. the variance of character states). 

Link functions 𝑔𝜇 , 𝑔𝜎 , 𝑔𝜃 
Transformations that facilitate modelling of non-Gaussian 
phenotypes and fitness measures on a linear scale. 

Fitness 𝑊, 𝑓(𝜃, 𝛿) 

A measure of an individual’s observed survival, reproduction, 
and/or performance W, as predicted by the expectation 𝜃 and 

dispersion 𝛿 parameters of distribution f. These quantifiable 
‘fitness components’ are used to approximate the repeatable, 
differential rate of zygote production across individuals. 

Directional selection 𝐛, 𝜷 

Selection gradients 𝜷 quantify the magnitude of direct selection 
on the population means of reaction norm parameters. 
Regression coefficients b approximate these effects on the 
transformed scale of a GLMM. 

Quadratic selection 𝐪, 𝜸 

Selection gradients 𝛄 quantify the magnitude of direct selection 
on the (co)variances of reaction norm parameters. Regression 
coefficients q approximate these effects on the transformed 
scale of a GLMM. 

Fluctuating selection 𝚫𝜷, 𝚫𝜸 
Environmental change that shifts the magnitude of selection on 
RNs 𝚫𝜷, 𝚫𝜸 across space and/or time (see supplementary 
appendix for details) 
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Modelling nonlinear selection on labile traits 215 

The models we propose in this section are straightforward extensions of the multi-216 

response/multivariate random effects GLMMs discussed above. Our trait-based 217 

approach shifts estimation of fitness effects from random effect covariances to flexibly 218 

parameterized linear and nonlinear selection coefficients. This approach builds on a long 219 

tradition of measurement error models in biostatistics (Loken & Gelman 2017; Ponzi et 220 

al. 2018; Martin & Jaeggi 2022), also known as structural equation (Bollen & Noble 2011; 221 

Araya-Ajoy & Dingemanse 2014; Martin et al. 2019) or errors-in-variables models 222 

(Dingemanse et al. 2021), which allow for latent trait values such as RN intercept, slope, 223 

and residual parameters to simultaneously affect multiple response models. The basic 224 

structure of these models has been previously introduced in the broader context of 225 

phenotypic selection analysis by Ponzi et al. (2018), Dingemanse et al. (2021), and 226 

Araya‐Ajoy et al. (2023), who considered Gaussian models of selection on repeatable 227 

trait values. Here, we generalize and extend these models to allow for estimating 228 

(non)linear selection on RN intercepts, slopes, and residuals (and any other distributional 229 

parameters of interest), as well as to estimate directional and quadratic selection 230 

gradients on RN parameters with non-Gaussian phenotype and fitness measures.  231 

Reaction norm model 232 

The first step in any selection analysis is to define the trait of interest. For 233 

repeatedly expressed traits that exhibit plasticity, the ‘traits’ of interest may be latent 234 

properties of a RN, which researchers can estimate as functional parameters. As shown 235 

in Figure 1, individual variation in a linear RN can be decomposed into underlying 236 

repeatable differences in individuals’ RN intercept 𝝁𝟎, slope 𝜷𝒙, and residual parameters 237 

𝝈𝟎. Note that we use 𝜷𝒙 here to reference any slope defined over a non-social 238 

environmental state (see Martin & Jaeggi, 2022 for a treatment of social effects). Table 1 239 

provides a glossary of formal notation and terminology used throughout the paper. 240 

GLMMs effectively describe the RNs of non-Gaussian phenotypes using additive linear 241 

functions on a transformed latent scale (Bolker et al., 2009; Villemereuil et al., 2016). 242 

Extensive prior work has been done on appropriate study design and GLMM 243 
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implementation for RN research in evolutionary ecology (e.g. see Nussey, Wilson, & 244 

Brommer 2007; Martin, Nussey, Wilson, & Réale, 2010; Dingemanse & Dochtermann 245 

2013; O’Dea et al. 2021 among others). Therefore, we avoid reviewing this material in 246 

detail here, instead focusing on the introduction of a general form and notation for RN 247 

models of any labile trait. 248 

Consider a GLMM for repeated measure t of individual j, who expressed labile 249 

phenotype 𝑧𝑗𝑡 in environmental state 𝑥𝑗𝑡. The distribution of measurements can be 250 

predicted using a probability function 𝑓(𝜇, 𝜎) with mean, location, or rate parameter 𝜇 and 251 

dispersion, shape, or scale parameter 𝜎 (e.g. as with normal, gamma, and beta 252 

distributions). Link functions 𝑔𝜇 and 𝑔𝜎 are used for modelling the vectors 𝝁 and 𝝈 across 253 

observations so that the RN parameters 𝝁𝟎, 𝜷𝒙, and 𝝈𝟎 can be expressed as additive 254 

linear effects on a transformed scale, irrespective of the assumed distribution of the raw 255 

data. For instance, 𝑔𝜇 = identity(𝜇) and 𝑔𝜎 = log (𝜎2) are sensible choices for a Gaussian 256 

measure. The generalized form of the model is given by  257 

 𝑧𝑗𝑡 ∼ 𝑓(𝜇𝑗𝑡
 , 𝜎𝑗

 ) (𝟏) 258 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + (𝛽𝑥 + 𝛽𝑥𝑗)𝑥𝑡   259 

𝑔𝜎(𝜎𝑗) = 𝜎0 + 𝜎0𝑗
 260 

[𝝁𝟎, 𝜷𝒙, 𝝈𝟎]T ∼ MVN(𝟎, 𝐏):  𝐏 =  [

var(𝝁𝟎) … …
cov(𝜷𝒙, 𝝁𝟎) var(𝜷𝒙)  ⋮
cov(𝝈𝟎, 𝝁𝟎) cov(𝝈𝟎, 𝜷𝒙) var(𝝈𝟎)

]    261 

Here 𝜇0, 𝛽𝑥, 𝜎0 are the average values for the RN intercept, slope, and residual 262 

parameters in the population, expressed on the scale of the link functions. Repeatable 263 

individual differences in RN parameters are in turn estimated as deviations from these 264 

averages using random effects 𝜇0𝑗, 𝛽𝑥𝑗, and 𝜎0𝑗. For simplicity, the model assumes 265 

environmental exposures x are randomized across individuals, but it may be necessary 266 

in non-experimental contexts to center covariates within individuals for appropriate 267 

scaling of RN slopes (Schaeffer, 2004; van de Pol & Wright 2009; Araya-Ajoy, Mathot, & 268 

Dingemanse, 2015; Westneat et al., 2020; Fay, Martin, & Plard 2022). The magnitude of 269 
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among-individual (co)variance in these RN parameters is described by the P matrix.  See 270 

the supplementary appendix for further model extensions and Box 1 for further discussion 271 

of the RN residual parameter. 272 

Box 1. Interpreting among-individual differences in RN residuals. 273 

The functional role of the RN residual parameters 𝝈𝟎 can be ambiguous because these 274 

individual effects are modelled on the dispersion 𝝈 of the phenotypic distribution, rather 275 

than the expectation 𝝁 (Eq. 1). Phenotypic variance due to dispersion is generally 276 

interpreted as noise or measurement error around individuals’ repeatable mean trait 277 

values (Brommer 2013), which are determined by the expression of RN intercepts 𝝁𝟎 and 278 

slopes 𝜷𝒙 across measured environments. However, the residuals of labile traits may also 279 

contain repeatable and fitness-relevant variation in how organisms intrinsically regulate 280 

their phenotype (Westneat, Wright, & Dingemanse 2015), such as in their assessment 281 

and response toward developmental noise within a given environment (Gavrilets & 282 

Hastings, 1994; Hansen et al., 2006; Mitchell et al. 2021). Such repeatable among-283 

individual differences in within-individual variation, described by 𝝈𝟎, may arise from a 284 

variety of mechanisms regulating patterns of stochastic expression in behavior or other 285 

labile traits (Prentice, Houslay, Martin, & Wilson, 2020). For instance, stochasticity can 286 

be generated through the repeatable activities of the organism, such as by random 287 

sampling of the environment, which can be shaped via reinforcement and punishment to 288 

facilitate adaptive learning in novel or uncertain environments (Niv et al. 2002; Barrett 289 

2011; Wright et al., 2022). As a consequence, intrinsic variability may evolve in 290 

conjunction with learning mechanisms to track unpredictable shifts in fitness optima 291 

during development (Borenstein, Feldman, & Aoki 2008). Predation may also select for 292 

greater variability in movement, so as to reduce predators’ capacity to predict prey escape 293 

trajectories (Hugie, 2003; Moore et al. 2017), while reduced variability may instead be 294 

adaptive for reputation formation and trust in repeated social interactions (McNamara & 295 

Leimar, 2010). Stochasticity may also result from exogenous factors, such that individual 296 

differences in 𝝈𝟎  reflect how organisms regulate in response to the environment. For 297 

example, when environmental states fluctuate rapidly in an unpredictable and 298 

uncontrollable manner, negative selection may act on the RN residual parameter to 299 
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promote phenotypic canalization, decreasing susceptibility of the phenotype to 300 

developmental perturbation (Flatt 2005; Siegal & Leu 2014; Westneat et al., 2015). 301 

In empirical research, it will often be challenging to distinguish variance in residuals due 302 

to intrinsically stochastic variability or unmeasured processes of cue-induced plasticity 303 

and individual-by-environment interaction (Westneat et al. 2015; Prentice et al., 2020). 304 

Estimates of var(𝝈𝟎) in the field may, for example, reflect repeatable functional 305 

interactions between unmodelled RN slopes and stochastic environmental exposures. 306 

Therefore, caution is warranted when inferring the mechanistic underpinnings of 𝝈𝟎 307 

outside of well-controlled experiments. Poorly specified statistical models, in which 308 

predicted residual processes do not accurately describe observed phenotypic variance, 309 

will also inhibit accurate biological inference of RNs (Mitchell, Dujon, Beckmann, & Biro, 310 

2020; Ramakers, Visser, & Gienapp, 2020). Nonetheless, to the degree that individual 311 

differences in residuals are repeatable across time and not due to unbalanced sampling 312 

or pseudo-repeatability (Dingemanse & Dochtermann 2013), selection can still shape RN 313 

residuals, irrespective of whether within-individual deviations arise from mechanisms of 314 

intrinsically stochastic or cue-induced trait expression. Therefore, we suggest that 315 

researchers in both observational and experimental systems focus their attention on 316 

functionally interpreting and operationally defining RN residual parameters with respect 317 

to theoretically motivated RN slopes, defined over measured dimensions of 318 

environmental change (Figure 1). 319 

 320 

Box 2. Repeatable among-individual differences due to RNs. 321 

Selection on the RNs of labile traits can only occur if individuals differ in their intercepts, 322 

slopes, and residual parameters across time. The covariance matrix P in Eq. 1 describes 323 

these repeatable among-individual differences and, therefore, ultimately determines the 324 

total amount of trait (co)variation available to natural selection on phenotype z over the 325 

sampling period of interest, given that RN parameters 𝝁𝟎, 𝜷𝒙, and 𝝈𝟎 predict how 326 

organisms will repeatedly express their phenotype within and across environments. We 327 

denote the total magnitude of repeatable among-individual differences in z due to RNs as 328 
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var(𝜼), which in the general case sets an upper limit on the heritability of a phenotype 329 

due to direct genetic effects (see Bijma, 2011 for social traits) and thus provides a useful 330 

phenotypic proxy of the evolvability of a trait (Martin et al., 2023). The trait values 𝜼 331 

represent the repeatable character states that organisms are expected to express within 332 

and across sampled environments, as predicted by their individual RNs (Fig. 1 top left).  333 

Conversely, any variance in observed trait values z due to non-repeatable effects 334 

var(𝛏) = var(𝒛) − var(𝜼) introduces noise into the estimation of selection gradients 335 

defined across sampled environments. Failure to distinguish non-repeatable var(𝛏) and 336 

repeatable var(𝜼) variance in measured phenotypes var(𝐳) = var(𝜼) + var(𝝃) can thus 337 

lead to biased estimates of directional 𝜷  
∗
 and quadratic 𝜸 

∗ selection gradients (Figure 338 

2). For evolutionary ecologists, correlations between fitness and phenotype that are 339 

repeatable over time and potentially heritable across generations will generally be of 340 

primary interest, motivating partitioning of var(𝜼) from var(𝐳) with a GLMM (Martin & 341 

Jaeggi, 2022).  342 

O’Dea et al. (2022) and de Villemereuil et al. (2016), among others, provide exact analytic 343 

solutions and numeric methods for calculating var(𝜼) with many commonly used GLMMs. 344 

For the general case, var(𝜼) can always be approximated on the original data scale, 345 

irrespective of model complexity, by using simulation to compare the variance of model 346 

predicted phenotypic distributions in the presence var(𝒛pred)
𝜼
 and absence 347 

var(𝒛pred)
−𝜼

 of repeatable individual effects 𝝁𝟎 
, 𝜷𝒙, and 𝝈𝟎, using a large number of 348 

random samples. 349 

var(𝜼) ≈ var(𝒛pred)
𝜼

− var(𝒛pred)
−𝜼

  (𝟑)350 

Model predictions can also be used to approximate the total repeatability of among-351 

individual differences in the phenotype on the original data scale for any GLMM 352 

R𝜂 ≈
var(𝜼) 

var(𝒛pred)
𝜼

(𝟒) 353 

The bias of estimated selection gradients will increase as the R𝜂 of a phenotype 354 

decreases and var(𝛏) in turn increases (Spearman, 1904; Searle, 1961). Therefore, 355 
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failure to remove non-repeatable causes of variation from observed phenotypic measures 356 

is a particularly serious issue when estimating selection on labile traits across 357 

heterogeneous environments (Figure 2; Dingemanse et al. 2021). 358 

(Non)linear selection model 359 

To model selection on the individual-specific RN parameters 𝜇0𝑗
, 𝛽𝑥𝑗, and 𝜎0𝑗

, the 360 

RN GLMM in Eq. 1 can be expanded to include an additional response model predicting 361 

measure t of fitness component or proxy W. Linear b and quadratic q selection 362 

coefficients, as well as other more complex forms of nonlinear selection, can then be 363 

estimated directly for the RN parameters. 364 

 𝑧𝑗𝑡 ∼ 𝑓(𝜇𝑗𝑡
 , 𝜎𝑗

 ) (𝟓) 365 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + (𝛽𝑥 + 𝛽𝑥𝑗)𝑥𝑡   366 

𝑔𝜎(𝜎𝑗) = 𝜎0 + 𝜎0𝑗
 367 

𝑊𝑗𝑡 ∼ 𝑓(𝜃𝑗𝑡
 , 𝛿𝑗

 ) 368 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 +  𝑏1𝜇0𝑗 + 𝑏2𝛽𝑥𝑗 + 𝑏3𝜎0𝑗 369 

+𝑞1𝜇0𝑗
2 + 𝑞2𝛽𝑥𝑗

2 + 𝑞3𝜎0𝑗
2  +  𝑞4𝜇0𝑗𝛽𝑥𝑗 + 𝑞5𝜇0𝑗𝜎0𝑗 + 𝑞6𝛽𝑥𝑗𝜎0𝑗  370 

Fitness W for individual j at measurement t is described by a GLMM with expectation 371 

parameter 𝜃 and dispersion parameter 𝛿. The full model thus estimates the RN 372 

parameters and their accompanying selection coefficients in the fitness model 373 

simultaneously using a multivariate analysis. Figure 2 visualizes this model structure and 374 

explains how it avoids bias by partitioning repeatable sources of (non)linear association 375 

between phenotype and fitness. Parameter 𝑊0 is the average fitness on the transformed 376 

scale given by link function 𝑔𝜃. When repeated fitness measures t are available, an 377 

individual random effect 𝑊0𝑗 should be estimated to capture repeatable among-individual 378 

differences in fitness that are not due to the modelled phenotypes (i.e. unexplained 379 

selection). If only a single fitness measure is available, var(𝑾𝟎) cannot be identified 380 
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separately from fitness residual dispersion 𝛿, so these effects should instead be excluded 381 

from the analysis. 382 

The polynomial regression in Eq. 5 can be used to infer short-term population 383 

trajectories on the adaptive landscape, under the assumption that a quadratic function 384 

effectively approximates the local shape of the individual selection surface on the latent 385 

transformed scale (Lande & Arnold 1983; Phillips & Arnold 1989; see supplementary 386 

appendix for further discussion). However, the values of the b and q regression 387 

coefficients should only be interpreted as measures of directional and quadratic selection 388 

gradients when fitness is a mean-scaled Gaussian response, after appropriately scaling 389 

the coefficients (see Stinchcombe et al. 2008; Dingemanse et al. 2021 for details). 390 

Analytic expressions can also be used for direct interpretation of coefficients in a log-391 

normal fitness model (Bollen, Morrissey, & Kruuk 2019). However, in the general case, it 392 

will be necessary to further process regression coefficients from the fitness model before 393 

making quantitative inferences about directional and quadratic selection on the scale of 394 

the original data, which is generally of greater biological interest. 395 

Following Lande and Arnold (1983) and Morrissey and Sakrejda (2013), directional 396 

𝜷 and quadratic 𝛄 selection gradients can be numerically calculated for any GLMM by 397 

taking the first ∂ and second ∂
2
 partial derivatives of the estimated fitness function with 398 

respect to the expected population-level RN parameters  �̅�0, �̅�𝑥, and 𝜎0. 399 

 𝛽𝜇0
=

∂ E(�̅�, �̅�0)

∂ �̅�0

 �̅�−1 . . .  𝛾𝜇0
=

∂
2

 E(�̅�, �̅�0)

∂ �̅�0 𝛿 �̅�0

�̅�−1. . .  𝛾𝛽𝑥𝜎0
=

∂
2

 E(�̅�, �̅�𝑥)

∂ �̅�𝑥 𝛿 𝜎0

�̅�−1 (𝟔. 𝟏) 400 

where �̅� is the expected population fitness on the original data scale, as predicted by the 401 

fitness function defined with b and q coefficients on the link scale in Eq. 5. The directional 402 

gradients 𝛽𝜇0
, 𝛽𝛽𝑥

, and 𝛽𝜎0
 indicate the direction and magnitude of selection on the 403 

expected values of population RN parameters, with respect to the original untransformed 404 

scale of the data. Quadratic selection gradients 𝛾𝜇0
,  𝛾𝛽𝑥

 and 𝛾𝜎0
 in turn indicate convex or 405 

concave curvature in the selection surface shaping the variance of RN parameters 406 

(Stinchcombe et al. 2008); and 𝛾𝜇0𝛽𝑥
,  𝛾𝜇0𝜎0

, and 𝛾𝛽𝑥𝜎0
 indicate further curvature due to the 407 

presence of correlational selection between RN parameters (Blows & Brooks, 2003). 408 
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These gradients can be expressed in standardized units for effect size comparison 409 

between traits and parameters using the appropriate variances and standard deviations 410 

(Lande & Arnold 1983) 411 

𝛽𝜇0
sd = 𝛽𝜇0 

sd(𝝁𝟎)  . . .  𝛾𝜇0
sd = 𝛾𝜇0

var(𝝁𝟎) . . .  𝛾𝛽𝑥𝜎0

sd = 𝛾𝛽𝑥𝜎0
sd(𝜷𝒙)sd(𝝈𝟎) (𝟔. 𝟐) 412 

Standardized gradients are particularly useful for GLMMs because the magnitude of 413 

variances may differ appreciably between the distinct transformed link scales used for 414 

estimating RNs and selection, which makes it challenging to meaningfully distinguish 415 

between small and large effect sizes across models. 416 

 417 

Figure 2. Removing non-repeatable effects from selection gradients. The diagram shows 418 

causal pathways (directional arrows) by which repeatable (green) and non-repeatable (grey) 419 

effects can influence selection gradients of fitness (W) on phenotype (z). Non-repeatable, 420 

stochastic effects influence both fitness and phenotype (directional arrows) and may be 421 

correlated (double-headed arrow), introducing statistical noise into the selection analysis. This 422 

leads to biased directional 𝜷 
∗
 and quadratic gradients 𝜸 

∗ when observed variance in the 423 

phenotype var(z) is used to estimate selection across environments. However, if the 424 

(non)linear relationships between phenotype and fitness are modelled independently of 425 
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stochastic effects on the phenotype var(𝝃), using RN parameters 𝝁𝟎, 𝜷𝒙, and 𝝈𝟎 (Eq. 1-5), 426 

unbiased selection gradients 𝜷 and 𝜸 can be estimated (Eq. 6) directly for repeatable among-427 

individual differences in the phenotype var(𝜼) (see Box 2). Spatiotemporal fluctuations Δ in 428 

these selection gradients can also be described by additional coefficients (see supplementary 429 

appendix Eq. 9), and any repeatable among-individual differences in fitness unexplained by 430 

RN parameters can be estimated with random effects 𝑾𝟎 when repeated fitness measures 431 

are available (Eq. 5). 432 

Statistical inference 433 

Bayesian estimation 434 

The proposed models cannot currently be estimated using popular GLMM software 435 

packages, due to the need for latent RN parameters to be simultaneously estimated with 436 

random and fixed effects across different response models. Fortunately, the Stan 437 

statistical programming language (Carpenter et al. 2017), which relies on cutting-edge 438 

and computationally efficient Markov Chain Monte Carlo (MCMC) sampling algorithms, 439 

provides the flexibility needed for estimating these novel GLMMs within a Bayesian 440 

framework. Researchers unfamiliar with the general motivations of Bayesian inference 441 

are encouraged to see McElreath (2020) and Gelman et al. (2020) for helpful tips on 442 

developing an effective workflow for data analysis. The brms package (Bürkner, 2018) is 443 

also a very helpful bridge for writing complex (non)linear Bayesian GLMMs in Stan using 444 

familiar R formula syntax. We provide guided tutorials (see data availability) for various 445 

implementations of the models presented here in Stan. 446 

Prior distributions need to be specified for all the population-level parameters in a 447 

Bayesian model. While flat or highly diffuse priors are often recommended in the literature 448 

(e.g. Ellison 2004; Villemereuil et al. 2016; Houslay and Wilson 2017), weakly informative 449 

or regularizing priors, which place relatively low probability on extreme effect sizes, 450 

facilitate more robust inferences with limited sample sizes and should generally be 451 

preferred over flat priors (Gelman & Tuerlinckx 2000; Lemoine 2019; McElreath 2020). 452 
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This does not necessarily require strong a priori assumptions; general-purpose priors can 453 

be used to increase the generalizability and robustness of parameter estimates, even in 454 

a state of relative ignorance about the true effect size. See Lemoine (2019) for more 455 

detailed discussion and recommendations. 456 

Model validation 457 

Previous work has validated the performance of our general approach in Stan for 458 

modest effect sizes, showing robust estimates of directional selection on RN intercepts 459 

and slopes with many repeated measures and sample sizes of N = 100 - 300 (Martin & 460 

Jaeggi, 2022). To provide more general validation, we further conducted a simulation-461 

based calibration (SBC; Talts et al. 2018; Säilynoja, Bürkner, & Vehtari, 2022) procedure 462 

to assess whether the proposed models are unbiased estimators of nonlinear selection 463 

under a broader range of scenarios. SBC is a procedure for validating the performance 464 

of any Bayesian algorithm across many possible parameter values, as defined by the 465 

prior distributions of a generative model. This approach removes the arbitrariness of 466 

setting a limited range of fixed parameter values for assessing performance, which can 467 

lead to unexpected sources of bias being overlooked in uninvestigated regions of 468 

parameter space (e.g. rare but possible combinations of phenotypic variances and 469 

selection coefficients). Instead, random parameter values are repeatedly sampled across 470 

many simulated datasets. Visual inspection of the correspondence between the 471 

generative distributions used to simulate datasets and the subsequent posterior 472 

distributions inferred from these datasets allows for detecting sources of bias such as 473 

overdispersion, overestimation, or inconsistent model performance for extreme values. A 474 

GLMM validated through SBC is thus an unbiased Bayesian estimator with respect to the 475 

range of effect sizes described by the prior generative model. 476 

Particular attention was given to the estimation of directional and quadratic 477 

selection coefficients during SBC, using 300 simulated datasets assuming conditions of 478 

very minimal sampling effort (N = 100 subjects with 3 repeated phenotypic measurements 479 

and 2 repeated fitness measures). Parameters were simulated such that 480 

𝜇0, 𝛽𝑥, 𝜎0, 𝒃, 𝒒~𝑁(0,1), sd([𝝁𝟎, 𝜷𝒙, 𝝈𝟎, 𝑾𝟎]), 𝛿~exponential(2), and cor([𝝁𝟎, 𝜷𝒙, 𝝈𝟎])~LKJ(2). 481 
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Note that LKJ refers to the Lewandowski-Kurowicka-Joe distribution, which is useful for 482 

generating positive-definite correlation matrices (Gelman et al., 2013). These priors led 483 

to a broad range of very small to large selection effect sizes, as well as very small to large 484 

effects for the standard deviations and correlations of RNs and the residual fitness 485 

standard deviation (𝛿). Phenotype and fitness were assumed to be Gaussian for 486 

computational efficiency, with mean fitness fixed to 1. Following the recommendations of 487 

Säilynoja et al. (2022), we computed and visualized the difference in expected cumulative 488 

distribution functions between the generative and inferred parameters to perform a 489 

quantitative graphical test of the model’s performance. As shown in Figure 3, our results 490 

demonstrated with probability ≥ 0.95 that the posterior distributions of inferred selection 491 

coefficients were not systematically higher or lower than the prior distributions used to 492 

generate expected selection coefficients. The proposed model thus provides unbiased 493 

inference of nonlinear selection on RNs across a broad range of effect sizes, even under 494 

conditions of minimal sampling effort.  495 
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 496 

Figure 3. Simulation-based calibration of the nonlinear selection model. Results are 497 

shown for analyses of 300 simulated datasets (N = 100 subjects, 3 repeated phenotype 498 

measures and 2 repeated fitness measures) generated from prior distributions defined 499 

over the parameters of a Gaussian nonlinear selection model for RNs (Eq. 5). Plots show 500 

the difference between the expected cumulative density functions (y-axis) for directional 501 

and quadratic selection gradients, based on their generative prior distributions 𝑁(0,1), 502 

and the estimated cumulative density functions based on inferred posterior distributions. 503 
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The x-axis indicates the ordered fractional ranks across posterior samples used for 504 

computing these comparisons. Blue circles show 90% Bayesian credible intervals for 505 

regions of concordance between the estimated and expected parameter distributions, and 506 

the black line reflects the observed difference between the expected and inferred 507 

distribution (a perfectly horizontal line would thus indicate perfect concordance with the 508 

simulated parameters in every dataset). Consistent deviations of the black line beyond 509 

the blue region would provide evidence of systematic inferential bias during model 510 

estimation. Note that due to stochasticity, fluctuations of the black line within the blue 511 

circle are expected at computationally efficient sample sizes. 512 

Power analysis 513 

The SBC procedure demonstrated that our model facilitates unbiased Bayesian 514 

estimation across a broad range of parameter values (Figure 3). We also conducted an 515 

additional simulation study to provide concrete guidelines for empiricists designing 516 

studies to assess nonlinear selection on RNs, investigating how the power to detect the 517 

direction of selection gradients is influenced by the number of subjects and repeated 518 

measures per subject for phenotypes and fitness proxies. For simplicity and ease of effect 519 

size comparison, we modelled Gaussian phenotype and fitness measures. Fitness effects 520 

for the nonlinear selection model (modified from Eq. 5) were simulated such that 521 

𝒃, 𝒒 ~ 𝑈(0.1, 0.5), resulting in selection effects ranging from statistically weak to strong in 522 

strength, with a mean effect size of |0.3| across datasets. For simplicity, we assumed 523 

𝑊0 = 𝛿 = 1 and 𝜇0 = 𝛽0 = 0. Continuous environmental variation (x) for quantifying 524 

reaction norm slopes was treated as a standardized variable drawn from 𝒙~𝑁(0,1). 525 

Repeatable among-individual differences in RNs were fixed to  sd([𝛍𝟎, 𝛃, 𝛔𝟎]) = 0.55 with 526 

correlations drawn from cor([𝛍𝟎, 𝛃, 𝛔𝟎])~𝐿𝐾𝐽(5), and the residual standard deviation of 527 

the phenotype was fixed to sqrt(exp(𝜎0)) = 0.77, so that repeatable and residual random 528 

effect variances were 0.3 and 0.6 respectively. This resulted in each RN parameter 529 

exhibiting modest repeatability, 𝑅 = 0.2 =
0.3

3(0.3)+0.6
 in the absence of phenotypic 530 

correlations. Unexplained selection was also fixed to sd(𝐖𝟎) = 0.55 for the fitness model. 531 
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Power to detect the appropriate direction of selection coefficients was explored 532 

with 1000 datasets of varying size drawn from 𝑁~𝑈(200, 1000) subjects with 𝑡𝑧~𝑈(3,7) 533 

repeated phenotype and 𝑡𝑤~𝑈(1,5) repeated fitness measures per subject. Classical 534 

frequentist methods define power with respect to a binary decision rule based on the 535 

desired significance level of a null hypothesis test.  In Bayesian analysis, ‘power’ is not 536 

precisely defined but may instead refer to the continuous level of support provided for a 537 

direct (rather than null) hypothesis test, such as the posterior probability of positive 538 

selection occurring on a trait. The power of a Bayesian analysis thus reflects how 539 

confident a model is likely to be in the existence and direction of a true selection effect, 540 

with p = 0.5 indicating no confidence (+ and – values are equally likely) and p = 1.0 541 

indicating complete confidence in the effect. We herein use ‘power’ in this sense to refer 542 

to the expected posterior probability supporting positive directional and quadratic 543 

selection effects on RN parameters. 544 

Power for detecting selection across simulated scenarios is visualized in Figure 4, 545 

with second-order polynomial lines plotted across datasets to infer general patterns 546 

expected in empirical research. As expected, we find that Bayesian power for inferring 547 

directional and quadratic selection increases with a greater number of subjects (N) and 548 

repeated phenotype (𝑡𝑧) and fitness measures (𝑡𝑤), as well as with greater selection effect 549 

sizes (𝒃, 𝒒), while larger absolute phenotypic correlations among RN parameters (cor̅̅ ̅̅ ) 550 

reduce power, particularly for detecting quadratic selection. Power to detect quadratic 551 

selection is lower than for directional selection across small to moderate sample and 552 

effect sizes, with power for correlational selection also being relatively lower than 553 

stabilizing/disruptive selection except under ideal conditions. This implies that research 554 

particularly focused on detecting correlational selection of RNs will require larger samples 555 

to attain confident inferences. Power is also consistently lower for detecting all types of 556 

selection on RN residual parameters in comparison to RN intercepts and slopes, 557 

indicating a need for greater sampling effort in selection studies on phenotypic variability. 558 

As with any multivariate selection model, these results show that large sample sizes and 559 

sufficient repeated measurements are crucial for robust hypothesis testing, particularly in 560 

the presence of weak selection. As a rule of thumb, sample sizes of at least N = 500-1000 561 

will be desirable to appropriately reduce the risk of false negatives, particularly in the 562 
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absence of many repeated phenotype and/or fitness measures. The negative effect of 563 

RN parameter correlations on power also shows that (non)linear selection will be much 564 

easier to detect when RN parameters vary quasi-independently among individuals within 565 

a population.  566 

 567 

Figure 4. Bayesian power analysis of the nonlinear selection model. Results are 568 

shown for directional hypothesis tests of selection effects across 1000 simulated datasets 569 

used to estimate the nonlinear selection model for RNs (Eq. 5) with Gaussian phenotype 570 

and fitness measures. Plots show the expected posterior probability (‘power’, y-axis) 571 

supporting selection effects as a function of variation in sampling conditions across 572 

simulated datasets (x-axis): the number of subjects/sample size (N), the number of 573 
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phenotypic measures per subject (tz), the number of fitness measures per subject (tw), 574 

the mean absolute correlation among RN parameters (cor̅̅ ̅̅ ), and the size of linear (b) and 575 

nonlinear (q) selection effects. General patterns were inferred using second-order 576 

polynomials across conditions, which are color-coded by RN parameter (red = intercepts, 577 

blue = slopes, yellow = residuals, purple = intercepts x slopes, orange = intercepts x 578 

residuals, and green = slopes x residuals). 579 

Conclusion 580 

Studying selection on highly labile traits is essential for explaining how and why 581 

organisms adapt to environmental change. RN models are a crucial tool for characterizing 582 

such phenotypes, but their application to selection analysis remains hampered by the 583 

limitations of current methods. A major challenge is to avoid inferential bias caused by 584 

non-repeatable, stochastic effects and other sources of measurement error in RNs and 585 

their fitness effects (Hadfield et al. 2010; Figure 1-2). A common solution is to use multi-586 

response/multivariate random effect GLMMs to account for uncertainty in selection on 587 

RNs. However, this approach restricts analyses to focus on linear effects and directional 588 

selection. Ignoring quadratic selection caused by nonlinear effects fundamentally inhibits 589 

researchers’ capacity to study the adaptive landscape of labile traits (Bulmer 1971; Arnold 590 

et al., 2001; Blows & Brooks, 2003). 591 

To overcome this limitation, we proposed a novel Bayesian GLMM framework for 592 

studying complex patterns of nonlinear selection on RNs, which we validated over a broad 593 

range of possible parameter values using a simulation-based calibration approach 594 

(Figure 3). We also found that these models exhibited desirable statistical power under 595 

reasonable sampling conditions for many long-term field research projects (Figure 4). 596 

This modeling framework synthesizes the well-established Lande and Arnold (1983) 597 

approach to error-free selection analysis with measurement error or error-in-variables 598 

models (Ponzi et al. 2018; Dingemanse et al. 2021; Martin & Jaeggi 2022) and double 599 

hierarchical (Westneat et al. 2013; O’Dea et al. 2021), multi-response GLMMs (Brommer 600 

et al. 2012; Houslay & Wilson 2017; Arnold et al. 2019). These models can be applied to 601 

estimate directional and quadratic selection irrespective of the distribution of the data and 602 
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the potential nonlinearity of the RN or fitness function, allowing researchers to construct 603 

more realistic models of the processes underlying their measurements. This focuses 604 

attention on accurate description of observed data rather than the restrictive assumptions 605 

of linear regression. With the analytic toolkit of quantitative genetics (Lande & Arnold 606 

1983; Morrissey & Sakrejda 2013), estimates from these models can also be transformed 607 

to quantify selection gradients, visualize multivariate selection, and predict ongoing 608 

adaptation. The proposed modeling framework should, therefore, readily enhance tests 609 

of adaptive theory for labile traits in the wild. 610 
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Model extensions 22 

Simplified models are presented in the main text (Eq. 1, Eq. 5) to aid 23 

interpretation, but it will often be necessary to specify more complex models for 24 

explaining empirically observed variation in fitness and phenotype. Various model 25 

extensions can be straightforwardly accomplished using the basic toolkit of GLMMs 26 

and related regression frameworks, along with appropriate study design and sufficient 27 

repeated sampling for reliable estimation. Below we briefly consider three key areas 28 

for model extension and provide references for further consideration. Implementation 29 

for social traits and interactions is discussed by Martin and Jaeggi (2022). 30 

Adjusted and nonlinear effects 31 

As with any regression analysis, additional fixed and random effects may need 32 

to be adjusted for to facilitate appropriate biological inference. Predation may, for 33 

instance, cause differential mortality as a function of repeatable differences in behavior 34 

across sex and age classes, but this selection will not generate an evolutionary 35 

response on behavioral variation within sexes or age classes. This motivates 36 

estimating repeatable individual variation adjusted for the effects of sex and age, 37 

among other commonly studied factors such as size and morphology (Bolnick et al., 38 

2003). Unadjusted environmental effects on fitness and phenotype can also bias 39 

estimates of selection and among-individual variation in both field and laboratory 40 

settings (Scheiner et al. 2002; Stinchcombe et al., 2022; Kinsler et al., 2023; Munar-41 

Delgado et al., 2023). It is, therefore, often useful to include additional environmental 42 

covariates (e.g. average temperature and rainfall, date within season, resource 43 

availability), including potential interaction effects, and random factors (e.g. nesting 44 

site, spatial position, batch, observer identity) to adjust fitness variation during the 45 

selection analysis. As discussed in Box 2, model predictions can always be used to 46 

quantify and better understand how adjusting for these effects changes the repeatable 47 

variation available to selection in any multivariate GLMM.  48 

Relationships between fitness, phenotype, and the local environment may also 49 

be best described by additional terms beyond quadratic regression coefficients. For 50 

example, RN slopes of thermoregulatory and life history traits such as growth rate are 51 

often highly nonlinear in response to temperature (Oomen & Hutchings, 2022), 52 



violating the assumption of Eq. 5 that individuals’ phenotypic deviations from the linear 53 

RN slope 𝛽𝑥 are multivariate normally distributed. Polynomials (Henderson, 1982; 54 

Yamahira, Kawajiri, Takeshi, & Irie, 2007) or generalized additive effects such as 55 

splines or Gaussian processes (Schluter & Nychka, 1994; Sigourney, Munch, & 56 

Letcher, 2012; Pederson, Miller, Simpson, & Ross, 2019; Catalina, Bürkner, & Vehtari, 57 

2020) can be used to account for nonlinearity in the population RN and ensure the 58 

statistical model more accurately predicts observable phenotypic and fitness variation. 59 

In the general case, the basic model (Eq. 5) can be expanded to include any 60 

generalized additive function s() describing how expected phenotypic 𝜇𝑗𝑡 or fitness 61 

values 𝜃𝑗𝑡 change in response to the environment 62 

𝑔𝜇(𝜇𝑗𝑡) = 𝜇0 + 𝜇0𝑗 + 𝑠(𝑥𝑡) + 𝛽𝑥𝑗𝑥𝑡 (𝟕) 63 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 +  𝑠(𝑥𝑡) + 𝑏1𝜇0𝑗 + 𝑏2𝛽𝑥𝑗
+ 𝑏3𝜎0𝑗 … 64 

Extensive tutorials for incorporating such nonlinear effects into Bayesian 65 

regression models in Stan are freely available online (see https://mc-66 

stan.org/users/documentation/case-studies for worked examples of fitting splines and 67 

Gaussian processes). Code from Stan models constructed using familiar R syntax in 68 

the brms package (Bürkner, 2019) also provides a helpful reference point for getting 69 

started. By allowing for arbitrarily complex average RN shapes across subjects, 70 

individual deviations 𝜷𝒙 from the average slope for phenotype as well as for fitness 71 

are much more likely to exhibit multivariate normality.  This general approach allows 72 

researchers to accurately describe trait change across complex and dynamic 73 

environments, while still using standard theory from quantitative genetics to quantify 74 

selection gradients and predict short-term evolutionary responses. 75 

Additional individual effects 76 

The RN model presented in the main text (Eq. 1) does not account the fact that 77 

phenotypic dispersion 𝜎 may also be plastic across environments, a phenomenon 78 

broadly referred to as ‘malleability’ (see O’Dea, Noble, & Nakagawa 2021 for 79 

discussion). Malleability in residuals can be estimated by including population- and 80 

individual-level slopes in the linear predictor of the dispersion parameter (Westneat et 81 

al., 2013). For example, 82 

https://mc-stan.org/users/documentation/case-studiesf
https://mc-stan.org/users/documentation/case-studiesf


𝑔𝜎(𝜎𝑗𝑡) = 𝜎0 + 𝜎0𝑗 + (𝜌 + 𝜌𝑗)𝑥𝑡 (𝟖) 83 

if observation-level variation in environmental measure x is expected to have effect 𝜌 84 

on average differences in phenotypic residuals. Malleability can then be treated as a 85 

further RN parameter that is also potentially under selection. Some statistical 86 

distributions such as the Poisson lack an explicit dispersion parameter, due to 87 

deterministic mean-variance relationships, and thus at first glance only provide scope 88 

for selection on the RN intercepts and slopes of expected values. However, in many 89 

empirical datasets, there is more variance observed in the phenotype than predicted 90 

by these distributions (overdispersion), which can be accounted for through the 91 

inclusion of further random effects capturing stochastic, observation-level deviations 92 

from model expectations (i.e. residuals; Harrison, 2014). Taking the same approach 93 

described in Eq. 5 and Eq. 8, the dispersion of these observation-level random effects 94 

can then be modelled as a function of individual-level intercepts and slopes, similar to 95 

a standard Gaussian model, providing scope for estimating selection on phenotypic 96 

variability using a broad range of RN GLMMs.  97 

More generally, any theoretically relevant component of a statistical distribution 98 

may be modelled as a function of further individual-level effects and conceptualized 99 

as a RN parameter regulating the expression of phenotypes within and across 100 

environments. Hurdle models, for example, combine multiple distributions together to 101 

distinguish effects on the presence/absence of trait expression from effects on the 102 

subsequent magnitude or intensity of trait expression (Mullahy 1986; Heilbron 1994). 103 

This is particularly useful for phenotypes such as allogrooming behavior in primates, 104 

which can vary repeatably among individuals both in its probability of occurring as well 105 

as its intensity and duration once expressed (Silk et al., 2017). These processes are 106 

interdependent but may nonetheless be subject to distinct selection pressures (e.g. 107 

whom should be groomed and how much), which can be investigated by estimating 108 

separate RN intercepts and/or slopes on both model components. 109 

Fluctuating selection 110 

Fluctuating selection on RNs may occur due to variation in the density of mates 111 

and competitors, resource availability and seasonality, bodily condition and age, the 112 

availability of local niches, or any other state that modulate the fitness costs and 113 



benefits of labile traits (Houston & McNamara, 1999; Sih et al., 2015). Fluctuating 114 

selection is also expected to be a key mechanism for explaining patterns of 115 

macroevolutionary stasis (Estes & Arnold, 2007), as well as the adaptive maintenance 116 

of individual and genetic variation within populations (e.g. Sasaki & Ellner, 1997; 117 

Dingemanse & Wolf, 2010; Wolf & Weissing, 2010; Wright et al., 2019; Abdul-Rahman, 118 

Tranchina, & Gresham, 2021; Martin et al., 2023). In many cases, it will be informative 119 

to estimate spatiotemporal heterogeneity in selection even if the underlying causes of 120 

fluctuations are not directly measured (Reynolds, de Los Campos, Egan, & Ott 2016). 121 

For example, long-term field studies can be used to investigate the adaptive 122 

maintenance of RN variation by yearly fluctuations in selection, even if the 123 

mechanisms underpinning these fluctuations remain unclear (e.g. de Villemereuil et 124 

al., 2020; Mouchet et al., 2021). To incorporate these effects, the basic fitness model 125 

(Eq. 5) can also be extended by including fixed or random interaction effects on the 126 

selection coefficients, which will estimate continuous or discrete fluctuations 𝚫𝜷 and 127 

𝚫𝜸 (Figure 1) across space and time. For example, 128 

𝑔𝜃(𝜃𝑗𝑡) = 𝑊0 + 𝑊0𝑗 + (𝑏1 + 𝑏1𝑥𝑥𝑡 + 𝑢𝑡𝑏1
)𝜇0𝑗 + ⋯ (𝑞1 + 𝑞1𝑥𝑥𝑡 + 𝑢𝑡𝑞1

)𝜇0𝑗
2 + ⋯ (𝟗) 129 

where 𝑏1𝑥 and 𝑞1𝑥 describe how the (non)linear selection coefficients change as a 130 

function of 𝑥𝑡, and  𝑢𝑡𝑏1
 and 𝑢𝑡𝑞1

 describe changes due to a random factor at time t. 131 


