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Summary paragraph 85 

Research in environmental science relies heavily on global climatic grids derived from 86 

estimates of air temperature at around 2 meter above ground
1-3

. These climatic grids 87 

however fail to reflect conditions near and below the soil surface, where critical ecosystem 88 

functions such as soil carbon storage are controlled and most biodiversity resides
4-8

. By 89 

using soil temperature time series from over 8500 locations across all of the world’s 90 

terrestrial biomes
4
, we derived global maps of soil temperature-related variables at 1 km 91 

resolution for the 0–5 and 5–15 cm depth horizons. Based on these maps, we show that 92 

mean annual soil temperature differs markedly from the corresponding 2 m gridded air 93 

temperature, by up to 10°C, with substantial variation across biomes and seasons. Soils in 94 

cold and/or dry biomes are annually substantially warmer (3.6°C ± 2.3°C) than gridded air 95 

temperature, whereas soils in warm and humid environments are slightly cooler (0.7 ± 96 

2.3°C). As a result, annual soil temperature varies less (by 17%) across the globe than air 97 

temperature. The effect of macroclimatic conditions on the difference between soil and air 98 

temperature highlights the importance of considering that macroclimate warming may not 99 

result in the same level of soil temperature warming. Similarly, changes in precipitation 100 

could alter the relationship between soil and air temperature, with implications for soil-101 

atmosphere feedbacks
9
. Our results underpin that the impacts of climate and climate 102 

change on biodiversity and ecosystem functioning are inaccurately assessed when air rather 103 

than soil temperature is used, especially in cold environments. 104 

 105 

  106 
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Main 107 

With rapidly increasing availability of big data on species distributions, functional traits and 108 

ecosystem functioning
10-13

, we can now study biodiversity and ecosystem responses to 109 

global change in unprecedented detail
2,3,14,15

. Temperature plays a central role in mediating 110 

ecological, physiological, biophysical and biogeochemical processes, numerous spatially-111 

explicit studies across a wide range of disciplines make use of global gridded temperature 112 

data
2,16,17

. However, these data sets use measurements from standard meteorological 113 

stations that record air temperature inside well-ventilated protective shields placed up to 2 114 

m above-ground in open, shade-free habitats
4,18

. Such conditions seldom reflect the climatic 115 

conditions near or below the soil surface that most organisms experience, and where 116 

important ecosystem functions and processes operate
5,19,20

. This mismatch or offset 117 

between soil and air temperature can easily reach up to ±10°C annually
7,21,22

.  118 

The direction and magnitude of the mismatch between soil and air temperature is largely 119 

driven by energy balances (e.g., evaporation and incoming and outgoing radiation mediated 120 

by wind), by the insulating effects of snow and by vegetation characteristics (e.g., canopy 121 

cover, height, and functional traits related to light reflectance and stomatal conductance), 122 

and soil characteristics (e.g., latent heat and specific heat capacity, dependent on soil type 123 

and texture as well as water content)
4,7,23-26

. The factors implicated in soil-air temperature 124 

offsets do not only vary spatially, but also seasonally
7,27

, and in predictable and different 125 

ways across macroclimatic gradients. We therefore expect biome-wide patterns in seasonal 126 

and annual variation in offsets. 127 

Several ecological patterns and processes relate more directly to soil temperature than to 128 

air temperature. Soil rather than air temperatures better predict ecosystem functions like 129 

biogeochemical cycling (e.g., organic matter decomposition, soil respiration or the global 130 

aspects of the carbon balance)
28-33

. Similarly, the use of soil temperature in correlative 131 

analyses or predictive models may improve predictions of climate impacts on organismal 132 

physiology, behaviour, and population and community dynamics
8,33-37

. Given the key role of 133 

soil-related processes for both above- and belowground parts of the ecosystem and their 134 

feedbacks to the atmosphere
38

, adequate soil temperature data are of critical importance 135 

for a broad range of fields of study, such as ecology, biogeography, agronomy, soil science 136 

and climate system dynamics. 137 
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In response to the challenges outlined above, we used over 8,500 time series of soil 138 

temperature measured in-situ between 1979 and 2020 (mean duration 2.8 years, ranging 139 

from 1 month to 41 years), from across the world’s major terrestrial biomes, compiled in the 140 

SoilTemp database
4
 (Fig. 1a, Extended data Fig. 1). First, we assessed the global and biome-141 

specific patterns in the mean annual offset between in situ soil temperature (topsoil: 0–5 cm 142 

and second layer: 5–15 cm depth) and coarse-scale interpolated air temperature from ERA5-143 

Land (soil temperature minus air temperature, hereafter called the temperature offset, 144 

sensu De Frenne, et al. 
39

). Next, we used a machine learning approach with 31 145 

environmental explanatory variables (namely climate, soil, topography, reflectance, 146 

vegetation and anthropogenic variables) to model the spatial variation in monthly 147 

temperature offsets at a 1 x 1 km resolution for all continents except Antarctica (see 148 

Methods). Using these offsets, we then calculated relevant soil-related bioclimatic variables 149 

(SBIO) and assessed patterns in mean annual soil temperature across the world’s biomes. 150 

Comparing the latter with mean annual air temperature across the biomes helps to quantify 151 

the strength and direction of the relationships between soil and air temperature across 152 

space and time with the potential to improve our understanding of land-atmosphere 153 

feedbacks
9
. 154 

Biome-wide patterns in the temperature offset 155 

We found temperature offsets between in situ measured mean annual topsoil and air 156 

temperature of up to 10°C (Fig. 1, 0–5 cm depth, averaged at 1-km² resolution, 5–15 cm is 157 

available in Extended data Figs. 2-3); the values are in line with data from regional 158 

studies
7,22,27

. The magnitude and direction of these offsets varied considerably within and 159 

across biomes. Mean annual topsoil temperature was on average 3.6 ± 2.3°C higher than air 160 

temperature in cold and/or dry biomes, namely tundra, boreal forests, temperate 161 

grasslands and subtropical deserts. In contrast, offsets were slightly negative in warm and 162 

wet biomes, namely in tropical savannas, temperate forests and tropical rain forests, where 163 

on average soils were 0.7 ± 2.7°C cooler than air (Fig. 1b, Extended data Figs. 2 and 3; note, 164 

however, the lower spatial coverage in these biomes in Fig. 1a, c, d, Extended data Table 1). 165 

Temperature offsets in annual minimum and maximum temperature (5
th

 and 95
th

 166 

percentile, see Methods) amounted to c. 10°C. While annual soil temperature minima were 167 

on average higher than corresponding air temperature minima in all biomes, temperature 168 
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offsets of annual maxima followed largely the same biome-related trends as seen for the 169 

annual means, albeit with the highest variability expected for temperature extremes 170 

(Extended data Figs. 2g, h, 3g, h). This clear discrepancy between cold and dry versus warm 171 

and wet biomes indicates the known decoupling resulting from snow (from cold extremes in 172 

cold and cool biomes) and buffering due to shading, evaporation and the specific heat of 173 

water (mostly against warm extremes in warm and wet biomes) for soil temperatures
7,26,40-

174 

44
. As such, these results highlight strong macroclimatic impacts on microclimate across the 175 

globe. Using different air temperature data sources did not alter the annual temperature 176 

offset and biome-related patterns (see Methods and Extended data Figs. 2-5).  177 

  178 
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 179 

Figure 1: Temperature offsets between soil and air temperature differ significantly between 180 

biomes. (a) Distribution of in situ measurement locations across the globe, coloured by the mean 181 

annual temperature offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm depth) 182 

and modelled interpolated weather-station based air temperature. Offsets were averaged per 183 

hexagon, each with a resolution of approximately 70,000 km².  Mollweide projection. (b) Mean 184 

annual temperature offsets per Whittaker biome (adapted from Whittaker 1970, based on 185 
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geographic location of sensors averaged at 1 km²; 0–5 cm depth), ordered by mean temperature 186 

offset and coloured by mean annual precipitation. (c–d) Distribution of sensors in 2D climate space 187 

for the topsoil (c, 0–5 cm depth, N=4530) and the second layer (d, 5–15 cm depth, N=3989). Colours 188 

of hexagons indicate the number of sensors at each climatic location, with a 40 × 40 km resolution. 189 

Grey dots in the background represent the global variation in climatic space (obtained by sampling 190 

1,000,000 random locations from the CHELSA world maps). Overlay with dotted lines depicts a 191 

delineation of Whittaker biomes. 192 

 193 

 194 

 195 

Temporal and spatial variation in temperature offsets 196 

We found a strong seasonality in monthly temperature offsets, especially towards higher 197 

latitudes (Fig. 2), using a random forest (RF, so called as it is made up of many decision 198 

trees) modelling approach
2
. This model paired the monthly temperature offsets with 31 199 

global gridded (1 km²) covariate layers of climate, soil, topography, reflectance, vegetation 200 

and anthropogenic variables (Supplementary Table 1) and interpolated these offsets across 201 

the biomes. High-latitude soils were found to be several degrees warmer than the air 202 

(monthly offsets of up to 25°C) during their respective winter months, and cooler (up to 203 

10°C) in summer months, both at 0–5 cm and at 5–15 cm depths (Fig. 2, Extended data Fig. 204 

6). In the tropics and subtropics, soils in dry biomes (e.g., the Sahara desert or southern 205 

Africa) were predicted to be warmer than air throughout most of the year, whilst soils in 206 

mesic biomes (e.g., tropical biomes in South America, central Africa and Southeast Asia) 207 

were modelled to be consistently cooler than air temperature throughout the year in both 208 

soil layers
9
. This seasonal variation is in line with the annual differences observed above, 209 

and highlights even more strongly the likely role of snow and soil moisture
7,26,40-44

. 210 

  211 
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 212 

Figure 2: Global modelled temperature offsets between soil and air temperature show strong 213 

spatiotemporal variation across months. Modelled annual (a) and monthly (b–m) temperature 214 

offset (in °C) between in situ measured soil temperature (topsoil, 0–5 cm) and modelled air 215 

temperature. Positive (red) values indicate soils that are warmer than the air. Dark grey represents 216 

regions outside the modelling area. 217 

 218 
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Our bootstrap approach to validate our modelled offsets indicated high consistency among 219 

the outcomes of 100 bootstrapped models (Fig. 3, Extended data Fig. 7a), with standard 220 

deviations in most months and across most parts of the globe around or below ±1°C. One 221 

exception to this was the temperature offset at high latitudes of the northern hemisphere 222 

during winter months (standard deviation up to ±5°C in the 0–5 cm layer). There, high 223 

variation in the in situ measured offsets – likely driven by the interactions between snow, 224 

local topography and vegetation – reduced predictive power of the models at 1-km² 225 

resolution
25,42,45-47

. In the coldest and warmest extremes of the temperature gradient, our 226 

model predictions underestimated measured temperature offsets by around 1°C (Extended 227 

data Fig. 8). Predictive performance was comparable across biomes, although with large 228 

variation in data availability (Extended data Fig. 9). 229 

The importance of explanatory variables in the RF models was largely consistent across 230 

months. Macroclimatic variables such as incoming solar radiation, air temperature and 231 

precipitation were by far the most influential explanatory variables in the spatial models of 232 

the monthly temperature offset (Extended data Figs. 10, 11). The offset had a strong 233 

negative covariation with both air temperature and solar radiation, strengthening our 234 

conclusion that the overarching global patterns in the temperature offset might indeed be 235 

mostly driven by the opposing processes at play in cool (decoupling effects of snow) versus 236 

warm (buffering effects of soil moisture) biomes. Importantly, however, snow cover itself 237 

was not a good predictor of the temperature offset in most months (except for January and 238 

December), likely due to fine-scale variation in snow depth and its insulating properties 239 

below the studied 1-km² resolution
25,48,49

. The secondary importance of variables related to 240 

precipitation and soil structure hints to the additional distinction between wet and dry 241 

biomes at the warm end of the temperature gradient, where landscapes with wet soils and 242 

the presence of closed-canopy vegetation generally have cooler soils as the heating and 243 

evaporating of soil moisture absorbs significant portions of the energy, a process much less 244 

at play in warm and dry biomes
9,43,45

 (Extended data Fig. 11).  245 

 246 

  247 
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 248 

Figure 3: Models of the temperature offset between soil and air temperature have low standard 249 

deviations and good global coverage. Analyses for the temperature offset between in situ topsoil 250 

(0–5 cm depth) temperature and gridded air temperature. (a) Standard deviation (in °C) over the 251 

predictions from a cross-validation analysis that iteratively varied the set of covariates (explanatory 252 

data layers) and model hyperparameters (see Methods for details) across 100 models and evaluated 253 

model strength using 10-fold cross-validation, for January (left) and July (right), as examples of the 254 

two most contrasting months. (b) The fraction of axes in the multidimensional environmental space 255 

for which the pixel lies inside the range of data covered by the sensors in the database. Low values 256 

indicate increased extrapolation.  257 

 258 

Our empirical modelling approach enabled us to map global patterns in soil temperature. In 259 

doing so, we did not necessarily disentangle the mechanisms driving the temperature offset, 260 

which would require modelling the biophysics of energy exchange at the soil surface across 261 

biomes
50,51

. Indeed, many of the strongest explanatory variables used in our study (e.g., 262 

macroclimate, and especially the negative correlation of the temperature offset with solar 263 

radiation input) are related to the identified temperature offset more indirectly than 264 

directly. Importantly, however, these macroclimatic variables initiate many factors 265 

downstream that affect the functioning of ecosystems at fine spatial scales which, in turn, 266 

feedback on the local offset, such as energy and water balances, snow cover, wind intensity 267 

and vegetation cover. For example, while increased solar radiation itself would result in 268 

warmer soils than the air, high solar radiation at the global scale often coincides with high 269 
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vegetation cover, which results in cooler soils
39

. These results highlight, however, that the 270 

complex relationship between microclimatic soil temperature and macroclimatic air 271 

temperature is predictable across macroclimatic gradients, even when governed by a 272 

multitude of factors at higher resolutions. 273 

We used a 1 × 1 km resolution to model mismatches between soil and temperature, 274 

however, higher resolutions could reveal the importance of locally heterogenous variables. 275 

These variables include micro-topography (e.g., slope and topographic roughness), 276 

vegetation characteristics (e.g., biomass and structure), land use, soil moisture and snow 277 

cover would emerge among the most important drivers at higher spatiotemporal 278 

resolutions than used here, even though they seem secondary at 1 × 1 km resolution 279 

(Extended data Fig. 10). Indeed, we averaged all values from different microhabitats (e.g., 280 

sensors in forested versus open patches within 1 × 1 km grid cells) to obtain overarching 281 

patterns, as well as all daily and diurnal variation within a month, even though important 282 

variation is, no doubt, present at high resolutions. For example, we show that soils in the 283 

temperate seasonal forest biome were on average 0.5°C warmer annually than air 284 

temperatures, while they were 0.8°C cooler than the air in forested habitats, and 1°C 285 

warmer than the air in non-forested habitats (Extended data Table 2). The incorporation of 286 

factors that affect the local radiation balance and wind (e.g., topography, vegetation cover, 287 

urbanization) at the landscape to local scales will be critical when predicting soil 288 

temperature at higher spatiotemporal resolutions. Similarly, it is likely to be important to 289 

integrate horizontal mechanistic processes in specific microhabitats, such as the effects of 290 

neighbouring locations (e.g. topographic shading and cold-air drainage, 
4,52,53

). The SoilTemp 291 

database
4
, with its georeferenced time series of in situ measured soil and near-surface 292 

temperature and associated metadata, can facilitate the necessary steps towards higher 293 

resolutions to be taken in the future. 294 

Although the over-representation of some biomes was accounted for in the modelling by 295 

averaging the data at 1 × 1 km resolution, geographic bias is present as in most global 296 

databases, and some areas still contained an insufficient amount of field observations to be 297 

well represented. For 18% of pixels across the biomes, less than 90% of environmental 298 

variables fell within the range covered by the database. Our global maps should therefore 299 

be used with caution in regions where environmental conditions are outside the range of 300 
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our sampled data. The current availability of microclimatic data are indeed significantly 301 

fewer in tropics (Extended data Table 3). There, our model has extrapolated temperature 302 

values beyond the range used to calibrate the model in some cases (Fig. 3b, Extended data 303 

Fig. 7b). Our open-access uncertainty estimations (Fig. 3, Extended data Fig. 7) could be 304 

used as a mask to exclude areas of model extrapolation (i.e., values of interpolation in Fig. 305 

3b < 0.9), as exemplified in Fig. 4a. Importantly, these same maps identify regions where 306 

installation of soil microclimate networks need to be prioritized
4
. 307 

Global variation in soil temperature 308 

Using the modelled temperature offsets, we constructed soil-related analogues of 309 

temperature-derived bioclimatic variables (SBIO 1-11, Fig. 4, Extended data Figs. 12, 13) by 310 

adding monthly and annual temperature offsets to the original air-temperature based 311 

bioclimatic variables of the CHELSA database
1
. The latter, calculated by summarizing the 312 

monthly mean, minimum and maximum temperature values over the period 1979–2013, 313 

are specifically developed for ecological applications and represent annual averages (e.g., 314 

mean annual temperature), seasonality (e.g., annual range in temperature), and extreme 315 

conditions (e.g., temperatures of the coldest and warmest months). 316 

Our results indicate 17% less spatial variation globally (expressed by the standard deviation) 317 

in mean annual soil temperature than in air temperature, largely driven by the positive 318 

offset between soil and air temperature in cold environments (Fig. 4). Importantly, our 319 

machine learning models slightly underestimate temperature offsets at both extremes of 320 

the temperature gradient (Extended data Fig. 8), and estimates of the reduction in variation 321 

across space in the coldest biomes are thus conservative. The reduction in spatial 322 

temperature variation is observed in all cold and cool biomes, with tundra and boreal 323 

forests having both a significant positive mean temperature offset and a reduction of 20% 324 

and 22% in variation, respectively (Fig. 4c). In the warmest biomes, however, we see an 325 

increase in variation of, on average, 10%. The reduction in variation in cold and cool biomes 326 

likely links back to the decoupling effect of snow, while in warm biomes the difference 327 

between dry (positive temperature offset) and wet (negative temperature offset) 328 

environments could cause increased variation. The well-supported decoupling effect of soils 329 

suggests that soil-related organisms in cold biomes are exposed to a narrower temperature 330 
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range relative to organisms operating in free-air conditions, implying a potentially higher 331 

climate-sensitivity to the same level of climate warming. 332 

 333 

Figure 4: Mean annual soil temperature shows significantly lower spatial variability than air 334 

temperature. (a) Global map of mean annual topsoil temperature (SBIO1, 0–5 cm depth, in °C), 335 

created by adding the monthly offset between soil and air temperature for the period 2000–2020 336 

(Fig. 2) to the monthly air temperature from CHELSA for the period 1979–2013 1 and summarizing 337 

across all 12 months. A mask is used to exclude regions where our models are extrapolating (i.e., 338 

interpolation values in Fig. 3 are < 0.9, 18% of pixels). Dark grey represents regions outside the 339 

modelling area. (b–c) Density plots of mean annual soil temperature across the globe (b) and for 340 

each Whittaker biome separately (c) for SBIO1 (dark grey, soil temperature), compared with BIO1 341 

from CHELSA (light grey, air temperature), created by extracting 1,000,000 random points from the 342 

1-km² gridded bioclimatic products. The numbers in (c) represent the standard deviations of air 343 

temperatures (light grey) and soil temperatures (dark grey). Biomes are ordered according to the 344 

median annual soil temperature values from the highest temperatures (subtropical desert) to the 345 

lowest (tundra). 346 

  347 
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 348 

Our results highlight clear biome-specific shifts in temperature between air and soil, as well 349 

as a significant reduction in the spatial variation in temperature, especially in cold and cool 350 

biomes. The observed impact of macroclimate on the temperature offset implies that soil 351 

temperatures will not warm at the same rate as air temperatures when climate warms. 352 

Indeed, one degree of air temperature warming can result in either a bigger or a smaller 353 

equivalent of soil temperature change, depending on where along the macroclimatic 354 

gradient it is occurring. This will impact cold biome soils most strongly, as they not only 355 

experience the largest temperature offsets and reductions in climate range compared to air 356 

temperature, but they are also expected to experience the strongest magnitude of climate 357 

warming (Fig. 4b, c)
54-57

. Similarly, changes in precipitation regimes and thus soil moisture 358 

can significantly alter the relationship between air and soil temperature, with critical 359 

implications for soil moisture-atmosphere feedbacks
9
. Importantly, future research should 360 

thus not only use soil temperature data as provided here to study belowground ecological 361 

processes
4,40,58

, it should also urgently investigate future scenarios of soil climate warming in 362 

light of changing air temperature and precipitation, with the necessary spatial resolution to 363 

incorporate the uncovered non-linear relationships
59

. 364 

Conclusions 365 

We observed large spatiotemporal heterogeneity in the global offset between soil and air 366 

temperature, often in the order of several degrees. Soil temperature is non-linearly related 367 

to air temperature at the global scale, implying that air temperature is not a suitable proxy 368 

for temperature conditions near or in the soil. However, we have provided the means to 369 

correct for these important regional mismatches. By making our global soil temperature 370 

maps and the underlying monthly offset data available openly, we offer gridded soil 371 

temperature data, based on in situ measurements for climate research, ecology, agronomy 372 

and other life and environmental sciences. These maps bring us one step closer to climate 373 

data exactly where it matters the most for most terrestrial organisms
6,7,48

. 374 

The biome-specific and seasonally variable offsets between air and soil temperature 375 

quantified here impact ecological relationships and bias predictions of current and future 376 

climate impacts
8,34-36,57,60

. Temperature in the topsoil rather than in the air ultimately 377 
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defines the species’ distributions and performance of most terrestrial speices, as well as 378 

many ecosystem functions at or below the soil surface
28-31

. As ecosystem functions are 379 

highly correlated with temperature, soil temperature rather than air temperature should be 380 

the preferred predictor for estimating their rates and temperature thresholds
61-63

. 381 

Correcting for the non-linear relationship between air and soil temperature is vital for all 382 

fields investigating abiotic and biotic processes related to terrestrial environments
64

. 383 

Indeed, soil temperature, macroclimate and land-use change will interact to define the 384 

future climate as experienced by organisms, and high-resolution soil temperature data is 385 

needed to tackle the on-going challenges as well as the ones ahead of us. 386 

  387 
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Methods 388 

Data acquisition 389 

Analyses are based on SoilTemp, a global database of microclimate time series
4
. We 390 

compiled soil temperature measurements from 9362 sensors from 60 countries, using both 391 

published and unpublished data sources (Fig. 1, Extended data Fig. 1). We used time series 392 

spanning a minimum of one month and a temporal resolution of four hours or less. Sensors 393 

of any type (Extended data Table 4) were included, if they measured in situ. Sensors in 394 

experiments manipulating the local climate such as open-top chambers, rain-out shelters or 395 

vegetation-removal experiments were excluded, except for control plots. Most data (> 90%) 396 

comes from low-cost rugged microclimate sensors such as iButtons (Maxim Integrated, 397 

USA), with measurement errors of around 0.5–1°C, while in a minority of cases sensors with 398 

higher meteorological specifications were used, such as industrial or scientific grade 399 

thermocouples and thermistors. Data included both soil temperature sensors at long-term 400 

weather stations as well as short-term regional networks of microclimate measurements. By 401 

combining these two types of data, a much higher spatial density of sensors and broader 402 

distribution of microhabitats could be obtained than when using weather station data only. 403 

About 68% of data fell between 2010 and 2020 and 93% between 2000 and 2020; we thus 404 

focus on the latter period in our further analyses. Additionally, given the relatively short 405 

time frame covered by most individual sensors (mean duration 2.9 years, median duration 406 

1.0 year, ranging from 1 month to 41 years) – we were not able to test for systematic 407 

differences in temperature offset between old and recent data sets, and thus do not correct 408 

for this in our models. We strongly urge future studies to assess such temporal dynamics in 409 

the offset. Currently long-term data at hand are too scarce to address this potential issue. 410 

For each of the 9362 time series, we calculated monthly mean, minimum (5% percentile of 411 

all monthly values) and maximum (95% percentile) temperature, after checking all our time 412 

series data for plausibility and erroneous data. Months with more than one day of missing 413 

data, either at the beginning or end of the measurement period, or due to logger 414 

malfunctioning during measurement, were excluded, resulting in a final subset of 380,676 415 

months of soil temperature time series that were used for further analyses. For each sensor 416 



18 

 

with more than twelve months of data, we calculated moving averages of annual mean 417 

temperature, using each consecutive month as a starting month and calculating the mean 418 

temperature including the next eleven months. We used these moving averages to make 419 

maximal use of the full temporal extent covered by each sensor, because each time series 420 

spanned a different time period, often including parts of calendar years only. Next, these 421 

moving averages were further summarized to one mean annual average per 1 km² pixel (see 422 

below, under ‘Global and biome-level analyses’). 423 

The database contained sensors measuring temperature at depths between 0 and 200 cm 424 

below the ground surface. Sensors recording several measurements at the same site but 425 

located at different (vertical) depths were included separately. Sensors were grouped in 426 

different soil depth categories (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm, Extended 427 

data Table 5) to incorporate the effects of soil temperature dampening. We limited our 428 

analyses to the topsoil (0–5 cm) and the second soil layer (5–15 cm), as we currently lack 429 

sufficient global coverage to make trustworthy models in deeper soil layers (8,519 (91%) 430 

sensors in the two upper layers). 431 

We tested for potential bias in temporal resolution (i.e., measurement interval) by 432 

calculating mean, minimum and maximum temperature for a selection of 2,000 months for 433 

data measured every 15 minutes, and the same data aggregated to 30, 60, 90, 120 and 240 434 

minutes. Monthly mean, minimum and maximum temperatures calculated with any of the 435 

aggregated datasets differed on average less than 0.2°C from the one with the highest 436 

temporal resolution. We were thus confident that pooling data with different temporal 437 

resolutions would not significantly affect our results. 438 

Temperature offset calculation 439 

For each monthly value at each sensor location (see Extended data Table 6 for number of 440 

data points per month), we extracted the corresponding monthly means of the 2 m air 441 

temperature from the European Centre for Medium-Range Weather (ECMWF) Forecast’s 5
th

 442 

reanalysis (ERA5) (from 1979 thus 1981) and ERA5-Land from 1981 till 2020
65

. The latter 443 

dataset models the global climate with a spatial resolution of 0.08 × 0.08 degrees 444 

(approximately 9 × 9 km) with an hourly resolution, converted into monthly means using 445 
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daily means for the whole month. Similarly, monthly minima and maxima were obtained 446 

from TerraClimate
66

 for the period 2000 thus 2020 at a 0.04 × 0.04 degrees (≈ 4 × 4 km) 447 

resolution. Monthly means for TerraClimate were not available, we therefore estimated 448 

them by averaging the monthly minima and maxima. Finally, we also obtained monthly 449 

mean temperatures from CHELSA
1
 for the period 2000 thus 2013 at a 30 × 30 arc second (≈ 450 

1 × 1 km) resolution. In our modelling exercises (see chapter ‘Integrative modelling’ below), 451 

we opted for using the mean temperature offsets as calculated based on ERA5 rather than 452 

on CHELSA, as the latter dataset only included monthly data up till 2013. While CHELSA’s 453 

higher spatial resolution is definitely an advantage, it insufficiently overlapped with the time 454 

period covered by our in situ measurements (2000 thus 2020). The temperature offsets 455 

based on the CHELSA-dataset were thus only used for comparative purposes. We used 456 

TerraClimate to model offsets in monthly minimum and maximum temperature. 457 

The offset between the in situ measured soil temperature in the SoilTemp database and the 458 

2 m free-air temperature obtained from the air-temperature grids (ERA5, TerraClim and 459 

CHELSA) were calculated by subtracting the monthly mean air temperature from the 460 

monthly mean soil temperature. Positive offset values indicate a measured soil temperature 461 

higher than gridded air temperature, while negative offset values represent cooler soils. 462 

Similarly, monthly minimum and maximum air temperatures were subtracted from 463 

minimum and maximum soil temperatures, respectively. Monthly minima and maxima of 464 

the soil temperature were calculated as respectively the 5% lowest and highest 465 

instantaneous measurement in that month, to correct for outliers, which can be especially 466 

pronounced at the soil surface
67

. As a result, patterns in minima and maxima are more 467 

conservative estimates than if we had used the absolute lowest and highest value. 468 

We calculated moving annual averages of the gridded air temperature data similar to those 469 

we computed for the soil temperature. These were used to create annual temperature 470 

offset values following the same approach as above. 471 

Importantly, the temperature offset used here is a result of three key groups of drivers: (1) 472 

height effects (2 m versus 0–15 cm below the soil surface); (2) environmental or habitat 473 

effects (e.g., spatial variability in vegetation, snow or topography); and (3) scale effects 474 

(resolution of gridded air temperature)
4
. We investigate the potential role of scale effects by 475 
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comparing free-air temperature data sources with different resolutions (ERA5, TerraClimate 476 

and CHELSA, see below). Height effects and environmental effects are however not 477 

disentangled here, as the offset we propose aims to incorporate both the difference 478 

between air and soil temperature (vertically), as well we the difference between free-air 479 

macroclimate and in situ microclimate (horizontally) in one measure
4
. While it can be 480 

argued that it would be better to treat both separately, this would require a similar 481 

database of coupled in situ air and soil temperature measurements, which is not yet 482 

available. Using in situ measured air temperature would also potentially solve spatial 483 

mismatches (i.e. spatially averaged air temperature represents the whole 1 to 9 km pixel, 484 

depending on pixel size, not only the exact location of the sensor). However, coupled air and 485 

soil temperature measurements are not only rare, but the air temperature measurements 486 

also have large measurement errors of up to several degrees when using non-standardized 487 

sensors, loggers and shielding
68

. Using in situ measured air temperature without correction 488 

for these measurement errors would thus be misleading. 489 

Global and biome-level analyses 490 

For the purpose of visualization, annual temperature offsets were first averaged in hexagons 491 

with a resolution of approximately 70,000 km², using the dggridR-package in R
69

 (Fig. 1). 492 

Next, we plotted mean, minimum and maximum annual soil temperature as a function of 493 

corresponding free-air temperature from ERA5, TerraClimate and CHELSA and used 494 

generalized additive models (GAMs, package mgcv; 
70

) to visualise deviations from the 1:1-495 

line (i.e. temperature offsets deviating from zero, Extended data Figs. 3–5). 496 

All annual and monthly values within each soil depth category and falling within the same 1-497 

km² pixel were aggregated as a mean, resulting in a total of ~1,200 unique pixels at 0–5 cm, 498 

and ~1,000 unique pixels at 5–15 cm, across the globe (Extended data Table 6). This 499 

averaging includes summarizing the data over space, i.e., multiple sensors within the same 500 

1-km² pixel, and time, i.e., data from multi-year time series from a certain sensor, to reduce 501 

spatial and temporal autocorrelation and high imbalance in sampling intensity. We assigned 502 

these 1-km² averages to the corresponding Whittaker biome of their georeferenced 503 

location, using the package plotbiomes in R (Fig. 1 c, d, Extended data Table 1
71

). We ranked 504 

biomes based on their offset and compared this with the mean annual precipitation in each 505 
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biome (Fig. 1b). This was done separately for each air temperature data source (ERA5, 506 

TerraClimate and CHELSA), soil depth (0–5 cm, 5–15 cm) and time frame (ERA5 1979–2020, 507 

2000–2020), as well as for the offset between monthly minimum and maximum soil 508 

temperature and the minimum and maximum free-air temperature from TerraClimate 509 

(Extended data Fig. 2). Our analyses showed that patterns were robust to the spatial 510 

variation in spatial resolution, sensor depth, climate interpolation method and temporal 511 

scale (Extended data Figs. 2-5). 512 

Acquisition of global variable layers 513 

To create spatial predictive models of the offset between in situ soil temperature and large-514 

scale free-air temperature, we first sampled a stack of global map layers at each of the 515 

sensor locations within the data set. These layers included macroclimatic, soil texture and 516 

physiochemical information, vegetation, radiation and topographic indices and 517 

anthropogenic variables. Details of all layers, including descriptions, units, and source 518 

information, are described in Supplementary Table 1. In short, information about soil 519 

texture, structure and physiochemical properties was obtained from SoilGrids (version 2
72

), 520 

limited to the upper soil layer (top 5 cm). Climate information (i.e., monthly mean, 521 

maximum and minimum temperature, monthly precipitation) was obtained from CHELSA 522 

(version 2017
1
), which includes climate data averaged across 1979–2013, and from 523 

WorldClim (version 2
73

). Monthly snow probability is based on a pixel-wise frequency of 524 

snow occurrence (snow cover > 10%) in MODIS daily snow cover products (MOD10A1 & 525 

MYD10A1
74

) in 2001–2019. Spectral vegetation indices (i.e., averaged MODIS NDVI product 526 

MYD13Q1) and surface reflectance data (i.e., MODIS MCD43A4) were obtained from the 527 

Google Earth Engine Data Catalog (developers.google.com/earth-engine/datasets) and 528 

averaged from 2015 to 2019. Landcover and topographic information were obtained from 529 

EarthEnv
75

. Aridity index and potential evapotranspiration (PET) layers were obtained from 530 

CGIAR
76

. Anthropogenic information (population density) was obtained from the EU JRC 531 

(ghsl.jrc.ec.europa.eu/ghs_pop2019.php). Aboveground biomass data were obtained from 532 

GlobBiomass
77

. Resolved ecoregion classifications were used to categorize sampling 533 

locations into biomes
78

. With this set of variables, we included information on all different 534 

categories of drivers of soil temperature
4
. The final set of variables included a set of 24 535 

‘static’ variables and 7 monthly layers (i.e., macroclimate, cloud cover, solar radiation, water 536 
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vapour pressure, and snow cover). Due to masked pixels in Northern Hemisphere high-537 

latitude regions in January and December in the cloud cover layers as a result of the lack of 538 

daylight, we excluded cloud cover as an explanatory variable for these months (i.e., 539 

'EarthEnvCloudCover_MODCF_monthlymean_XX’, with XX representing the months in two-540 

digit form Supplementary Table 1). 541 

All variable map layers were reprojected and resampled to a unified pixel grid in EPSG:4326 542 

(WGS84) at 30 arc-sec resolution (approximately 1 km
2
 at the equator). Areas covered by 543 

permanent snow or ice (e.g., the Greenland ice cap, glaciated mountain ranges, identified 544 

using SoilGrids) were excluded from the analyses. Antarctic sampling points were excluded 545 

from the modelling data set owing to the limited coverage of several covariate layers in the 546 

region. 547 

Integrative modelling 548 

To generate global maps of monthly temperature offsets (Fig. 3), we trained random forest 549 

(RF) models for each month, using the temperature offsets and the above-mentioned global 550 

variable layers. We used a geospatial modelling pipeline as developed by Van Den Hoogen, 551 

et al. 
2
. 552 

We performed a grid search procedure to tune the RF models across a range of 122 553 

hyperparameter settings (variables per split: 2–12, minimum leaf population: 2–12). During 554 

this procedure, we assessed each model’s performance using k-fold cross-validation (using k 555 

= 10; folds assigned randomly, stratified per biome), for each of the 122 models. The 556 

models’ mean and standard deviation values were the basis for choosing the best model of 557 

all evaluated models. This procedure was repeated for each month separately for two soil 558 

depth layers (0–5 cm, 5–15 cm), for offsets in mean, minimum and maximum temperature. 559 

The importance of explanatory variables was assessed using the variable importance and 560 

ordered by mean variable importance across all models. This variable importance adds up 561 

the decreases in the impurity criterion (i.e., the measure on which the local optimal 562 

condition is chosen) at each split of a node for each individual variable over all trees in the 563 

forest
2. 564 

All geospatial modelling was performed on Google Earth Engine
79 using the Python API. 565 
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Model uncertainty 566 

To assess the uncertainty in the monthly models after aggregating at the pixel level, we 567 

performed a stratified bootstrapping procedure, with total size of the bootstrap samples 568 

equal to original training data. Using biome as a stratification category, we ensured the 569 

samples included in each of the bootstrap training collections were proportionally 570 

representative for each biome’s total area. Next, we trained RF models (with the same 571 

hyperparameters as selected during the grid-search procedure) using each of 100 bootstrap 572 

iterations. Each of these trained RF models was then used to classify the covariate layer 573 

stack, to generate per-pixel 95% confidence intervals and standard deviation for the 574 

modelled monthly offsets (Fig. 3a, Extended data Fig. 7a). The mean R² value of the RF 575 

models for the monthly mean temperature offset was 0.70 (from 0.64 to 0.78) at 0-5 cm 576 

and 0.76 (0.63–0.85) at 5 to 15 cm across all twelve monthly models. Mean RMSE of the 577 

models was 2.20°C (1.94–2.51°C) at 0–5 cm, and 2.06°C (1.67–2.35°C) at 5–15 cm. 578 

Importantly, model uncertainty as reported in Fig. 3a and Extended data Fig. 7a comes on 579 

top of existing uncertainties in (1) in situ soil temperature measurements and (2) the ERA5 580 

macroclimate models as used in our models. However, both of those are usually under 581 

1°C
21,65

. 582 

To assess the spatial extent of extrapolation due to incomplete global coverage of the 583 

training data, we first performed a PCA (Principal Component Analysis) on the full 584 

environmental space covered by the monthly training data, including all explanatory 585 

variables as used in the models, and then transformed the composite image into the same 586 

PC spaces as of the sampled data
2
. Next, we created convex hulls for each of the bivariate 587 

combinations from the first 10 to 12 PCs (covering more than 90% of the sample space 588 

variation, with the number of PCs depending on the month). Using the coordinates of these 589 

convex hulls, we assessed whether each pixel fell within or outside each of these convex 590 

hulls, and calculated the percentage of bivariate combinations for which this was the case 591 

(Fig. 3b, Extended data Fig. 7b). This process was repeated for each month, and each of the 592 

two depth intervals individually. These maps are important as the used machine-learning 593 

techniques are not suitable for extrapolation beyond the range covered by the 594 

environmental variables included in the original calibration dataset, and are provided as 595 



24 

 

potential spatial masks to remove or reduce the weighting of the pixels for which 596 

predictions are beyond the range of values covered by the models during calibration. To 597 

assess this further, we used a spatial leave-one-out cross-validation analysis to test for 598 

spatial autocorrelation in the data set (Extended data Fig. 14)
2
. This approach trains a model 599 

for each sample in the data set on all remaining samples, excluding data points that fall 600 

within an increasingly large buffer around that focal sample. Results show lowest confidence 601 

for May to September at 5–15 cm, likely driven by uneven global coverage of data points. 602 

Soil bioclimatic variables 603 

The resulting global maps of the annual and monthly offsets between mean, minimum and 604 

maximum soil and air temperature were used to calculate relevant bioclimatic variables 605 

(following the definition used in CHELSA, BIOCLIM, ANUCLIM and WorldClim
 1,73,80,81

, Fig. 4, 606 

Extended data Figs. 12, 13). We calculated 11 soil bioclimatic layers (SBIO): SBIO1 = annual 607 

mean temperature; SBIO2 = mean diurnal range (mean of monthly (max temp - min temp)); 608 

SBIO3 = isothermality (SBIO2/SBIO7) (×100); SBIO4 = temperature seasonality (standard 609 

deviation ×100); SBIO5 = max temperature of warmest month; SBIO6 = min temperature of 610 

coldest month; SBIO7 = temperature annual range (SBIO5-SBIO6); SBIO8 = mean 611 

temperature of wettest quarter; SBIO9 = mean temperature of driest quarter; SBIO10 = 612 

mean temperature of warmest quarter; and SBIO11 = mean temperature of coldest quarter. 613 

First, we calculated monthly soil mean, maximum and minimum temperatures by adding 614 

monthly temperature offsets to the respective CHELSA monthly mean, maximum and 615 

minimum temperatures
1
. Next, following arithmetic outlined in O’Donnell and Ignizio 

82
, we 616 

used these soil temperature layers to compute the SBIO layers. Wettest, and driest quarters 617 

were identified for each pixel based on CHELSA’s monthly values. 618 

Temporal mismatch 619 

There is a temporal mismatch between the period covered by CHELSA (1979-2013) and by 620 

our in situ measurements (2000-2020) which prevented us from directly using CHELSA-621 

climate to calculate the temperature offsets as used in our models. This temporal mismatch 622 

might affect the offsets as calculated here, because it is possible that the relationship of the 623 

temperature offset with macroclimate will change over time as the climate warms. 624 
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However, we are confident that our results are sufficiently robust to withstand this 625 

mismatch, given that we found high consistency in offset patterns between different time 626 

frames and air temperature data sets examined (Extended data Figs. 2–5). Nevertheless, we 627 

strongly urge future research to disentangle these potential temporal dynamics, especially 628 

given the increasing rate at which the climate is warming
55,83

. Similarly, a potential bias 629 

could come from the mismatch in method and resolution between ERA5 – as used to 630 

calculate the temperature offsets – and CHELSA, as used to create the bioclimatic variables. 631 

However, even though temperature offsets have slightly larger variation when based on the 632 

coarser-grained ERA5-data than on the finer-grained CHELSA-data, Extended data Figs. 5 633 

and 2–4 show that relationships between soil and air temperature are largely consistent in 634 

all biomes and across the whole global temperature gradient. Importantly, the larger offsets 635 

thus created additional random scatter, yet it did not create consistent bias. 636 

Data visualizations were effected using R version 4.0.2
84

. All maps were plotted using the 637 

Mollweide projection to avoid the large distortions at high latitudes that are present in 638 

many other common projections. 639 

 640 

Data availability 641 

Soil bioclimatic layers are available on Zenodo (link published on 642 

https://soiltemp.weebly.com). Soil bioclim layers SBIO1-11 are also directly available in 643 

Google Earth Engine under projects/crowtherlab/soil_bioclim/soil_bioclim_0_5cm and 644 

projects/crowtherlab/soil_bioclim/soil_bioclim_5_15cm. 645 
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Extended Data 995 

 996 

Extended Data Figure 1: Global distribution of the in-situ measurements. Distribution of all sensors 997 

in the topsoil (0–5 cm depth, (a), N = 4,530) and the second layer (5–15 cm depth, (b), N = 3,989). 998 

Background world map in Mollweide projection, hexagons with a resolution of approximately 70,000 999 

km². Note that sensors appearing here and not in Fig. 1a or Extended Data Fig. 3 covered time series 1000 

of less than one year, and thus were only used in the monthly models (see methods for details). 1001 
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 1002 

Extended Data Figure 2: Annual temperature offsets per biome (as in Fig. 1b), for the first (0–5 cm 1003 

depth) and second soil layer (5–15 cm depth) and for different air temperature data sources and time 1004 

periods. Box- and violin plots of the mean annual temperature offsets per Whittaker biome, ordered 1005 

and coloured by mean annual precipitation. As a standard, we used ERA5 (2000-2020, 9 km 1006 

resolution) and the topsoil (0–5 cm, (a), see also Fig. 1b). We compare now with the second soil layer 1007 

(5–15 cm depth, b), with TerraClimate (2000-2020, 4 km resolution, c) and CHELSA (2000-2013, 1 km 1008 

resolution, d), with ERA5 for the full period (1979-2020, e) and the period matching the bioclimatic 1009 

variables (1979-2013, f). We also calculate offsets between maximum (95
th

 percentile, g) soil and air 1010 

temperature, and minimum (5
th

 percentile, h) soil and air temperature, with maximum and minimum 1011 

air temperature based on TerraClimate. Panels (c) to (h) all use the topsoil data (0–5 cm depth). All 1012 
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panels show relatively consistent results (i.e. strongly positive offsets in tundra, boreal forests, 1013 

subtropical deserts and temperate grasslands, and weakly negative offsets in tropical savannas and 1014 

temperate and tropical rainforests). Only annual soil temperature minima were on average higher 1015 

than corresponding air temperature minima in all but one biomes. 1016 

  1017 
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 1018 

Extended Data Figure 3: Annual temperature offset maps (as in Fig. 1a), for the first (0–5 cm depth) 1019 

and second soil layer (5–15 cm depth), for different air temperature data sources and time periods, 1020 

and for maximum and minimum temperature. Distribution of sensors across the globe, coloured by 1021 

the annual offset (in °C) between in-situ measured soil temperature and modelled air temperature. 1022 

As a standard in Fig. 1a, we used ERA5 (2000-2020, 9 km² resolution) and the topsoil (0–5 cm, also 1023 

here in a). We compare now with the second soil layer (5–15 cm depth, b), with TerraClimate (2000-1024 

2020, 4 km² resolution, c) and CHELSA (2000-2013, 1 km² resolution, d) for the topsoil layer, and with 1025 

ERA5 for the full period (1979-2020,e) and the period matching the bioclimatic variables (1979-2013, 1026 
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f). We also calculate offsets between maximum (95th percentile, g) soil and air temperature, and 1027 

minimum (5
th

 percentile, h) soil and air temperature, with maximum and minimum air temperature 1028 

based on TerraClimate. Background world map in MollWeide projection, offsets averaged per 1029 

hexagon with a resolution of approximately 70,000 km², made using the dggridR-package in R 1. 1030 

Conclusions about consistency between methods similar as in Extended Data Fig. 2.   1031 
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 1032 

Extended Data Figure 4: Relationship between mean annual soil and air temperature at a 1 × 1 km 1033 

resolution. Point cloud of in-situ mean annual soil temperature (°C) as a function of gridded mean 1034 

annual air temperature for all in-situ measurements averaged at a 1 × 1 km resolution. As a 1035 

standard, we used ERA5 (2000-2020, 9 km² resolution) and the topsoil (0–5 cm depth, a). We 1036 

compare this first with the second soil layer (5–15 cm depth, b). We also compare with analyses for 1037 

the top soil layer using TerraClimate (2000-2020, 4 km² resolution, c) and CHELSA (2000-2013, 1 km² 1038 

resolution, d), and with ERA5 for the full period (1979-2020, e) and the period matching the 1039 

bioclimatic variables (1979-2013, f). We also plot offsets between maximum (95th percentile, g) soil 1040 
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and air temperature, and minimum (5th percentile, h) soil and air temperature, with maximum and 1041 

minimum air temperature based on TerraClimate. Straight dashed line indicate a thermal offset of 1042 

0°C, and the 1:1-relationship between soil and air temperature, thick red lines the relationship based 1043 

on generalized additive models, indicating in all cases warmer soil than air temperatures in cold 1044 

extremes, yet slightly cooler soils at intermediate temperatures (except for h).  1045 
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 1046 

 1047 

Extended Data Figure 5: Relationship between mean annual soil and air temperature for ERA5 1048 

(grey) versus CHELSA (red). Point cloud of in-situ mean annual soil temperature (°C) as a function of 1049 

gridded mean annual air temperature for all in-situ measurements averaged at 1 km², between 2000 1050 

and 2013, for ERA5 (grey, 9-km² resolution) and CHELSA (dark red, 1 × 1 km resolution). Straight 1051 

dashed line indicate a thermal offset of 0°C, and the 1:1-relationship between soil and air 1052 

temperature, grey and red lines the relationship based on generalized additive models. As in 1053 

Extended Data Fig. 4, yet highlighting the strong overlap in pattern when using CHELSA vs ERA5.  1054 
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 1055 

Extended Data Figure 6: Modelled mean temperature offset in the second soil layer (5–15 cm 1056 

depth). Modelled annual (a) and monthly (b-m) temperature offset (in °C) between in-situ measured 1057 

soil temperature (second soil layer, 5–15 cm depth) and modelled air temperature, in addition to the 1058 

first soil layer (0–5 cm depth) used in Fig. 2. 1059 

  1060 



42 

 

 1061 

 1062 

Extended Data Figure 7: Predictive performance of the temperature offset models in the second 1063 

soil layer (5–15 cm depth). Analyses for the temperature offset between in-situ second soil layer (5–1064 

15 cm depth)  temperature and free-air temperature. (a) Predicted standard deviation from a cross-1065 

validation analysis that iteratively varied the set of covariates (explanatory data layers) and model 1066 

hyperparameters (i.e., number of variables per split; minimum leaf population) across 100 models 1067 

and evaluated model strength using 10-fold cross-validation, for January (left) and July (right), as 1068 

examples of the two most contrasting months. (b) The fraction of axes in the multidimensional 1069 

environmental space for which the pixel lies inside the range of data covered by the sensors in the 1070 

database. Pixels with low values indicate that the model has to extrapolate for many of the 1071 

environmental layers for that specific pixel.  1072 
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 1074 

Extended Data Figure 8: Observed versus predicted temperature offsets. Correlative plots showing 1075 

temperature offsets – averaged at a 1 × 1 km resolution – as observed in the field, versus those as 1076 

predicted by the models, separately for each month. Colours show density of points (darker = higher 1077 

point density). Dashed lines from linear regressions; solid lines refer to the 1:1-line of perfect 1078 

correlation between predicted and observed offsets. 1079 

  1080 



 1081 
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Extended Data Figure 9: Observed versus predicted temperature offsets per biome. Correlative 1082 

plots showing temperature offsets – averaged at a 1 × 1 km resolution – as observed in the field, 1083 

versus those as predicted by the models, separately for each biome, for January (a) and July (b). 1084 

Colours show density of points (darker = high point density). Dashed lines from linear regressions; 1085 

solid lines refer to the 1:1-line of perfect correlation between predicted and observed offsets. 1086 

 1087 

  1088 
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 1089 

Extended Data Figure 10: Relative importance of explanatory variables. Explanatory variables in all 1090 

twelve monthly analyses sorted by mean Variable Importance (computed based on the summed 1091 

decrease of impurity over all trees in the forest that results from the variable used at a node; higher 1092 

for variables with a higher importance) across all models of the first soil layer (0–5 cm depth) (first 1093 

variable = ranked on average most importantly across all twelve monthly models). Colours represent 1094 

relative variable importance (ranked from 1 to 31, with 1 the highest importance) within each 1095 

monthly model for the topsoil (0–5 cm depth). T = temperature, PET = potential evapotranspiration, 1096 

SOC = soil organic carbon, TRI = topographic roughness index, NDVI = normalized difference 1097 

vegetation index. For full details on all explanatory variable layers, see Supplementary Table 3. 1098 



 1099 

Extended Data Figure 11: Partial dependency plots of main effects. Partial dependency plots of the 1100 

10 most important variables (selection based on the mean Feature Importance from Extended Data 1101 

Fig. 10) for January (a; top) and July (b; bottom), as examples of the two most contrasting months. 1102 

Results for the first soil layer (0–5 cm depth).   1103 
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 1104 

1105 
Extended Data Figure 12: Bioclimatic variables for the first soil layer. Global maps of bioclimatic 1106 

variables for topsoil (0–5 cm depth) climate, calculated using the maps of monthly soil climate (see 1107 

Fig. 2, Extended Data Fig. 6), and the bioclimatic variables for air temperature from CHELSA.  1108 

  1109 
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 1110 

Extended Data Figure 13: Bioclimatic variables for the second soil layer. Global maps of bioclimatic 1111 

variables for the second soil layer (5–15 cm depth) climate, calculated using the maps of monthly 1112 

temperature offsets (see Fig. 2, Extended Data Figure 6) and the bioclimatic variables for air 1113 

temperature from CHELSA 2.  1114 
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 1115 

 1116 

Extended Data Figure 14: spatial leave-one-out cross-validation. R² of all monthly models 1117 

at the two soil depths using a spatial leave-one-out cross validation approach. This approach 1118 

trains a model for each sample in the dataset on all remaining samples, with an increasingly 1119 

large buffer around that focal sample. Note that a decrease in R² should be expected with 1120 

increasing buffer size due to the removal of parts of the environmental gradient from the 1121 

training dataset. Nevertheless, results show that spatial autocorrelation differs across the 1122 

months, with uneven global data coverage likely causing lowest confidence for May to 1123 

September at 5–15 cm depth, where use of data outside of the environmental gradient as 1124 

covered by the data is thus extra discouraged (see Fig 3b and Extended Data Fig. 7b).   1125 

  1126 
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 Extended Data Tables 1127 

Extended Data Table 1: Number of unique pixels after averaging the annual data at 1 × 1 km 1128 

pixel resolution for each biome, as used in Fig. 1. The number of individual annual averages 1129 

on which this number is based is shown between brackets. 1130 

Biome N° of pixels (0–5 cm) 

Boreal forest 240 (10168) 

Sub-tropical desert 37 (802) 

Temperate grassland 66 (9558) 

Temperate rainforest 10 (27) 

Temperate seasonal forest 245 (21566) 

Tropical rainforest 2 (299) 

Tropical savanna 13 (2062) 

Tundra 29 (1584) 

Temperate woodland 224 (16952) 

 1131 

Extended Data Table 2: Difference in temperature offset between forested and unforested 1132 

habitats. Mean and standard deviation of offsets per Whittaker biome for all sensors, and 1133 

for sensors in forested and non-forested habitats separately. All values averaged at a 1 × 1 1134 

km resolution (number between brackets = number of unique 1 × 1 km pixels), only biomes 1135 

with sufficient number of loggers in forested habitats are shown. Habitat assessment at the 1136 

location of the sensor based on observations by the contributors, whenever available (60% of 1137 

sensors). 1138 

Biome All Forested Non-forested 

Boreal forest 2.47 ± 2.01 (240) 3.40 ± 1.64 (41) 3.12 ± 1.77 (105) 

Temperate grasslands 0.92 ±  2.13 (66) 1.39 ± 2.79 (4) 1.30 ± 2.79 (27) 

Temperate seasonal 

forests 

0.46 ± 2.79 (245) -0.82 ± 2.21 (53) 1.00 ± 3.95 (20) 

Temperate woodland -0.12 ± 3.38 (224) -0.71 ± 3.11 (31) 1.22 ± 4.31 (35) 

 1139 

 1140 

Extended Data Table 3: Number of unique pixels after averaging the monthly data at a 1 × 1 1141 

km pixel resolution for each biome as used in the models, averaged across all months. 1142 

Biome N° of pixels (0–5 cm) N° of pixels (5–15 cm) 

Boreal forest 284 323 

Sub-tropical desert 46 4 

Temperate grassland 82 63 

Temperate rainforest 12 2 

Temperate seasonal forest 349 304 

Tropical rainforest 5 9 

Tropical savannah 26 31 

Tundra 35 34 

Temperate woodland 466 353 
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 1143 

 1144 

Extended Data Table 4: Number of sensors from the most common logger brands in the top 1145 

soil (left, 0–5 cm depth) and the second soil layer (right, 5–15 cm depth). Other sensors 1146 

include among others Decagon devices, GeoPrecision data loggers, thermocouples and 1147 

TinyTags. 1148 

Logger brand Number of sensors 

 0–5 cm 5–15 cm 

iButton 1840  1685 

TOMST 512 1090 

HOBO 689 491 

Lascar 247 0 

Others 1025 587 

 1149 

Extended Data Table 5: Number of sensors in each soil layer 1150 

Depth of soil layer (cm) Number of sensors 

0–5 4530 

5–15 3989 

15-30 484 

30-60 294 

60-100 54 

100-200 11 

 1151 

 1152 

Extended Data Table 6: Number of data points (in brackets the number of unique pixels 1153 

after averaging at 1 × 1 km pixel resolution) for each month as used in the models. 1154 

Month N° of data points (0–5 cm) N° of data points (5–15 cm) 

January 6674 (1212) 10130 (977) 

February 6649 (1223) 10214 (986) 

March 6527 (1184) 10345 (979) 

April 6439 (1093) 10266 (989) 

May 6611 (1150) 10510 (1003) 

June 6537 (1154) 10546 (1011) 

July 6874 (1352) 10515 (1141) 

August 6960 (1383) 10950 (1098) 

September 6690 (1317) 10484 (1019) 

October 6991 (1299) 10429 (1018) 

November 6995 (1215) 10683 (996) 

December 6846 (1193) 10607 (988) 

 1155 

 1156 
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