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Abstract 18 

In an era of unprecedented ecological upheaval, accurately monitoring ecosystem change at 19 

large spatial scales and over long-time frames is an essential to effective environmental 20 

management and conservation.  However, economic limitations often preclude revisiting 21 

entire monitoring networks at a high enough frequency to accurately detect ecological 22 

changes. Thus, a prioritisation strategy is needed to select a subset of sites that meets the 23 

principles of complementarity and representativeness of the whole ecological reality. Here, 24 

we applied two well-known approaches for conservation design, the ‘minimum set’ and the 25 

‘maximal coverage’ problems, to develop a strategic monitoring prioritisation procedure 26 

that compares potential monitoring sites using a suite of alpha and beta biodiversity 27 

metrics. To accomplish this, we created a novel function for the R environment that easily 28 

performs biodiversity metric comparisons and site prioritisation on a plot-by-plot basis. We 29 

tested our procedures using plot data provided by the Terrestrial Ecosystem Research 30 

Network (TERN) AusPlots, an Australian long-term monitoring network of 774 vegetation 31 

and soil monitoring plots. We selected 250 plots and 80% of the total species recorded for 32 

the maximal coverage and minimum set problems, respectively. We compared the results of 33 

each approach in terms of ecological complementarity (species accumulation) and the 34 

spatial and environmental representativeness of the plots selected by the different 35 

biodiversity metrics. We repeated the selection process for clusters of plots to incorporate 36 

logistic constraints for field expeditions. We found that prioritisation based on species 37 

turnover (i.e. selection of the most dissimilar plots in terms of species composition but 38 

ignoring species richness) maximised ecological complementarity and spatial 39 

representativeness, while also providing high environmental coverage. Species richness was 40 

an unreliable metric for spatial representation, whereas plot selection based on corrected 41 



 

 

weighted endemism failed to capture ecological and environmental variation. Range-rarity-42 

richness was a more balanced metric in terms of complementarity and representativeness. 43 

Prioritisation based on species turnover is desirable to cover the maximum variability of the 44 

whole network.  45 

Synthesis and applications: Our results inform monitoring design and conservation 46 

priorities, which should consider changes in the turnover component of the beta diversity 47 

instead of being based on univariate metrics.  48 

 49 

 50 

Introduction 51 

Ecological change and monitoring 52 

Monitoring ecological change is of the utmost importance in the face of increasing 53 

anthropogenic encroachment on natural systems and staggering rates of biodiversity loss 54 

worldwide (Spellerberg, 2005).  55 

Ecological monitoring programs are a prerequisite for successful environmental 56 

policy and decision making, and the development of effective management and 57 

conservation programs (Jeffers, 1989; Parr et al., 2003; Sparrow, Edwards et al., 2020). 58 

Monitoring programs systematically measure certain ecological variables and processes (e.g. 59 

species richness and abundance, net primary production, etc; Vos et al., 2000) over time to 60 

inform ecological status and environmental quality (Wolfe et al., 1987; Haase et al., 2018). 61 

Updated and thorough long-term records inform about the change between precedent and 62 

current ecological status which will guide policy makers, and subsequent restoration and 63 

conservation priorities (Lovett et al., 2007; Jones, 2011).  64 



 

 

Over the past two decades, monitoring programs have been developed at large 65 

scales to incorporate broader ecological processes (Yoccoz et al., 2001; Parr et al., 2003). 66 

Field-based sampling of terrestrial ecosystems at multi-scales has therefore been required 67 

to build comprehensive ecosystem observation networks (Sparrow, Edwards et al., 2020). As 68 

such, there are now several examples of extensive monitoring networks established at the 69 

continental scale, including the pan-European Integrated Carbon Observation System (ICOS), 70 

the National Ecological Observatory Network (NEON; USA), the Global Ecosystems 71 

Monitoring (GEM) network across the tropics (Malhi et al., 2021), and the Terrestrial 72 

Ecosystem Research Network (TERN) in Australia (Cleverly et al., 2019).  73 

However, long-term monitoring programs are expensive. Large financial investments 74 

are required to provide standardized surveying training, fieldwork organisation, sample 75 

preservation and storage, as well as data curation, access and promotion. Therefore, 76 

ecosystem monitoring programs are limited by strict financial constraints (Lovett et al., 77 

2007). Consequently, monitoring resources and funding need to be carefully weighted, 78 

allocated, and prioritised (James et al., 1999).  79 

 80 

Approaches to optimise representation for reserve design and monitoring prioritisation 81 

When resources and funding are limited, ‘conservation prioritisation’ style strategies should 82 

be implemented to select an optimal subset of sites for monitoring. This includes ensuring 83 

high information content (i.e., the largest possible set of species), and meeting the 84 

principles of complementarity and representativeness (Bennett et al., 2014; Guerin, 85 

Williams, Sparrow et al., 2020; Guerin, Williams, Leitch et al., 2020) to be effective and 86 

useful for decision-making. Thus, the monitored sites should constitute a spatially and 87 

environmentally representative subset of locations to obtain an ecologically representative 88 



 

 

and complementary sample of habitats and communities, which will ensure both ecological 89 

and statistical validity (Cullen, 1990; Vos et al., 2000; Sparrow, Foulkes et al., 2020). Hence, 90 

to detect ecological changes in the long-term at large spatial scales, a cost-effective 91 

resampling strategy needs to be designed to define a subset of priority sites to be revisited, 92 

and overcome the existing resource-limited trade-offs between effective spatial and 93 

temporal monitoring (Hewitt & Thrush, 2007). 94 

Little agreement has been reached so far in terms of how to best monitor and 95 

quantify ecological change (Hill et al., 2016). Normally, fieldwork locations are determined 96 

depending on specific objectives (e.g. monitoring biodiversity hotspots; assessing the most 97 

anthropogenically disturbed areas, etc.), or ultimately by logistics, feasibility, and 98 

administrative constraints. While species richness has been the most commonly employed 99 

biodiversity metrics to prioritise areas to monitor and protect, it is not robust or ideal 100 

(Gotelli & Colwell, 2001). First, complementarity rather than richness per se should be used 101 

for location selection through an iterative process (Kirkpatrick, 1983; Justus & Sarkar, 2002). 102 

Second, there may be a mismatch between biodiversity hotspots in terms of species 103 

richness and centres of endemism (Godoy-Bürki et al., 2014) and it is well known that site 104 

selection based on species richness offers a poor optimisation for both monitoring planning 105 

and conservation practices (Hillebrand et al., 2018). 106 

The ‘minimum set’ problem and the ‘maximal coverage’ problem are two common 107 

approaches to design conservation reserves aiming to maximise conservation benefits at 108 

minimum costs (McIntosh et al., 2017). The minimum set problem is based on ecological 109 

constraints; it identifies a set of plots that meets certain conservation targets (typically 110 

species) within the fewest possible number of sites (Margules & Pressey, 2000). In contrast, 111 



 

 

the maximal coverage problem is based on economic constrains and consists of maximising 112 

the number of species in a given number of sites (Alagador & Cerdeira, 2020). 113 

While heuristic algorithms are effective at optimizing complex reserve design for 114 

both minimum set and maximal coverage problems, they can require complex analytical 115 

decisions or be computationally expensive (Pressey et al. 1996; Ball et al. 2009). Alternative 116 

approaches based on simpler optimisation strategies have been employed, including nature 117 

reserve design in California based on rarity-rarity richness (RRR; i.e. the inverse of the 118 

number of sites in which it is present; Albuquerque & Beier, 2015), or a trans-frontier 119 

conservation area in Southern Africa based on endemism and threatened species (Smith et 120 

al., 2008). The species turnover component (i.e. species replacement) of beta diversity 121 

(Baselga, 2010) has been proposed as one of the most robust biodiversity metrics to detect 122 

ecological changes over time, as it reflects compositional change within plant communities 123 

and is a strong indicator of how those communities respond to global change (Hillebrand et 124 

al., 2018). Yet, the use of species turnover to define conservation priorities and 125 

complementarity is still scarce (but see Socolar et al., 2016). Given the different approaches 126 

employed in the literature it is worth investigating how they perform when applying to site 127 

prioritisation in a continental ecological monitoring program. 128 

 129 

TERN AusPlots as a case-study for the implementation of a practical and efficient 130 

prioritisation method 131 

Here, we aim to identify which biodiversity metric is the best optimiser in terms of selecting 132 

a subset of plots that maximises the number of species accumulated while ensuring 133 

environmental and spatial representativeness. To do this we have developed a free and easy 134 

tool for the R environment to perform an optimisation process applying the maximal 135 



 

 

coverage problem. The function we developed is called optim_species (included in the 136 

ausplotsR package; Guerin, Saleeba et al., 2020; see Supplementary material S1 for R code 137 

details) and it compares a suite of different optimisers related to the biodiversity metrics 138 

that are most commonly used in the scientific literature. 139 

We tested this methodology on TERN AusPlots, an Australian long-term monitoring 140 

network of ecosystem surveillance and monitoring sites distributed at a continental scale 141 

(sensu Eyre et al., 2011; Sparrow, Edwards et al., 2020), to select a subset of sites that 142 

optimise the complementarity and representativeness of the whole network. We applied 143 

both the minimum set and maximal coverage approaches to design a revisiting strategy for 144 

the collection of AusPlots. Specifically, we aimed to identify which biodiversity metrics could 145 

be most efficiently used to achieve an optimal revisiting strategy that maximises the number 146 

of species accumulated when imposing i) an ecological constraint (i.e. minimum set problem 147 

–consisting on covering 80% of the total number of species recorded in the dataset–) and ii) 148 

an economic constraint (i.e. maximal coverage problem –consisting on selecting a subset of 149 

250 plots–).  150 

For the results of the maximal coverage problem approach (i.e. those obtained with 151 

the optim_species function), we subsequently compared the environmental and spatial 152 

representativeness of the subsets of sites selected by each of those biodiversity metrics as 153 

optimisers to determine which is the preferred option to meet our complementarity and 154 

representativeness principles.   155 

 156 

METHODS 157 

Case study dataset 158 



 

 

Our study uses the AusPlots database, a network systemically surveyed over ten years by 159 

TERN’s Ecosystem Surveillance Program, a component of Australia’s land ecosystem 160 

observatory (Cleverly et al., 2019). We used species presence and cover data from 774 one-161 

hectare plots to compare biodiversity metrics and test our site prioritisation analysis 162 

approach. TERN plots are established in homogenous areas of terrestrial vegetation to take 163 

quantitative measurements of vegetation and soil characterisation (Guerin et al., 2017). In 164 

each plot, vegetation structure and composition are recorded using the point-intercept 165 

module (Sparrow, Foulkes et al., 2020). Parallel transects (10x100 m long) are laid out in a 166 

5x5 grid pattern, spaced 20 meters apart. Species identity, cover and growth form are 167 

recorded at each 1 m point along each transect, resulting in 1010 survey points per plot. 168 

Data for each plot are available and freely accessible within the AusPlots database, and 169 

were extracted from the database using ausplotsR (v1.2; Guerin, Saleeba et al., 2020; 170 

Munroe et al., 2020; TERN 2020).  171 

Some of the sites included in the dataset were revisited (i.e. 99 sites had been 172 

revisited, 73 of them twice and 26 three times) and different sets of species were recorded 173 

on each revisit. Where repeat visits occurred, each was treated as a sample (hereafter we 174 

refer each visit as plots for language simplification). 175 

 176 

Biodiversity metrics 177 

Using the function optim_species from the ausplotsR package, we compared a selection of 178 

often-used biodiversity metrics to be employed as optimisers to define monitoring 179 

priorities. The biodiversity metrics included univariate metrics: i) species richness, ii) 180 

weighted species richness or range-rarity richness (RRR; Guerin & Lowe, 2017), iii) corrected 181 

weighted endemism (CWE; Crisp et al., 2001), iv) Shannon-Wiener diversity index, (Shannon; 182 



 

 

Shannon & Weaver, 1949) and v) Simpson diversity index (Simpson; Simpson, 1949). Species 183 

turnover-based metrics used included: i) pairwise Simpson dissimilarity (Simpson_Beta; 184 

Baselga, 2010) and ii) the most frequent selected plots after simulating pairwise Simpson 185 

dissimilarity selection over 1000 iterations (Frequent). See Table 1 and Supplementary 186 

material S2 for details of these optimisers.  187 

 188 

Data analyses 189 

Multi-site beta diversity  190 

We carried out all statistical analyses in R (R Core Team 2020). To check to what degree 191 

biodiversity differences between plots were due to species replacement or species loss we 192 

computed multiple-site Sorenson dissimilarities in beta diversity (βsor) accounting for both 193 

the spatial turnover (βsim) and the nestedness (βnes) components of beta diversity (βsor = 194 

βsim + βnes; Koleff et al., 2003; Baselga et al., 2018). 195 

 196 

Conservation reserve design applied to optimise monitoring strategies 197 

We applied the maximum coverage and the minimum set problems to optimise monitoring 198 

site selection to prioritise sites to revisit. For both the minimum set problem and the 199 

maximal coverage problem we performed the analyses by adding individual plots. In 200 

addition, we applied the maximal coverage problem to clusters of plots to consider a more 201 

realistic and feasible scenario because it is unlikely a field team would go to a remote area 202 

to only sample one plot.  203 

We developed an R function called optim_species as part of this study which 204 

combines functionalities from the vegan (Oksanen et al., 2019) and betapart (Balsega et al., 205 

2018) packages. The optimisation analysis is captured in this function which can be accessed 206 



 

 

in ausplotsR (Guerin, Saleeba et al., 2020). The function is thus free and easily accessible and 207 

can be run on any similar dataset (see R code as well as another example in the 208 

supplementary material S1 and S3 for details). Hence, we performed the analyses employing 209 

the optim_species function, using as data input the species vs sites matrix in terms of 210 

presence/absence, except for Shannon and Simpson, for which we used the matrix including 211 

percent cover values. 212 

 213 

The maximal coverage problem 214 

To address the maximal coverage problem, we set to 250 the number of plots to be selected 215 

for future revisits and monitoring. We decided on 250 plots within the AusPlots monitoring 216 

network because it is within our ability to revisit over a three to five years time scale.  217 

 218 

The minimum set problem  219 

To address the minimum set problem, we elucidated how many plots we would need to be 220 

revisited using each optimiser to account for at least 80% of the overall species richness 221 

(2822 species). The minimum set problem was analysed employing the same optimisers 222 

described for the maximal coverage problem (Table 1). 223 

 224 

Spatial coverage representativeness 225 

To compare spatial coverage representativeness of the plots selected by different 226 

optimisers, we computed the Clark and Evans aggregation index (Clark & Evans, 1954) for 227 

the spatial point patterns obtained with each of the optimisers using spatstat (Baddeley et 228 

al., 2015). We applied the cumulative distribution function cdf without edge correction 229 

because of corresponding to the mean value of nearest neighbour distance distribution 230 



 

 

function G(r) from a point pattern within an arbitrary shape. The Clark-Evans test values 231 

show whether a spatial point pattern distribution is clustered (R < 1), or ordered or regular 232 

(R > 1). We also mapped the location of the 250 selected plots obtained from the maximal 233 

coverage problem to visually support the differences in spatial representativeness when 234 

applying each of the biodiversity optimisers. 235 

 236 

Environmental coverage representativeness 237 

We compared sets of optimised plots for their climatic representativeness across Australia. 238 

We extracted data for 25 climatic variables from Harwood et al. (2016) (Supplementary 239 

material S4). We assessed plant species composition data from field plots in the order they 240 

were selected by the different optimisers, treating successive plots as additions to a 241 

cumulative sample of environmental and ecological space. We computed Euclidean 242 

distances for environmental variables with the function vegdist from the vegan package to 243 

assess the environmental representativeness of the subsets of plots selected by different 244 

optimisers. We implemented the betadisper function to analyse multivariate homogeneity 245 

of dispersions (distance to group centroid in principal coordinates space) of the cumulative 246 

samples (Anderson et al., 2006) for the different optimisers. We plotted the cumulative 247 

mean of environmental variation against the subsets of plots selected and visually 248 

compared the representativeness when using each of the biodiversity metrics as optimisers. 249 

Finally, we conducted a permutation test for homogeneity of multivariate dispersions with 250 

999 permutations to explore pairwise comparisons between optimisers with regards to 251 

environmental coverage. 252 

 253 

Monitoring strategy optimisation considering logistics 254 



 

 

Spatial clustering 255 

To make the optimisation more realistic in terms of field work feasibility, we clustered the 256 

774 plots by geographic distance using a modified version of the CalcDists function 257 

(https://gist.github.com/sckott/931445) in which we estimated the distances among plots 258 

with the distCosine function from the geosphere package (Hijmans, 2019). The final number 259 

of clusters was 68, with an average number of eleven plots (nine sites) within each of them. 260 

The number of sites within each cluster ranged from three to 24 (Supplementary material 261 

S5). 262 

We aggregated the species presence/absence data of species in the plots comprising 263 

each cluster. For the cover data, we calculated the Shannon and Simpson indices per plot, 264 

and then calculated the average value of the index for all the plots. We set to 20 the number 265 

of clusters to be selected via the same optimisation process. We then compared the species 266 

accumulation in the top 20 clusters when employing each of the biodiversity metrics. 267 

 268 

RESULTS 269 

Multi-site beta diversity across Australia 270 

A total of 3528 species were recorded across all of the sampled plots (n = 774 plots). The 271 

multi-site Sorenson dissimilarity index was 0.998, the species turnover component (i.e. 272 

Simpson dissimilarity) corresponded to 0.997, while the nestedness component was only 273 

0.001, indicating a very high rate of species replacement across the distributed plot 274 

network. 275 

 276 

Conservation reserve design applied to optimise monitoring strategies 277 

https://gist.github.com/sckott/931445


 

 

When comparing species accumulated with each of the optimisers, we observed that the 278 

species turnover-based metrics (i.e. the pairwise Simpson dissimilarity with its three 279 

implementation variants: Simpson_Beta, Simpson_Random, and Frequent) were the indices 280 

that maximised the cumulative number of species (Fig. 1). In particular, the Frequent variant 281 

outperformed the other two, with 3,051 species accumulated (86.5% of the species 282 

recorded; Supplementary material S6).  283 

For univariate indices, the subsets of plots selected by RRR and species richness 284 

when applying the maximal coverage problem, accumulated a greater number of species 285 

(2,866 and 2,864, respectively, which accounted for 81.2% of all the species recorded in 286 

AusPlots sampling) than the rest of the optimisers. When incorporating species frequencies, 287 

the Shannon index outperformed the Simpson index for both the maximal coverage 288 

problem and the minimum set problem. CWE was a poor optimiser, with 2,024 species 289 

accumulated which accounted for 57.4% of the total number of species recorded (Fig. 1; 290 

Supplementary material S6).  291 

 292 

Spatial coverage representativeness 293 

All the subsets of plots selected were spatially clustered, but they differed among each 294 

other regarding their spatial representativeness. To visually complement the results from 295 

the Clark-Evan test, we mapped the subsets of plots selected with different optimisers (Fig. 296 

2). Species richness was the optimiser that presented the most clustered spatial distribution 297 

(R = 0.366), followed by Shannon and Simpson optimisers (both displaying R = 0.408). Plots 298 

selected with RRR and CWE displayed Clark-Evans values of R = 0.414 and R = 0.428, 299 

respectively. From the species turnover-based metrics, pairwise Simpson dissimilarity 300 



 

 

(Simpson_Beta) showed better spatial coverage (R = 0.450), whereas the best optimiser in 301 

terms of spatial representativeness was Frequent (R = 0.545). 302 

Plot selection based on species richness and RRR was geographically biased towards 303 

coastal regions, failing to cover remote areas within the Australian outback. This was also 304 

the case for the Shannon and Simpson indices. Contrarily, the opposite trend (i.e. optimised 305 

plots located towards central and remote areas) was found when selecting plots based on 306 

CWE. This suggests than when selecting plots using univariate diversity metrics the results 307 

are geographically biased towards sites located either in biodiversity hotspots and areas 308 

with milder environmental conditions (e.g. richness) or in remote centres of endemism (e.g. 309 

CWE). Plot selection with pairwise Simpson dissimilarity accounts for the species ID and the 310 

turnover component; therefore, the spatial distributions displayed with these indices were 311 

more balanced in terms of representation across the whole Australia, than those obtained 312 

by univariate biodiversity metrics. This trend was enhanced when selecting the most 313 

frequent plots after 1,000 simulations of the pairwise Simpson dissimilarity plot selection. 314 

 315 

Environmental coverage representativeness 316 

The permutation test for homogeneity of multivariate dispersions showed significant 317 

differences in environmental representativeness among optimisers (F = 6.49; p-value ≤ 318 

0.001; Table 2). We found that optimisation with CWE was the least representative in terms 319 

of environmental coverage (CWE: average distance to median = 3.41), showing significant 320 

differences with the environmental coverage of the subsets selected by all the other 321 

optimisers. Richness and RRR were the most representative with regards to environmental 322 

coverage (Richness and RRR: average distance to median = 4.75 and 4.64, respectively), 323 

followed by Simpson_Beta and Frequent (Simpson_Beta and Frequent: average distance to 324 



 

 

median = 4.33 and 4.46, respectively; Fig. 3; Table 2), with only marginally significant 325 

differences between Richness and Simson_Beta (Table 2). Shannon and Simpson (Shannon 326 

and Simpson: average distance to median = 4.15 and 4.07, respectively) were both 327 

significantly less environmentally representative than Richness and RRR, while no significant 328 

differences were found between the former two and the results obtained by Simpson_Beta 329 

and Frequent. Hence, richness was the biodiversity metric that best covered environmental 330 

differences when used as the optimiser. Results of the monitoring strategy optimisation for 331 

plot clusters are detailed in Supplementary material S7. 332 

 333 

Discussion 334 

Large-scale monitoring networks aim for high spatial coverage but resource constraints 335 

enforce trade-offs between spatial and temporal sampling. Our results, as applied to the 336 

TERN Ausplots dataset, clearly demonstrate that to design monitoring strategies that track 337 

the greatest number of species, it is better to focus on the turnover component (i.e. species 338 

replacement) through diversity partitioning than on univariate diversity indices. 339 

Species turnover best optimised the selection of plots from a monitoring network to 340 

be revisited more often when applying both the minimum set and the maximal coverage 341 

approaches. Species turnover maximised species complementarity and spatial 342 

representativeness, without being significantly worse than the other optimisers regarding 343 

environmental representativeness. We obtained more robust results when we ran 1,000 344 

random-seed iterations and extracted the most frequently selected plots (‘Frequent’) 345 

compared to using a predetermined, fixed seed (‘Simpson_Beta’). These results make sense 346 

considering that turnover was the most relevant source of change (accounting for 99% of 347 

total multi-site beta diversity) among the Australian vegetation communities sampled. 348 



 

 

When comparing different univariate biodiversity metrics, our results indicated 349 

species richness was the worst performing biodiversity metric optimiser in terms of spatial 350 

representativeness. This is consistent with previous findings that have also demonstrated 351 

richness-based decisions do not meet the complementarity principle (Gotelli & Colwell, 352 

2001; Godoy-Bürki et al., 2014), and are biased towards spatial clustering around more 353 

tropical climatic conditions (Veach et al., 2017). Based on these results, we provide further 354 

evidence that species richness is not an efficient measure of biodiversity and its change over 355 

time (Hillebrand et al., 2018). 356 

Optimisation based on corrected weighted endemism (i.e. CWE) failed to be 357 

environmentally, spatially and ecologically representative in terms of biodiversity, with the 358 

lowest number of species accumulated across the whole network (worse than random) and 359 

the worst environmental representativeness. The poor performance of optimisation based 360 

on CWE has implications for monitoring strategies and conservation planning. While 361 

conservation reserves could aim to protect endemic species and therefore should consider 362 

this metric (Pelletier et al., 2018), monitoring priorities should not be based on CWE, as it 363 

will neither meet the principle of complementarity nor representativeness of the whole 364 

network and will fail to inform on the ecological reality.  365 

Among the univariate biodiversity metrics, RRR was the most balanced, capturing a 366 

great number of species and being spatially and environmentally representative. Its 367 

estimation is straightforward from incidence datasets; therefore, when seeking a simple but 368 

relatively reliable way to select sites for a monitoring program, from the univariate metrics 369 

we recommend using RRR as an alternative to species turnover-based prioritisation. Our 370 

findings are supported by previous work demonstrating the great ecological representation 371 

of this index, as well as its effectiveness as a surrogate for biodiversity when fitted to 372 



 

 

environmental models to predict biodiversity in the absence of available data (Albuquerque 373 

& Beier, 2015, 2016). 374 

The Shannon and Simpson optimisers performed comparatively poorly in the three 375 

dimensions studied here (i.e. ecological, spatial and environmental representativeness). 376 

Hence, plot selection prioritisation processes should preferably not be based on these 377 

metrics. 378 

Both reserve design approaches (minimum set problem and maximal coverage 379 

problem) displayed similar results in terms of species accumulation, but with important 380 

consideration of the threshold a priori selected regardless of the approach. For example, as 381 

observed in Figure 1, species accumulations curves for some metrics crossed-over when 382 

reaching approximately either the 70% of the species (minimum set problem) or 150 plots 383 

(maximal coverage problem). This suggests the target matters and robust results may be 384 

jeopardised if thresholds are set too low.  385 

When implementing optimisation for clusters of plots, differences in ecological 386 

representativeness were diluted relative to plot-by-plot selection (except in the case of 387 

CWE, which still performed significantly worse than the rest of the optimisers). 388 

Nevertheless, selection based on species turnover (most specifically employing the Frequent 389 

optimiser) performed best, with Frequent and Simpson_Beta approaches the most, and 390 

second most, environmentally and spatially representative, respectively. This has 391 

implications for hands-on applications of the current findings, since the prioritisation of 392 

clusters of plots will need to be carefully supervised to ensure complementarity and 393 

representativeness. We therefore suggest that practitioners perform plot-by-plot 394 

optimisation to get the ideal subset and then apply logistic principles to determine clusters 395 

of plots in a given geographic area. 396 



 

 

Our results have potential application to conservation reserve design, whereby 397 

species turnover metrics could be considered to optimise complementarity and 398 

representativeness. Various criteria have been followed to design conservation reserves 399 

historically, including maximising species richness or genetic diversity, protecting rare or 400 

endemic species or restoring impacted or degraded areas (Margules et al., 1982; Kingsland, 401 

2002). In this sense, Simpson pairwise dissimilarity is potentially useful as it selects a 402 

representative subset of the habitats and flora within a region. 403 

The application of the findings reported here has some limitations. For example, 404 

optimisation and therefore reserve design based on species turnover relies on already 405 

available ground data and sampled communities and in some cases this information is 406 

incomplete or even non-existent. The optimisation process employed in this study (and the 407 

tools developed for the analysis) are able to be implemented in a variety of studies, and that 408 

can potentially be extended to similar approaches such as site selection based on 409 

phylogenetic or functional alpha and beta diversity.  Similarly, it could be used to detect 410 

change in ecosystem composition over time in the context of a spatial framework; or within 411 

a temporal framework to identify sites with the most dissimilar samples among revisits, i.e. 412 

sites where vegetation is shifting more rapidly over time. These techniques will enable 413 

large-scale monitoring programs to maximise the value of information at a given resourcing 414 

level. 415 

In summary, monitoring ecological state, function and change over time has become 416 

essential across national scales. The selection of sites for regular monitoring based on 417 

univariate biodiversity metrics (e.g. richness, CWE) often fails to meet the principles of 418 

complementarity and representativeness. We have therefore developed a practical, free 419 

and easy-to-use tool that can be used in any species versus sites dataset. The tool uses a set 420 



 

 

of alpha and beta diversity metrics to optimise species representation in a subset of 421 

monitoring sites to maximise species complementarity and spatial and environmental 422 

representation. Our results demonstrate that a representative subset of monitoring sites 423 

can be selected by finding the most ecologically dissimilar communities. This approach 424 

targets differences in composition instead of focusing on univariate metrics such as species 425 

richness, while also capturing spatial and environmental diversity. Long-term monitoring 426 

sampling strategies need to be carefully planned and designed. Applying reserve design 427 

approaches based on spatial vegetation compositional differences to maximise coverage 428 

constitutes a cost-effective and easily updated strategy to define monitoring priorities that 429 

leverages ground data already collected. This will in turn help policy, decision-making and 430 

conservation practices ensuring them to be based on accurate information that meets the 431 

complementarity and representativeness principles.  432 
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Table 1. Optimisers description 

Optimiser ID Optimiser name Description Special utilisation / Best used 

Richness Species richness Count of the number of species present in a given site Identify biodiversity hotspots 

RRR Range-rarity 

richness 

Inverse of the number of sites in which a species 

occurs. RRR = ∑ 1/𝑐𝑖
𝑛
1 , where 𝑐𝑖 is the number of map 

grid cells occupied by species i and n is the number of 

species 

When the goal is to identify areas of high 

biodiversity and biological uniqueness 

CWE Corrected 

weighted 

endemism 

Range rarity richness (RRR) divided by species 

richness. CWE = (∑ 1/𝑐𝑖
𝑛
1 )/n, where 𝑐𝑖 is the number 

of map grid cells occupied by species i and n is the 

number of species 

When the goal is to identify centres of 

endemism highlighting range-restricted 

species 

Shannon Shannon-Wiener 

diversity index 

Combines species richness and the evenness or 

equitability by computing the species' relative 

abundances. H’: − ∑ 𝑝𝑖𝑙𝑜𝑔𝑛𝑝𝑖
𝑆
𝑖=1 , where S is the 

species richness and 𝑝𝑖  is the relative abundance of 

the species  

It assumes that all species are represented 

in a sample and that they are randomly 

sampled 

Simpson Simpson diversity 

index 

Combines species richness and the evenness or 

equitability by computing the species' relative 

abundances D = 1 - ∑   𝑝𝑖
2, where 𝑝𝑖 is the 

proportional abundance of species i 

It is the complement of Simpson's original 

dominance index, and represents the 

probability that two randomly chosen 

individuals belong to different species 

Simpson_Beta Pairwise Simpson 

dissimilarity index  

It is based on diversity partitioning, which separates 

species replacement (i.e. turnover) from species loss 

(i.e. nestedness). The Simpson dissimilarity 

corresponds to the turnover component of the 

Sorensen dissimilarity. Considering two sites, βsim = 

min(b,c) / (a + min(b,c)), where a is the number of 

It is used to maximise species turnover 



 

 

species present in both sites, b is the number of 

species present in the first site, but not in the second, 

and c is the number of species present in the second 

site, but not in the first. 

Frequent  The most frequent plots selected over 1,000 iterations 

with a randomised starting seed using the pairwise 

Simpson dissimilarity index 

 

Simpson_Random  The pairwise Simpson dissimilarity index with a 

randomised starting seed iterated 1,000 times 

 



 

 

Table 2. Pairwise comparisons between optimisers with regards to environmental 

representativeness when applying maximal coverage problem at plot level. The observed 

p-value are located in the below diagonal, while the permuted p-value are in the above 

diagonal. Only significant differences are highlighted in bold. Notice that marginally 

significant values (p-value ≤0.1) are shown although not highlighted. 

 Richness RRR CWE Shannon Simpson Simpson_Beta Frequent 

Richness  0.68 ≤0.001 ≤0.01 ≤0.05 ≤0.1 0.25 
RRR 0.68  ≤0.001 ≤0.1 ≤0.05 0.20 0.49 
CWE ≤0.001 ≤0.001  ≤0.01 ≤0.01 ≤0.001 ≤0.001 
Shannon ≤0.05 ≤0.1 ≤0.01  0.78 0.48 0.21 
Simpson ≤0.01 ≤0.05 ≤0.01 0.75  0.29 0.12 
Simpson_Beta ≤0.1 0.22 ≤0.001 0.48 0.30  0.58 
Frequent 0.25 0.48 ≤0.001 0.21 0.12 0.58  

 

  



 

 

  
Fig. 1. Site optimisation process applying conservation reserve design strategies based on: a) 

Maximum coverage problem (selection of 250 sites), and b) Minimum set problem 

(selection of the minimum number of plots that allow including 80% of the species, 



 

 

represented by dashed line). Optimisation has been performed in both cases employing 

different optimisers, including species richness, range rarity richness (RRR), corrected 

weighted endemism (CWE), Shannon-Wienner diversity index (Shannon), Simpson diversity 

index (Simpson), the turnover component of beta diversity or pairwise Simpson dissimilarity 

index (Simpson beta), the most frequent plots selected in 1000 iterations with a randomised 

starting seed using the pairwise Simpson dissimilarity index (Frequent), and the plots 

selected with a randomised seed using the pairwise Simpson dissimilarity index 

(SimpsonBeta_random seed). 



 

 

 

 
Fig. 2. Geographic location of the selected plots (N = 250) applying the maximum coverage problem. Black dots correspond to all the plots 

established. Colour dots refer to each of the selection employing different optimisers.



 

 

 
Fig. 3. Environmental representativeness of the 250 selected plots using different optimisers 

reflected by the cumulative mean dispersion. All environmental variables employed in the 

analyses are described in the Supplementary material S4.   



 

 

Supplementary material S1.  

 

Rcode 

 

Not included in the preprint. 

  



 

 

Supplementary material S2. Additional explanation of biodiversity metrics 

Species richness is simply the count of the number of species present in a given site and it is 

best used as an optimiser when the goal is to identify areas containing the greatest number 

of unique species. RRR is a rarity-weighted richness calculated as the sum of the inverse of 

the number of sites in which a species occurs and it is used to identify areas of high 

biodiversity and biological uniqueness. CWE is calculated as RRR corrected by the species 

richness and is used to identify centres of endemism highlighting range-restricted species. 

Shannon combines species richness and evenness or equitability by computing the species’ 

relative abundances; it assumes that all species are represented in a sample and that they 

are randomly sampled. Simpson is the complement of Simpson's original dominance index, 

and represents the probability that two randomly chosen individuals belong to different 

species. The species turnover-based metric is based on diversity partitioning, which 

separates species replacement (i.e. turnover) from species loss (i.e. nestedness); it 

corresponds to the turnover component of the Sorensen dissimilarity and describes spatial 

turnover without the influence of richness gradients (because unshared species in the larger 

species sample are disregarded; Lennon et al., 2001; Baselga, 2010). For the species 

turnover-based metric, as pairwise Simpson dissimilarity differs depending on the plot that 

is chosen as seed, we computed three variants: fixed seed (Simpson_Beta), in which we 

selected the plot with the greatest richness as the starting point; random seed 

(Simpson_Random), in which we randomly selected the plot at the starting point and we 

iterated this process 1,000 times; and the most frequent plots (Frequent), by computing the 

most frequently selected pots in the former 1,000 simulations. When employing the 

pairwise Simpson dissimilarity, the most dissimilar plot to the one used as seed in terms of 

pairwise Simpson dissimilarity was added by the function. Subsequently the species present 



 

 

in both plots are pooled together and the most dissimilar one to the combination of both is 

added. This process was repeated until reaching the top 250 plots that maximised species 

turnover. 

  



 

 

Supplementary material S3. Example of the comparison of different optimisers after 

applying the optim_species function to an alternative dataset. In this case the dataset 

corresponds to plots located in South Australia within the frame of the project Transect for 

Environmental Monitoring and Decision Making (TREND). We applied the maximal coverage 

problem selecting 85 plots to optimise. 

  



 

 

Supplementary material S4. Climate variables employed to calculate the environmental 

representativeness of the selected plots. The variables were obtained from Harwood et al. 

(2016) 

Code Brief description 

Aridity index 

ADI Minimum monthly aridity index (proportion) 
ADM Mean annual aridity index (annual precipitation/annual potential evaporation) 

(proportion) 
ADX Maximum monthly aridity index (proportion) 

Evaporation 

EPA Annual potential evaporation (mm) 
EPI Minimum monthly potential evaporation (mm) 
EPX Maximum monthly potential evaporation (mm) 
EAA Annual total actual evapotranspiration terrain scaled using MODIS (mm) 
EAAS Annual total actual evapotranspiration modelled using terrain-scaled water 

holding capacity (mm) 

Maximum temperature 

TXM Maximum temperature – Annual mean °C 
TXI Maximum temperature - monthly minimum °C 
TXX Maximum temperature - monthly maximum °C 

Minimum temperature 

TNM Minimum temperature – Annual mean °C 
TNI Minimum temperature - monthly minimum °C 
TNX Minimum temperature - monthly maximum °C 

Temperature range 

TRI Minimum monthly mean diurnal temperature range °C 
TRX Maximum monthly mean diurnal temperature range °C 
TRA Annual temperature range (TXX – TNI) °C 

Precipitation 

PTA Annual precipitation mm 
PTI Minimum monthly precipitation mm 
PTX Maximum monthly precipitation mm 
PTS1 Precipitation seasonality 1- solstice seasonality composite factor ratio  
PTS2 Precipitation seasonality 2- equinox seasonality composite factor ratio  

Water deficit 

WDA Annual atmospheric water deficit (annual precipitation – annual potential 
evaporation) mm 

WDI Minimum monthly atmospheric water deficit (precipitation - potential 
evaporation) mm 

WDX Maximum monthly atmospheric water deficit (precipitation - potential 
evaporation) mm 

 

  



 

 

Supplementary material S5. 

 
S5-Fig. 1. Map representing geographic clusters of plots to translate the findings into a 

realistic and feasible approach. Colours indicate different clusters, number indicate the 

cluster ID (see Supplementary material S3) and the size of the circle indicates the number of 

plots within each cluster.    



 

 

S5-Table 1. Clusters of plots, coordinates of their centroids and number of plots within 

them 

Cluster ID Number of plots Number of sites Latitude Longitude 
clu1 12 12 -11.9637 142.3816 
clu2 6 6 -31.4776 144.2586 
clu3 6 6 -32.6306 145.1296 
clu4 8 5 -31.4964 138.544 
clu5 17 6 -23.7562 138.3792 
clu6 4 4 -16.8637 125.6894 
clu7 9 8 -27.353 120.8142 
clu8 19 19 -22.0562 117.8034 

clu9 7 7 -25.5573 136.4409 
clu10 18 18 -30.8827 126.355 
clu11 10 10 -13.1988 131.9348 
clu12 7 7 -24.568 147.8653 
clu13 13 13 -30.3101 120.6808 
clu14 42 18 -24.0693 133.4427 
clu15 19 19 -21.8701 120.2695 
clu16 8 4 -32.6554 138.0497 
clu17 24 24 -23.1361 143.6343 
clu18 13 7 -35.0169 138.8766 
clu19 4 4 -25.9328 133.86 
clu20 17 17 -13.9922 134.7901 
clu21 7 4 -35.5107 138.4406 

clu22 12 12 -31.9722 119.3232 
clu23 15 5 -23.2451 138.2123 
clu24 10 9 -33.4671 150.4113 
clu25 6 6 -19.079 140.3453 
clu26 12 12 -19.5532 143.9305 
clu27 10 10 -17.6146 137.0923 
clu28 14 14 -19.6014 137.4888 
clu29 10 10 -31.0635 149.1966 
clu30 13 13 -26.3325 135.3958 
clu31 15 15 -37.0249 147.163 
clu32 20 10 -30.4005 139.3001 
clu33 4 4 -15.7952 128.1739 

clu34 9 9 -34.3382 142.4097 
clu35 4 4 -29.2578 142.0513 
clu36 13 11 -31.0322 142.2075 
clu37 8 8 -30.5226 131.1769 
clu38 10 10 -22.7827 141.4962 
clu39 4 4 -29.2031 145.0439 
clu40 6 6 -33.5424 145.6879 
clu41 10 6 -31.9441 140.5602 



 

 

clu42 10 10 -16.27 135.6802 

clu43 12 9 -27.0428 114.4813 
clu44 7 4 -33.951 138.207 
clu45 7 6 -33.1889 137.8196 
clu46 8 8 -17.9138 133.6234 
clu47 16 16 -28.1194 135.6589 
clu48 8 4 -34.5859 138.8827 
clu49 10 10 -19.079 140.3453 
clu50 15 15 -19.5532 143.9305 
clu51 7 7 -31.8375 141.4666 
clu52 10 10 -32.7933 116.6572 
clu53 12 4 -24.1515 138.2374 
clu54 7 7 -30.5942 135.4801 
clu55 10 10 -30.9752 120.2899 

clu56 11 8 -34.2875 139.6342 
clu57 14 14 -26.5941 135.2836 
clu58 19 11 -29.5789 138.9052 
clu59 12 12 -14.5616 144.045 
clu60 27 16 -34.0285 140.7325 
clu61 11 7 -34.1447 140.4778 
clu62 6 3 -30.7738 138.67 
clu63 6 6 -27.5596 151.4464 
clu64 6 6 -22.29 133.654 
clu65 10 10 -33.2362 141.2395 
clu66 11 11 -35.8077 137.3207 
clu67 8 8 -20.1054 141.8365 

clu68 11 11 -25.1547 135.4541 
 

  



 

 

Supplementary material S6. Species accumulated when applying the maximum coverage 

problem to select a subset of 250 plots to revisit. For details of selected plots see associated 

datasets in Dryad (Martin-Fores et al. 2021).  

Optimiser Number 

of plots 

Number 

of sites 

Species 

accumulated 

% of total species 

Richness 250 229 2864 81.2% 

RRR 250 233 2866 81.2% 

CWE 250 235 2024 57.4% 

Shannon 250 231 2756 78.1% 

Simpson 250 234 2633 74.6% 

Simpson_Beta 250 245 3021 85.6% 

Frequent 250 245 3051 86.5% 

Simpson_Random 250  3030.9 ± 14.7 85.9% 

 

 
 

  



 

 

Supplementary material S7. Results of monitoring strategy optimisation for plot clusters 

The results obtained when analysing clusters of plots differed from those obtained for single 

plots. In terms of ecological representativeness, the differences in species accumulation 

among most of the different optimisers become diluted when selecting clusters of plots 

instead of single plots. The only biodiversity metric that had a considerably worse 

performance was CWE (S7-Fig. 1). 

Regarding spatial representativeness, when selecting clusters of plots, we obtained 

opposite trends than when selecting single plots. Species richness was the best optimiser 

regarding spatial representativeness (R = 0.218), followed by RRR, Frequent and CWE 

optimisers (R = 0.188, R = 0.184 and R = 0.172). Pairwise Simpson dissimilarity 

(Simpson_Beta) showed Clark-Evans values of R = 0.134. Clusters of plots selected with 

Shannon and Simpson metrics displayed both the most clustered spatial coverages (R = 

0.011 and R = 0.009, respectively; S7-Fig. 2; Supplementary material S8). 

The most environmentally representative subset of selected clusters was obtained 

using species turnover, with Frequent the best optimiser in terms of environmental 

representation (Frequent: average distance to median = 4.753, respectively; S7-Fig. 1; S7-

Table 1), followed by RRR, Simpson_Beta and Simpson (RRR, Simpson_Beta and Simpson: 

average distance to median = 4.56, 4.55 and 4.53, respectively), with no significant 

differences among them. ‘Frequent’ displayed marginally significantly better environmental 

representativeness than Shannon (Shannon: 4.34), whereas all the four former biodiversity 

metrics performed significantly (for Frequent) or marginally significantly (for the later three) 

better than richness in terms of environmental representativeness (Richness: 4.14). Finally, 

all the optimisers performed significantly better than CWE in terms of environmental 

representativeness (CWE: average distance to median = 3.60; S7-Fig. 1; S7-Table 1). 



 

 

 

 

S7-Fig. 1. a) Site optimisation process applying conservation reserve design strategies based 

on Maximum coverage problem (selection of 20 clusters); b) environmental 

b) 

a) 



 

 

representativeness of the 20 selected clusters using different optimisers reflected by the 

cumulative mean dispersion   



 

 

 

 
S7-Fig. 2. Geographic location of the selected clusters (n = 20) applying the maximal coverage problem. Black dots correspond to all the plots 

established. Colour dots refer to each of the selection employing different optimisers. 

  



 

 

S7-Table 1. Pairwise comparisons between optimisers with regards to environmental 

representativeness when applying maximal coverage problem selecting spatial clusters. 

The observed p-value are located in the below diagonal, while the permuted p-value are in 

the above diagonal. Only significant differences are highlighted in bold. Notice that 

marginally significant values (p-value ≤0.1) are shown although not highlighted. 

 Richness RRR CWE Shannon Simpson SimpsonBeta Frequent 

Richness  ≤0.1 ≤0.05 ≤0.001 ≤0.001 ≤0.05 ≤0.01 
RRR ≤0.1  ≤0.01 ≤0.001 ≤0.001 0.99 0.42 
CWE ≤0.05 ≤0.001  ≤0.001 ≤0.05 ≤0.001 ≤0.001 
Shannon ≤0.001 ≤0.001 ≤0.01  0.36 ≤0.001 ≤0.001 
Simpson ≤0.001 ≤0.001 ≤0.05 0.35  ≤0.001 ≤0.001 
SimpsonBeta ≤0.05 0.99 ≤0.001 ≤0.001 ≤0.001  0.39 
Frequent ≤0.05 0.42 ≤0.001 ≤0.001 ≤0.001 0.41  

 



 

 

Supplementary material S8. Selected clusters with the different optimisers, number of sites and plots included and species accumulated 

Optimiser Clusters selected Number of plots Number of 

sites 

Species 

accumulation 

Richness clu59, clu52, clu8, clu18, clu15, clu43, clu1, clu14, clu55, clu22, 

clu24, clu36, clu20, clu11, clu28, clu46, clu63, clu32, clu66, clu44 

278 230 2645 

RRR clu59, clu8, clu52, clu15, clu43, clu14, clu18, clu1, clu55, clu36, 

clu20, clu28, clu63, clu22, clu24, clu11, clu31, clu32, clu46, clu44 

282 234 2693 

CWE clu56, clu31, clu63, clu39, clu60, clu12, clu40, clu36, clu8, clu28, 

clu49, clu27, clu25, clu20, clu33, clu44, clu47, clu13, clu32, clu15 

245 216 1698 

Shannon clu59, clu46, clu1, clu66, clu63, clu44, clu11, clu24, clu55, clu43, 

clu36, clu31, clu51, clu37, clu52, clu18, clu47, clu48, clu22, clu49 

210 173 2435 

Simpson clu59, clu46, clu1, clu66, clu11, clu63, clu44, clu55, clu24, clu43, 

clu37, clu47, clu31, clu25, clu48, clu12, clu9, clu51, clu36, clu52 

195 184 2351 

Simpson_Beta clu59, clu61, clu66, clu31, clu22, clu30, clu52, clu24, clu8, clu11, 

clu63, clu43, clu4, clu9, clu50, clu18, clu46, clu10, clu12, clu7 

227 212 2628 

Frequent clu8, clu66, clu52, clu50, clu43, clu31, clu24, clu11, clu46, clu18, 

clu63, clu7, clu12, clu10, clu55, clu1, clu9, clu59, clu22, clu4 

225 213 2706 

Simpson_Random    2626.5 ± 49.8 

  

 

 

 


