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Abstract

1. Pairwise comparison data are relatively common in ecology, with beta diversity indices being the most common. Mantel and partial-Mantel tests are the most widely used methods for analysing the relationship between changes in species composition as measured by beta diversity indices and changes in environmental covariates. However, recent studies have shown that these tests can produce invalid results and called for their replacement with more robust methods. In this work, we introduce a novel Bayesian approach for modelling pairwise comparisons that we apply to analyse changes in species composition.

2. To analyse changes in species composition, we usually calculate community similarity indices (e.g. the Sorensen index) and assess the relationship between those indices and environmental covariates. The problem is that community similarity indices are paired comparisons, which means that indices calculated with the same community are not independent. To solve this issue, we followed a model-based approach to fit a regression model of beta diversity indices and covariates that contains two varying intercepts that capture the heterogeneity corresponding to the communities compared by the index. Additionally, our approach allows the relationship between beta diversity indices and covariates to change across data clusters. Moreover, it allows for different types of response variables (continuous or discrete) and provides a clear pathway for model validation.

3. We demonstrate the benefits of our approach using both simulated and actual data on community similarity collected in 338 riparian plant communities. We used Sorensen indices to assess community similarity and analysed the effects of two covariates, network distance and precipitation difference. 
4. Our approach provides a robust and verifiable framework for analysing paired comparisons data that can be of particular interest to ecologists and evolutionary biologists, but also to researchers in other areas whenever pairwise comparisons are used.

Keywords: Beta diversity;  community similarity; Mantel tests;  pairwise comparisons; riparian vegetation; Sorensen index.

1. Introduction

Pairwise comparison data are relatively common in ecology. One of the most common use arises when analysing how and why species composition changes across space (Legendre et al., 2005; Wilson et al., 2009). In this paper, we introduce a method to analyse pairwise comparisons that considers the dependence that is introduced when a sample is used two or more times. 

A common approach for modelling species composition changes consists of calculating beta diversity indices between pairs of communities, e.g., the Sorensen index or the Morisita Horn index (Magurran 1988). The main difficulty with these analyses is that beta-diversity indices are paired comparisons. Since comparisons that share a common community are correlated, the corresponding indices will not be independent of each other. The most widely used approach to deal with this problem is to transform community composition data and environmental covariates into distance matrices and then to use matrix correlations (Legendre et al., 2005). Mantel tests and partial Mantel tests (Mantel, 1967) are the most popular techniques that employ this approach. The Mantel test examines the linear correlation between a community similarity matrix and a covariate distances matrix. The significance of the correlation coefficient (i.e, the Mantel statistic) is usually assessed through a randomization test that involves the permutation of rows or columns of either matrix. When the number of observations is large (n > 40), it is possible to transform the Mantel statistic into a t-statistic whose significance is obtained from an asymptotic approximation of the t-test. The partial Mantel test is an extension of the original Mantel test where a third matrix (or more) is held constant while the relationship between the other two is determined (Smouse et al., 1986). This test is performed by regressing the first two matrices' elements onto the third matrix and using the residuals from the regressions as the input for the standard Mantel test (Legendre, 2000).

The use of Mantel and partial Mantel tests has been criticised in the literature. For instance, Guillot & Rousset (2013) conducted a simulation study that found that when spatial autocorrelation is present, both Mantel and partial Mantel tests produce an excess of small P-values. That is, both tests reject the null hypothesis of independence between distance matrices more often than they should, producing a higher number of false positives than expected. In partial-Mantel tests, this also happens when a third matrix with geographic distances is added to control for spatial autocorrelation.  In a similar vein, Legendre et al. (2015) used simulated data to show that in spatial analysis the assumptions of linearity and homoscedasticity of the Mantel test generally do not hold, except when spatial correlation extends over the whole study area. In both studies the authors argued against the use of Mantel tests in a large number of situations and called for the use of more robust methods.

Here we introduce a Bayesian approach for analysing pairwise comparisons that we demonstrate by analysing changes in species composition. The novelty of our approach to deal with the dependence in the data consists of adding two varying intercepts that capture the heterogeneity corresponding to each of the communities being compared, a procedure that resembles that of Bradley-Terry models (Bradley & Terry, 1952). Our approach can be used with different types of response variables, continuous or discrete, and provides a clear pathway for performing model validation. We explore our approach with simulations and provide a detailed explanation of our method with a case study using riparian plant communities. Although we apply our method to analyse changes in species composition of different communities using the Sorensen index, we emphasize that it is applicable to any type of paired comparison with applications beyond ecology.

2. Description of the Method

2.1 General overview

We start by providing a general introduction to our method using linear regression as an example. Suppose we are modelling the correlation between variable C and another variable S. The traditional linear regression approach assumes that S is normally distributed and that there is a linear relationship between the expected value of S and C:

S ~ Normal (μ, σ)
μ = α + βC                                                             

where μ and σ are the mean and the standard deviation of the normal distribution and α and β are the intercept and slope of the regression. An important consequence of these model assumptions is that once the covariates C have been fixed the observed values of S are independent. In other words, the residuals between any two observations, Sn- μ(Cn), will be independent. If the observed S values arise from paired comparisons, however, the residuals are not be independent. Note that any S observations containing a shared sample, for example a comparison between sample 1 and 3 and between sample 3 and 10, will exhibit additional correlation beyond that taken into account by the covariates. 

Consider, then, a set of pair comparisons (i,j) among n samples, where the indices i and j run from 1 to n but the combinations where i=j are excluded. In order to capture the correlation between comparisons, we can introduce additional contributions for each possible paired comparison, , corresponding to all possible combinations of i and j, except i = j, resulting in a model like . The term  could in principle take several forms, however, the structure of the measurements imposes restrictions. For example, when comparing the species composition of two samples, the order in which the samples appear should not matter. In other words, each sample should have the same contribution regardless of being coded as the first sample (i) or as the second sample (j). To accomplish this, we need to make sure the additional contribution is symmetric  (see below the example using the Sorensen index). Finally, assuming that each sample in a comparison contributes independently motivates the additive form  which is manifestly symmetric, as required by our previous considerations. This procedure has similarities with that of Bradley-Terry models (Bradley & Terry, 1952), the difference being that in the latter model the term is of the form  (note the minus sign).

Notice that a classic “random effects” modelling approach of the form , with  , would not correctly describe our model, for two reasons. First, it assumes that the individual elements being indexed with “1” and “2” come from different populations, while in a paired comparison the two elements come from the same population. Second, this approach would also violate the assumption that the order by which the samples are considered should not matter (the condition that the order does not matters implies that  for all indices). 

Our final model is, then, 

S ~ Normal (μ, σ)
μ= α+αs[i]+ αs[j]+βC

[bookmark: move80779518][bookmark: move807795181]Nevertheless, as with any regression model, care is required with this approach. If we fit a model with just μ= α+αs[i]+ αs[j] then the intercepts may absorb not just the variation due to the paired comparison but also any confounding variation caused by environmental covariates.  To ensure that  captures only variation due to the paired comparison, and hence can be interpreted as such, we need to include relevant covariates in the model as well.

2.2 Model extensions

In the previous section, we assumed S followed a normal distribution, but this does not have to be the case. We can use any regression model specified by a family of distributions with some location parameter. For instance, if S is overdispersed, we can replace the normal distribution with a Student's t distribution:

S ~ Student’s-t (ν, μ, σ)
μ= α+αs[i]+ αs[j]+βC
where ν stands for the degrees of freedom, μ for location and σ for scale.

If S values are counts, for example the number of species in common, then we can use a distribution suitable for count data such as the Poisson or the negative binomial distribution with an appropriate link function:

S ~ Poisson(λ)
λ=exp(μ= α+αs[i]+ αs[j]+βC)

[bookmark: MathJax-Span-26][bookmark: MathJax-Span-25][bookmark: MathJax-Span-24][bookmark: MathJax-Span-23][bookmark: MathJax-Element-3-Frame][bookmark: MathJax-Span-28]In the “case study” section, we will use a Beta distribution because the pairwise comparisons are between 0 and 1.

Our framework also permits the inclusion of varying intercepts (αc[cluster]) and slopes (β[cluster]), thus allowing the relationship between S and C to change across different clusters. Therefore, taking as example the model specified by eq. (2) we can add these new relationships as follows:

S ~ Normal (μ, σ)
μ= α+ αs[i]+αs[j]+αc[cluster]+βclusterC


The varying intercept αc[cluster] and slope β[cluster] allow the model to capture cluster-specific behaviours that would otherwise be missed or inadvertently absorbed into other behaviours, thus providing more interpretable inferences.

3. Simulations

3.1 Generating the data

We now use simulations to illustrate the procedure introduced in the previous section. We assume 100 sample points, which leads to a total of 10 choose 2 or 4950 pairwise comparisons that we call yij. The total number of pairs results from knowing that the nature of measurements is such that the pair yij = yji and that the cases i=j are excluded. Each sample point, i, will have associated a value αs[i]. We assume the distributions of the αs to be normal with mean zero and standard deviation . In order to ensure that the example provided by the simulations is similar to situations likely to be found in practical applications, we added a linear relationship between yij and a covariate xij with fixed parameters α =10 (intercept) and β=5 (slope). Finally, we assume that the yij relates to the covariates through a normal distribution with standard deviation σ (equal to 1). In summary, the data were simulated as follows: 

yij ~ Normal ( α + α s[i] + α s[j] + β xij, σ);
α = 10; β = 5; σ = 1;
αs ~ Normal (0, σαs);
σαs=2;
xij = 4950 values equally spaced between 0 and 10.




3.2 Three different models

We analyze the simulated data with three different models. The likelihood, L, of the first model, that we call Model_s_0 (“s” stands for simulation and “0” denotes the absence of intercepts αs), is

LModel_s_0 ~ Normal (α + β xij, σ).

The second model, that we call Model_ s_12 (“12” denotes that it has two intercepts αs1 and αs2) has likelihood

LModel_s _12 ~ Normal ( α + α s1[i] + α s2[j] + βxij, σ)

where there are two different intercepts, αs1[i], αs2[j], one for each of the sample points. This model violates some of the assumptions implicit in the way the data were generated and it is used to illustrate the problems associated with it.

Finally, the third model, that we call Model_ s_11 (“11” denotes that the intercept αs is used twice) has likelihood 

LModel_s_11  ~ Normal ( α + α s[i] + α s[j] + βxij, σ).

Notice that this is the  model that reproduces the way the data were simulated. 

We assumed the following priors

α ~ Normal(10,1) (for all models);
β ~ Normal(5,1) (for all models);
σ ~ Exponential(1) (for all models);
αs ~ Normal(0,1)  (for Model_ s_11);
αs1 ~ Normal(0,1) (for Model_ s_12);
αs2 ~ Normal(0,1) (for Model_ s_12).

We run the models with four independent Markov chains to sample from, with 1000 warmup iterations and 3000 sampling iterations. We performed all calculations with Stan via the R package "rstan" version 2.18.3 (Stan Development Team, 2020).  

3.3 Simulation results

We start by comparing the estimates of the three models and the values used to generate the simulated data (see Table 1). The three models provide good estimates of the parameters α and β. However, the estimates provided by Model_ s_0  have smaller standard errors and narrower 95% credibility intervals compared to those of the other two models. This is unsurprising, given that Model_ s_0 does not take into account the heterogeneity of the paired comparisons, thus the credibility intervals terms for α and β do not correctly account for the uncertainty in the data and are then “optimistic”.

While Model_ s_12 and Model_ s_11 provide reasonable estimates for σ, the estimate for this parameter provided by Model_ s_0 completely misses the simulated value. In fact, under Model_s_0 the 95% credibility intervals do not include the simulated value (Table 1). Notice, as well, that the standard error of σ estimated by Model_ s_0  is larger than those provided by the other two models. This happens because the lack of the term αs[i] + αs[j] does not allow the heterogeneity of the samples to be considered on its own and, instead, it is reflected in the value of sigma.

The inability of the Model_ s_0 to capture the heterogeneity of the samples can also be seen in the residuals (Fig. 1). Figure 1 a) shows the residuals from Model_s_0 (black dots) plotted against the sample indices. The vertical dashed lines delimit groups of residuals involving a point. Thus, the first group on the left shows paired comparisons between sample 1 and the other 99 samples, corresponding to 99 points. The second group contains pairs involving sample 2, but because the pair [sample 1, sample 2] has already been considered, there are only 98 points. The remaining groups were built in the same way until the residuals of all pairs are shown. The final point on the right corresponds to the paired comparison between sample 99 and sample 100. The numbers in red are the value used to simulate the data for the αs corresponding to the point to which the residuals refer to, but to avoid cluttering the figure, we only show the αs for the first 23 sample points. Recall that when a model is valid there should not be any systematic structure in the residuals, the latter being a sign that some contribution is not being included. Notice from Fig. 1 that the structure of the residuals introduced by αs can be visually observed and related to the values of αs. When αs is positive the residuals tend to be negative, and vice-versa when αs is negative. The residuals obtained with Model_ s_12 and Model_ s_11 do not exhibit such structure (Fig. 1b) because in these models the heterogeneity of the samples is now absorbed by the αs terms in the models.

The results so far do not provide a reason to choose Model_ s_11 over model Model_ s_12. However, the reason becomes evident once we analyze the posterior distribution of as1, as2 (Model_s_12) and αs (Model_s_11). For each model there is a total of 100 posteriors for each of these parameters, thus it is not viable to show them all. Instead, we calculated the standard deviation for each posterior distribution and plotted the corresponding histograms (Fig. 2). Notice that the smaller values of the standard deviations of the αs (Model_ s_11) compared with those of αs1 and αs2 (Model_ s_11). This happens because Model_s_12 assumes that the first and second samples behave differently, which offers unneeded flexibility in the context of paired comparisons where samples contribute the same no matter their order. This also means that the parameter as1[n] is informed by only those observed comparisons where the nth sample shows up first, while as2[n] is informed by only those observed comparisons where the nth sample shows up second. By treating these contributions in the same way Model_s_11 is able to use both of these comparisons to inform as[n] which then allows for much more precise inferences.

The code reproducing the simulation was run with R (R Core Team 2021) and the results can be found in Appendix S1.

4. Case study – Analysing changes in community similarity in riparian plant communities

After having illustrated our method with simulated data, we now apply it to a actual data set consisting of riparian vegetation inventories obtained between 2003 and 2006 (INAG 2008) in 338 sites distributed across continental Portugal, covering 11 river basins (Fig. 3). In each site all plant species were recorded using the same protocol. From an ecological perspective, 
our main question is how community similarity (number of species in common) changes as a function of network distance and precipitation difference. 


4.1 The model

To measure community similarity between pairs of sites, we selected the Sorensen similarity index:



where a is the number of shared species, and b and c are the number of unique species to each site. The Sorensen index is simply the number of species in common between two plots divided by their average number of species. A Sorensen index of 1 indicates that communities have the same composition, while 0 indicates that communities have no species in common. 
We considered two covariates, the network distance and the precipitation difference. The network distance is the distance between two sites along the river network. Precipitation difference is the absolute value of the difference in mean annual precipitation between two sites. We used data between 1960 and 1990 from Monteiro-Henriques et al. (2016).

Since Sorensen indices are defined on the interval [0, 1], we chose a Beta distribution because it is also defined in the same interval (Kruschke, 2010). We used the Beta distribution parameterised by the mean μ and sample size κ so that we can isolate heterogeneity into the location of the beta density function. This parameterisation has the advantage of allowing us to model the mean as a function of covariates. The parameter κ relates to the variance, var, through the following relationship . 

The data were collected along 11 river basins, therefore, we included the varying slopes, β1[basin] and β2[basin] to allow the relationship between Sorensen index and the covariates “network distance” and “precipitation difference” to change across basins. To incorporate sensitivity to the covariates while ensuring that μ is bounded between 0 and 1 we used the logit of μ. The final model is:

Likelihood:
Sorensen index ~ Beta distribution (μ, κ)
μ = logistic(α + αs[sample 1] + αs[sample 2]   +  αc[basin] +β1[basin] *(Network distance) + β2[basin] *(Precipitation difference)

Priors:
α ~ Normal (0,0.3)
αs   ~ Normal (0,σs)
αc ~ Normal (0,σc)  
κ ~ Normal (0,50)
β1[basin] ~ Normal (μdistance, σdistance)
β2[basin]  ~ Normal (μprecipitation, σprecipitation)

Hyper-priors:
σs~ Exponential(1)
σc~ Exponential(1)
μdistance, μprecipitation ~ Normal (0,0.3)
σdistance, σprecipitation ~ Exponential (1)

The term α is the baseline for characterising changes in Sorensen indices. The terms αs[sample 1]  and αs[sample 2] are the additive varying intercepts that account for the dependence between the Sorensen indices. The term αc is a varying intercept with 11 levels corresponding to the 11 river basins. The terms β1[basin] and β2[basin] are the varying slopes corresponding to network distance and precipitation differences. These slopes were sampled from a higher-order distribution (i.e., hyper prior) that generates parameters for each river basin. We chose a multilevel approach because the parameter estimates obtained in this fashion are more precise at the river basin level and typically more robust to extreme observations (Betancourt, 2020; McElreath, 2020). We interpret the posterior distribution of μdistance and μprecipitation as the average effect of the covariate on Sorensen indices if we could go into the field to repeat data collection an infinite number of times. Finally, similarly to the “Simulations” section, we compare the results of the above model with a similar one but without the intercepts αs[sample 1] + αs[sample 2] and with a model with different αs, that is, a term αs1[sample 1] + αs2[sample 2]. Using a notation similar to that of the simulations section, these three models are called “Model_cs_0”, “Model_cs_12” and “Model_cs_11”, where “cs” stands for “case study”, 

In regression modeling it is common practice to empirically standardize the covariates by subtracting the empirical mean of the observed covariate values and diving the result by the empirical standard deviation. Here we standardize the covariates based on the available domain expertise which improves interpretability and generalizability of the resulting inferences as we now show. We transformed network distance values by subtracting 100 km to observed values and by dividing the resulting value by 100. Therefore, a slope of, for instance, -0.10 means that an increase of 1 km in the network distance beyond a baseline of 100 km will decrease Sorensen indices by -0.10. Concerning precipitation difference values, we applied a log(x+1) transformation because we detected a second maximum for larger values (see Appendix 1 – 4.1). Afterwards, we subtracted 5.71 ( log(300+1) = 5.71) and divided the resulting value by 5.71. Therefore, a slope of -0.1 indicates that if the precipitation difference increases by 1 mm beyond 300 mm (log(300 +1) = 5.71), the Sorensen index change by – 0.10.

In a Bayesian analysis, it is crucial to assess the validity of our choice of priors (Betancourt, 2020). In the present case, the choice of priors expresses our beliefs about how community similarity changes across river basins before considering the evidence provided by the observed data. We believe most vegetation samples will share between 30 and 60% of species based on work by Rodríguez-González et al. (2008). Conversely, few samples will share less than 30% or more than 60% of the species. As for the effects of covariates, we used weakly informative priors that allow for both positive and negative effects on community similarity. To check if the prior model reflects our beliefs, we generated and plotted simulated distributions of Sorensen indices from the prior predictive distribution.

Concerning the full model, we need to make sure that it captures the data's relevant structure. To that effect, we compared the observed distribution of the Sorensen indices with the posterior distribution of Sorensen indices and checked how well they matched. Then, 1) we plotted the differences between the posterior distribution and the observed Sorensen indices (i.e., error distributions) conditional on covariates, and 2) we plotted the posterior distribution of Sorensen indices against the covariates. We checked for any systematic deviations indicating structure in the data that our model was unable to capture. We assessed the relative importance of the covariates using two criteria, 1) by determining whether 95% of the parameter's posterior distribution was above or below 0 and 2) by assessing the parameter's absolute value.

We run the models with four independent Markov chains to sample from, with 1000 warmup iterations and 2000 sampling iterations. To check if our Markov chains were stationary and enabled reasonable posterior expectation value estimators, we performed qualitative and quantitative diagnostics. In addition, to spot-checking traceplots we also verified that the split potential scale reduction factor, often called "Rhat", was consistent with 1 for all functions of interest and verified that none of the Hamiltonian Monte Carlo transitions diverged or exceeded the maximum tree depth.

4.2 Analysis of the case study

4.2.1 Prior predictive checks

We generated 300 simulations of Sorensen indices from the prior model for each of the three models. From these, we observed that most of its probability mass is around 0.5, reflecting our prior belief that most vegetation samples share approximately 30 to 60% of the species (Appendix S2 - 5.3). Distributions with a lot of probability mass close to 0 and 1 were possible but considered unlikely. 

4.2.2 Model validation

In all three models the chains were stationary and well mixing with Rhat values of ~1. No iterations ended with divergences or saturated the maximum tree depth (Appendix S2 - 5.4.1).
For the three models the posterior distribution of Sorensen indices closely matched that of the  observed indices except for values below 0.05, which are slightly overestimated, and values above 0.62, which are slightly underestimated (Appendix S2 – 5.4.2). This is expected from the regularization introduced by the hierarchical models (Betancourt 2020). The parameters estimated for the three models are similar, except for the κ parameter of the Beta distribution that is smaller for model Model_cs_0 (Table 2). Recalling that the variance is inversely related to κ, the decrease in the κ parameter corresponds to an overall increase in the variance of the estimate of the Sorensen indices, Fig. 6. This mimics the findings of the simulations (see Fig.1) and, as with the simulations, the reduction in the total variance happens because the introduction of αs[sample 1] + αs[sample 2] or αs1[sample 1] + αs2[sample 2] incorporates the heterogeneity of the samples. Notice the variance Model_cs_0 is much larger. Again, this happens because Model_cs_0 cannot accommodate any systematic heterogeneity, thus the variance is forced to be much larger to accommodate the heterogeneity observed in the data.

Finally, we show the histograms of the standard deviation of the posteriors of the αs, αs1 and αs2 (Fig. 7). Notice that, as in the simulation, we observe smaller standard deviations of as in model_cs_11 when compared with those of as1, and as2 in Model_cs_12.
In Appendix 1, we provide a step-by-step guide with both R and Stan codes for reproducing the results.

4.2.3 Model results

Network distance was negatively associated with Sorensen indices, with mean slope estimates ranging between -0.16 for the Douro and -0.76 for the Vouga basin. In the case of Mira and Minho basins, a small part of the 95% credibility intervals crosses zero, which implies a small probability of the slope being zero or slightly positive (Fig. 4a). The mean estimate for μdistance is -0.33 with a 95% credibility interval [-0.50, -0.15], which means that on average, network distance has a negative effect on Sorensen indices, as expected. 

Higher differences in precipitation are associated with lower levels of community similarity. The mean estimates for precipitation difference slopes were mostly negative, with mean values between -0.58 and -0.12 (Fig. 4b). However, in six out of the eleven basins, credibility intervals crossed zero, indicating the effect could also be positive with varying degrees of probability. For instance, over 30% of Mira's basin parameter distribution is on the right side of zero.

5. Discussion

We introduced a Bayesian approach for analysing paired comparisons data. We illustrated its use with simulations and exemplified its application to an ecological setting. We analysed changes in community similarity using the Sorensen index. Our approach is based on the inclusion of two varying intercepts, one for each community, that capture the heterogeneity of the corresponding community. This approach is common in Bradley-Terry models, a family of models used for modelling adversarial paired comparisons, such as the outcome of football matches (Cattelan et al., 2013). Bradley-Terry models are not commonly used in ecology but are popular in sports science, psychology, economics (Agresti, 2012) and machine learning (Menke & Martinez, 2008).

An essential feature of our approach is that it provides a clear path for performing model validation. Bayesian models are generative, meaning that we can obtain predicted data from the posterior distribution and compare it with the observed data. This procedure allows us to determine if the model captures the data's relevant structure and improve it if necessary. Therefore, our approach provides users with a way of checking if the model is consistent with the observed data and provides several tools for checking the validity of the inferences. Finally, our approach leverages the power and flexibility of Stan's probabilistic programming language, allowing us to quickly write and modify models without relying on multiple software packages.

Our method provides a robust alternative to Mantel tests. The Mantel test is based on the null hypothesis significance testing framework. Each test converts the observed data into a single statistic used to determine whether or not the samples being compared are different enough to warrant attention. The significance threshold for this determination is buried deep within the method, so too are the assumptions that characterise the method's performance. Indeed, the empirical false discovery and true discover rates of Mantel tests in applied settings are notoriously fragile (e.g., Guillot & Rousset 2013, Legendre et al. 2015). Here we avoid hypothesis testing entirely and instead focus on collecting information into inferences about the observed ecologies. This approach requires first modelling the measurement process that results in these paired comparisons and then quantifying which model configurations are consistent with the observed data. In particular, we want to capture the uncertainty in our inferences, that is, quantifying all of the model configurations consistent with the data and not just a select few. Although building a model instead of relying on an automated method requires more work, that work results in assumptions that are far more appropriate to each particular analysis and much more transparent.

In conclusion, our approach provides a solid framework for analysing paired comparisons data that can interest scientists who routinely work with this type of data, such as community ecologists, or researchers in any other field.
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Figure 1 -  a) This panel shows the residuals from Model_s_0 (black dots) plotted against sample codes. The vertical dashed lines delimit groups of residuals in groups of 98 points. The first group on the left shows paired comparisons between sample 1 and the other 99 samples, corresponding to 99 points. The second group contains pairs involving sample 2, but because the pair (sample 1, sample 2) has already been considered, there are only 98 points. The remaining groups were built in the same until the residuals of all pairs are shown. The final point on the right corresponds to the paired comparison between sample 99 and sample 100. The number in red is the value used to simulate the data, but to avoid cluttering the figure, we only show the αs for the first 23 sample points. b) This panel shows the residuals of Model_s_0 (black dots) along with those of Model_s_12 (green dots) and Model_s_11 (red dots). Note that there is no apparent structure in the residuals of Model_s_12 and Model_s_11.

Figure 2 - The histograms of the standard deviation of the posteriors for as (Model_s_11) and as1, and as2 (Model_s_12). Notice that the smaller values of the standard deviations of the as (Model_s_11) compared with those of as1, and as2 (Model_s_12). The red curve was obtained with the function “density” from the R software that computes kernel density estimates. The full vertical lines correspond to the mean and the dashed lines 95% credibility intervals.

Figure 3 –Continental Portugal and the location of the vegetation plots in the eleven river basins studied (red dots).

Figure 4 - Variances as a function of μ for the tree different models. Notice the variances associated with Model_cs_11 (black open circles) and Model_cs_11 (gray dots) are indistinguishable, but that the variance of the Model_cs_0 model (red dots) is much larger. 

Figure 5 - The histograms of the standard deviation of the posteriors for as (Model_cs_11) and as1, and as2 (Model_cs_12). Notice that the smaller values of the standard deviations of the as (Model_cs_11) compared with those of as1, and as2 (Model_cs_12). The red curve was obtained with the function “density” from the R software that computes kernel density estimates. The full vertical lines correspond to the mean and the dashed lines 95% intervals.

Figure 6 – Posterior estimates of slope parameters for the covariates network distance (left) and precipitation difference (right) for each river basin. The parameter μ is the mean of the normal distribution where slopes are sampled from. Dark blue lines represent 95% credibility intervals. The thin light blue line represents the complete distribution of the parameters. The dot represents the marginal posterior mean.
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Figure 1 -  a) This panel shows the residuals from Model_s_0 (black dots) plotted against sample codes. The vertical dashed lines delimit groups of residuals in groups of 98 points. The first group on the left shows paired comparisons between sample 1 and the other 99 samples, corresponding to 99 points. The second group contains pairs involving sample 2, but because the pair (sample 1, sample 2) has already been considered, there are only 98 points. The remaining groups were built in the same until the residuals of all pairs are shown. The final point on the right corresponds to the paired comparison between sample 99 and sample 100. The number in red is the value used to simulate the data, but to avoid cluttering the figure, we only show the αs for the first 23 sample points. b) This panel shows the residuals of Model_s_0 (black dots) along with those of Model_s_12 (green dots) and Model_s_11 (red dots). Note that there is no apparent structure in the residuals of Model_s_12 and Model_s_11.

















 [image: ]
Figure 2 - The histograms of the standard deviation of the posteriors for as (Model_s_11) and as1, and as2 (Model_s_12). Notice that the smaller values of the standard deviations of the as (Model_s_11) compared with those of as1, and as2 (Model_s_12). The red curve was obtained with the function “density” from the R software that computes kernel density estimates. The full vertical lines correspond to the mean and the dashed lines 95% credibility intervals.
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Figure 4 - Variances as a function of μ for the tree different models. Notice the variances associated with Model_cs_11 (black open circles) and Model_cs_11 (gray dots) are indistinguishable, but that the variance of the Model_cs_0 model (red dots) is much larger. 
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Figure 5 - The histograms of the standard deviation of the posteriors for as (Model_cs_11) and as1, and as2 (Model_cs_12). Notice that the smaller values of the standard deviations of the as (Model_cs_11) compared with those of as1, and as2 (Model_cs_12). The red curve was obtained with the function “density” from the R software that computes kernel density estimates. The full vertical lines correspond to the mean and the dashed lines 95% intervals.
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Figure 6 – Posterior estimates of slope parameters for the covariates network distance (left) and precipitation difference (right) for each river basin. The parameter μ is the mean of the normal distribution where slopes are sampled from. Dark blue lines represent 95% credibility intervals. The thin light blue line represents the complete distribution of the parameters. The dot represents the marginal posterior mean.









Table 1 -  Comparison of the parameter values for the three models using simulated data.

	Model
	Parameter
(simulated value)
	Mean
	Standard error
	Credibility intervals

	
	
	
	
	2.50%
	97.50%

	Model_ s_0
	α(10)
	9.95
	0.08
	9.79
	10.11

	
	β (5)
	4.97
	0.01
	4.94
	5

	
	σ (1)
	2.79
	0.03
	2.73
	2.84

	Model_ s_12
	α(10)
	9.91
	0.25
	9.42
	10.4

	
	β (5)
	4.98
	0.03
	4.91
	5.04

	
	σ (1)
	1
	0.01
	0.98
	1.02

	Model_ s_11
	α(10)
	9.78
	0.21
	9.37
	10.19

	
	β (5)
	5
	0.01
	4.98
	5.03

	
	σ(1)
	1
	0.01
	0.98
	1.02













Table 2 - Estimates for some parameters of the models Model_cs_0, Model_cs_12 and Model_cs_11. 
	Parameter
	Model
	mean
	sd
	2.50%
	97.50%

	a
	Model_cs_0
	-0.86
	0.09
	-1.03
	-0.68

	
	Model_cs_12
	-0.87
	0.1
	-1.05
	-0.65

	
	Model_cs_11
	-0.88
	0.09
	-1.03
	-0.68

	σa
	Model_cs_0
	0.26
	0.08
	0.14
	0.46

	
	Model_cs_12
	0.28
	0.1
	0.14
	0.53

	
	Model_cs_11
	0.24
	0.09
	0.11
	0.46

	μdistance
	Model_cs_0
	-0.34
	0.08
	-0.51
	-0.18

	
	Model_cs_12
	-0.41
	0.09
	-0.6
	-0.23

	
	Model_cs_11
	-0.42
	0.1
	-0.61
	-0.22

	σdistance
	Model_cs_0
	0.22
	0.08
	0.11
	0.41

	
	Model_cs_12
	0.26
	0.08
	0.14
	0.45

	
	Model_cs_11
	0.26
	0.08
	0.14
	0.46

	μprecipitation
	Model_cs_0
	-0.46
	0.16
	-0.77
	-0.13

	
	Model_cs_12
	-0.42
	0.15
	-0.7
	-0.09

	
	Model_cs_11
	-0.4
	0.17
	-0.73
	-0.04

	σprecipitation
	Model_cs_0
	0.5
	0.14
	0.29
	0.84

	
	Model_cs_12
	0.45
	0.14
	0.24
	0.77

	
	Model_cs_11
	0.52
	0.15
	0.29
	0.86

	κ
	Model_cs_0
	20.65
	0.48
	19.73
	21.58

	
	Model_cs_12
	42.33
	1.08
	40.22
	44.48

	
	Model_cs_11
	42.6
	1.04
	40.61
	44.7
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