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Abstract Coral reefs across the world are undergoing rapid deterioration, and 
understanding the ecological and evolutionary processes that govern these ecosystems is 
critical to our ability to protect them. Molecular ecological studies have been instrumental 
in advancing such understanding, and while initially focused primarily on broad-scale 
patterns, they have gradually uncovered the prevalence of local genetic structuring. 
Genome-wide sequencing approaches have provided new opportunities to understand both 
neutral and adaptive contributions to this largely unexplained diversity, but fine-scale 
assessments have been hampered by challenges associated with aquatic environments, such 
as (geo)referencing, seafloor characterization, and in situ phenotyping. Here, we discuss 
the potential of “reefscape genomics”, leveraging recent advances in underwater imaging 
to enable spatially-explicit genomic studies on coral reefs. More specifically, we consider 
how (close-range) photogrammetry approaches enable (1) fine-scale spatial mapping of 
benthic target organisms, (2) repeatable characterization of the abiotic and biotic reefscape, 
and (3) simultaneous in situ mass-phenotyping. The spatially-explicit consideration of 
genomic data –combined with detailed environmental and phenotypic characterization– 
opens up the opportunity for fine-scale landscape genomic approaches on coral reefs (and 
other marine ecosystems). Such approaches enable assessment of the spatio-temporal 
drivers and adaptive potential of the extensive genetic structuring and cryptic diversity 
encountered in benthic invertebrates, such as reef-building corals. Considering the threats 
that coral reefs are facing worldwide, we believe that reefscape genomics represents a 
promising advancement of our molecular ecological toolkit to help inform how we can 
most effectively conserve and restore coral reef ecosystems into the future. 
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Introduction 

Coral reefs are one of the most biodiverse and economically important ecosystems. Yet, 
they are undergoing an unprecedented decline due to a wide range of anthropogenic 
stressors (e.g., increasing sea temperatures, ocean acidification, pollution, and overfishing) 
(Hoegh-Guldberg et al., 2007; McClenachan et al., 2017). Our ability to manage and 
conserve these vulnerable ecosystems is contingent on our understanding of the 
fundamental processes underpinning their resilience. Over the past decades, molecular 
ecology has played a major role in elucidating these processes for reef-building corals 
(order Scleractinia) (van Oppen and Gates, 2006), by uncovering patterns of dispersal and 
connectivity (Ayre and Hughes, 2000; van Oppen et al., 2008), contributions of sexual and 
asexual reproduction (Miller and Ayre, 2004; Foster et al., 2013; Dubé et al., 2017), the 
prevalence and nature of hybridization (Vollmer and Palumbi, 2002; Combosch et al., 
2008), and the endosymbiotic microbial diversity which is critical to their survival (Baums 
et al., 2014; Boilard et al., 2020). Importantly, the advent of high-throughput genomic 
approaches (e.g., reduced representation and whole-genome sequencing) has facilitated 
increasingly sophisticated assessments for non-model organisms (Riginos et al., 2016; 
Matz, 2018), including the opportunity to study adaptive variation critical to the persistence 
of coral reefs (Bay and Palumbi, 2014; Dixon et al., 2015). While these genomic advances 
hold great promise to address important knowledge gaps, their true potential is ultimately 
dependent on our ability to couple their outputs with environmental and/or phenotypic 
information at the relevant scale (Andrew et al., 2013). 

Landscape genetics has provided a powerful framework in terrestrial ecosystems to predict 
population genomic patterns from landscape attributes and processes (Manel et al., 2003; 
Balkenhol et al., 2016). By extension, landscape genomics is a more recent discipline that 
queries similar relationships but across both neutral and adaptive parts of the genome 
(Balkenhol et al., 2017; Li et al., 2017). As its marine counterpart, seascape genomics 
shares much of the aforesaid theoretical and analytical framework, but is challenged by 
physical variability of the oceanic environment and the unique life histories of marine 
organisms (e.g., high dispersal potential and large effective population sizes) (Riginos et 
al., 2016; Liggins et al., 2019). Recent studies have demonstrated the potential of seascape 
genomics in the study of reef-building corals, for example by identifying genes associated 
with thermal adaptation (Jin et al., 2016; Selmoni et al., 2020a, b; Fuller et al., 2020). 
Nevertheless, there are several major limitations associated with the application of seascape 
genomics to coral reef environments. Firstly, due to its reliance on remote sensing methods, 
the environmental characterization mostly focuses on the (upper) ocean surface (i.e., 
oceanographic features) rather than the benthic landscape (or “benthoscape”). In addition, 
the spatial resolution (or “grain”) of such methods generally only allows for limited 
characterization on a within-reef scale. Lastly, the potential for spatially-explicit, 
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individual-based sampling is hampered as the radio signals used in satellite-based geo-
positioning do not propagate sufficiently underwater. 

In this perspective, we discuss the potential for “reefscape genomics”, leveraging advances 
in underwater imaging to enable fine-scale landscape genomic studies on coral reefs. The 
term “reefscape” has been used loosely in the coral reef literature, mostly as an underwater 
equivalent to the term landscape (e.g., Arias-González et al., 2006; Urbina-Barreto et al., 
2020). Inherently connected to seascape genomics, we define reefscape genomics as 
spatially-explicit studies focused on a within-reef scale that use reefscape attributes and 
processes as statistical predictors of genomic variation. This follows a recent call to expand 
seascape characterization to specifically include the benthic component (van Wynsberge 
et al., 2017), but we argue the additional value of doing so at a high spatial resolution. Such 
fine-scale characterization of the reefscape has recently been made possible due to 
advances in computer vision, and further facilitated by the increased accessibility of the 
underwater environment (e.g., through autonomous underwater vehicles, dive propulsion 
vehicles, and closed-circuit rebreathers). In particular, we believe that close-range 
photogrammetry has the potential to transform seascape genomics by enabling (1) fine-
scale spatial mapping and (geo)referencing of benthic components, (2) repeatable 
characterization of both abiotic and biotic features of the benthoscape, and (3) simultaneous 
mass-phenotyping of target organisms. We begin by explaining why a reefscape genomics 
approach is relevant in terms of major knowledge gaps (focusing mostly on reef-building 
corals), we then elaborate on the types of relevant (meta)data that can be acquired through 
photogrammetry, and we conclude by illustrating how such data can be integrated into 
genomic assessments to address the outlined knowledge gaps. 

Why reefscape genomics? 

The choice of spatial scale in molecular ecology is critical as it defines the ability to identify 
the processes underlying genetic variation (Hellberg, 2007). Given the biphasic life cycle 
of most marine organisms (i.e., pelagic larval and benthic adult phase), it has been 
traditionally assumed that neutral genetic patterns are governed by broad-scale larval 
dispersal processes (Kinlan et al., 2005; Liggins et al., 2013). However, studies have since 
demonstrated the prevalence of local genetic differentiation within both species with 
internal (brooders) and external (broadcasters) fertilization. For brooding species, such 
fine-scale population structure can be linked to strongly localized sperm and larval 
dispersal (Underwood et al., 2007; Ledoux et al., 2010; Warner et al., 2016), while such 
patterns for broadcasting species contradict with their broad dispersal capability and with 
observations of high gene flow over large distances (Ayre and Hughes, 2000; van Oppen 
et al., 2008; Cros et al., 2020). These non-intuitive population structures are likely the result 
of the complex interplay and spatio-temporal variability in species attributes, pelagic 
conditions, and benthic features (Liggins et al., 2019). The perceived chaos in reef-building 
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corals is –at least in part– due to a mismatch in spatial resolution (Cros et al., 2020), a 
predominance of population-level sampling (Riginos and Liggins, 2013; Liggins et al., 
2019), and an almost complete lack of temporal assessments (but see Williams et al., 2014; 
Underwood et al., 2018). Microsatellite-based studies with exhaustive local sampling have 
demonstrated the critical relevance of fine-scale, individual-based sampling by revealing 
the important contributions of clonality and inbreeding (Gorospe and Karl, 2013; Dubé et 
al., 2017), sperm dispersal and self-fertilization (Warner et al., 2016), co-dispersal of 
siblings, and self-recruitment (Cros et al., 2020; Dubé et al., 2020). Nonetheless, our 
understanding of reproduction and dispersal processes in benthic reef organisms is still in 
its infancy given that spatially-explicit, individual-based attempts have been incredibly 
tedious, and have lacked the ability to characterize and integrate the fine-scale composition 
and configuration of the reefscape. 

Patterns of adaptive variation in marine environments often occur at local scales, with 
selection contributing to spatial genetic structuring regardless of the extent of gene flow 
(Liggins et al., 2019). Habitat-specific sampling has demonstrated how local genetic 
structure in reef-building corals can reflect divergence across environmentally distinct but 
spatially adjacent reef habitats (Benzie et al., 1995; Bongaerts et al., 2010, 2011; van Oppen 
et al., 2018), with parallel patterns observed in coral endosymbionts (Frade et al., 2008; 
Bongaerts et al., 2010; Pantos et al., 2015; Hernandez-Agreda et al., 2018; van Oppen et 
al., 2018). Such findings highlight the presence of ecological barriers to gene flow and the 
importance of environment-associated selection. However, substantial genetic and 
phenotypic diversity in nominal species is being uncovered within reef habitats (Dubé et 
al., 2017; Gélin et al., 2017, Forsman et al., 2020), with much of that diversity remaining 
unexplained. Understanding the adaptive potential of this genetic and phenotypic variation 
(e.g., tolerance to warming or eutrophication) and its nature or origin (e.g., standing genetic 
variation, hybridization, somatic mutations or epigenetic), is becoming increasingly 
important to predict how corals may persist under changing environmental conditions. 
While advances in omics-based approaches have shown great potential (Riginos et al., 
2016; Matz, 2018), our ability to exploit such data have been limited by the lack of tools 
to gather similar high-resolution data characterizing associated environments and 
phenotypes. 

Reefscape characterization through close-range photogrammetry 

The logistical difficulty of fine-scale underwater mapping and (geo)referencing has long 
hampered spatially-explicit coral reef studies and thereby direct coupling of genetic data 
with environmental, ecological, and phenotypic data. However, recent advances in 
photogrammetry –in particular Structure-from-Motion (SfM)– now permit fine-scale 3D 
characterization based on consumer-grade cameras and non-expert software (Burns and 
Delparte, 2017; DeBell et al., 2019). In contrast to stereophotogrammetry that usually relies 
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on calibrated image pairs, SfM can approximate camera position and angle from highly 
overlapping photographs to generate a “sparse point cloud” (Westoby et al., 2012). This 
can be further processed using multi-view stereo algorithms into a “dense point cloud” 
(Iglhaut et al., 2019), from which 2D (orthoprojection/mosaic), 2.5D (digital elevation 
model) or 3D (textured 3D mesh) products can be generated (Figure 1). SfM has been 
widely adopted in geoscience for topographical surveys (Westoby et al., 2012; Fonstad et 
al., 2013; Smith et al., 2016), including subaerial forest, wetland and coastal 
characterization (Iglhaut et al., 2019; Kalacska et al., 2017), but its close-range ability 
overcomes persistent underwater light attenuation and scattering issues, making SfM 
particularly suited for fine-scale benthoscape characterization. 

SfM has rapidly become a critical tool in benthic ecology studies on coral reefs (Burns et 
al., 2015; Leon et al., 2015; Ferrari et al., 2016; Edwards et al., 2017; González-Rivero et 
al., 2017), where the requirement of a static environment (throughout the imaging process) 
is largely satisfied by the dominance of reef-building corals. Depending on camera 
resolution and altitude (i.e., distance to seafloor), current modelling abilities roughly span 
a grain range of ~0.1-10 mm and spatial extent range of 0.01-1 hectare (Figure 2). Using 
scale references, a highly accurate local coordinate system of the generated model can be 
created (mm to cm accuracy; Ledoux et al., 2010), which can then be converted to real-
world coordinates based on georeferenced control points, or through integration with 
acoustic positioning (e.g., ultrashort-baseline or doppler velocity log devices). This enables 
relative or absolute underwater mapping with unprecedented resolution, efficiency, and 
repeatability compared to traditional methods using transect tapes, depth gauges, and/or 
compasses (Foster et al., 2013; Gélin et al., 2017; Williams et al., 2014; Gorospe and Karl, 
2013; Dubé et al., 2017, 2020). 

The power of SfM in resolving 3D structure has enabled the study of structural complexity 
in relation to species diversity, competition, and coexistence. Structural complexity can be 
characterized through various metrics: linear and surface rugosity (Dustan et al., 2013; 
Ferrari et al., 2018), fractal dimension (Tokeshi and Arakaki, 2012; Leon et al., 2015; 
Young et al., 2017), crevice or refuge density (González-Rivero et al., 2017; Agudo-
Adriani et al., 2019; Oakley-Cogan et al., 2020), viewshed (González-Rivero et al., 2017; 
Urbina-Barreto et al., 2020), and surface height range (Torres-Pulliza et al., 2020). 
Broader-scale environmental parameterization has the potential to enable fine-scale 
modelling of further abiotic variables such as irradiance, water flow, and sedimentation 
across the reefscape (Figure 1). As SfM is imagery-based, detailed characterization 
(2D/3D) of the seafloor can be undertaken through point-based annotation or semantic 
segmentation, with promising automation potential through machine learning (Alonso et 
al., 2019; Williams et al., 2019; Pavoni et al., 2020). Species-level identifications and 
recruit detection can be facilitated by the pairing of individual points to the original 
photographs (usually having greater resolution than the constructed dense point cloud) 
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(Edwards et al., 2017; Pedersen et al., 2019). Such large-area characterizations are rapidly 
providing new insights into coral demographics (Edwards et al., 2017; Brito-Millán et al., 
2019; Pedersen et al., 2019), and the simultaneous documentation of the abiotic and biotic 
reefscape holds particular promise for landscape community genomic approaches (Hand et 
al., 2015). 

 
Figure 1. Reefscape genomics: characterizing the underwater landscape. Conceptual diagram 
summarizing different SfM-enabled characterization examples that can be utilized in reefscape genomic 
studies. The orthoprojection (25 x 4 m) depicts a Caribbean coral reef community at 20 m depth (from the 
CoralScape project, Curaçao, Southern Caribbean). Fine-scale mapping allows for accurate positioning of 
target organisms within the reefscape and a priori established sampling designs (depicted here for Eusmilia 
fastigiata). It also enables spatially-explicit, multi-species assessments (e.g., to characterize broader patterns 
related to life history or the occurrence and consequences of hybridization). Image-based biotic/abiotic 
characterization of the reefscape can help elucidate the interaction of dispersal, recruitment, and selection 
processes with the environment (e.g., considering competitive or mutualistic relationships or habitat 
suitability). Structural complexity or 3D positioning can be similarly considered or used for environmental 
or biophysical modelling (e.g., incident irradiance, water flow, sedimentation or larval dispersal). Repeated 
characterization allows for spatio-temporal consideration of the reefscape and target organisms, as well as 
mass-phenotyping of the latter (e.g., growth rates or stress responses). 
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Another major advantage of SfM characterization is its suitability for repeat surveys, 
describing how target species populations and interfering biotic and abiotic reefscapes 
change over time. SfM also opens up the opportunity for simultaneous in situ phenotyping 
of focal organisms. Although certain morphological (e.g., gross morphology) and 
ecological (e.g., symbiotic state) aspects can be extracted from a single time-point, repeated 
characterization allows for the determination of growth rates (surface or linear expansion; 
Holmes et al., 2008) or susceptibility to stressors (Johnston et al., 2019; Chow et al., 2016; 
Page et al., 2017; Precht et al., 2016; Miller et al., 2016; Gintert et al., 2018). The third 
dimension that photogrammetry adds significantly enhances all aspects of phenotyping; for 
example, growth traits of corals and other invertebrates are more accurately determined 
from 3D surface areas and volumes (Lavy et al., 2015; Ferrari et al., 2017; Olinger et al., 
2019; Gutiérrez-Heredia et al., 2016), as are other colony-level and polyp-level 
morphological traits (Kruszyński et al., 2007; Gutiérrez -Heredia et al., 2015). 
 
Opportunities enabled by reefscape genomics 

Photogrammetric approaches uniquely enable both fine-scale mapping and simultaneous 
characterization of the focal organism and surrounding reefscape, and will provide a step 
change in our ability to conduct landscape genomic assessments in marine environments. 
Such approaches have the potential to overcome pervasive sampling biases associated with 
underwater population genetic studies (Gorospe et al., 2015; Riginos, 2015) in that rigorous 
sampling designs can be established based on a priori characterized positioning, micro-
environment, and phenotypes of organisms across the reefscape (Figure 1). As the spatial 
extent and grain of the reefscape characterization can vary per imaging platform (diver-
based or autonomous underwater vehicle) and strategy (low or high altitude), reefscape 
genomic approaches allow for spatially explicit assessments from fine-scale (e.g., assessing 
the spread of somatic mutations or distribution of endosymbiotic associations 
within/between colonies), to medium-scale (e.g. patterns of genetic variation, kinship, and 
clonality within/across reef habitats), and broad-scale (e.g., in conservation genomics 
assessments of rare and threatened species at the scale of hectares) (Figure 2). Currently, 
these assessments can be conducted across multiple locations to enable parallel 
comparisons, or they can be incorporated within a hierarchical seascape genomics 
framework. Ultimately, they may converge with broader seascape-scale assessments as 
technologies advance. The explicit consideration of the benthoscape opens up the novel 
opportunity to assess the effect of the fine-scale biotic and abiotic composition, 
configuration, and traversability of the underwater landscape on gene flow and dispersal 
through the use of spatial correlation analyses (e.g., Moran’s Eigenvector Maps; Dray et 
al., 2006) and analyses that identify gene flow pathways (e.g., resistance-based; McRae, 
2006; Petkova et al., 2016). Overall, by enabling repeatable surveys and eliminating 
constraints on grain size (previously imposed through shipboard, aerial or orbital 
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characterization), we can now effectively assess the fine-scale spatiotemporal drivers of 
the extensive unexplained diversity and the hierarchical genetic structuring on coral reefs. 

 

Figure 2. Example applications of reefscape genomics. Four examples of current  assessments conducted 
as part of the CoralScape project on Curaçao (Southern Caribbean). This project monitors large-area plots 
(0.5-1 ha per plot) and focal plots (100 m2) covering a range of 5-60 m depth at eight different locations along 
the leeward shore.  These plots are regularly reimaged and incrementally sampled (for different taxa). A 
Broad-scale imaging (>0.5 ha per plot) to exhaustively map, georeference, and sequence the rapidly declining 
species Helioseris cucullata to assess clonality, inbreeding, and local adaptation (Hernandez-Agreda et al., 
in preparation). B Medium-scale imaging (100 m2 per plot) to track clonal reproduction and assess niche 
partitioning in coral-eroding sponges of the abundant and fast-expanding species complex Cliona viridis 
(Achlatis et al., in preparation). Inset photographs show different growth forms and a close-up. C Medium-
scale imaging (100 m2 per plot) to track the spread of somatic mutations in large monostands of the coral 
Madracis mirabilis (Bongaerts et al., unpublished data). D Medium-scale imaging (100 m2 per plot) to 
disentangle the role of environment and genotype in bleaching response and the overall effect of bleaching 
on population genetic diversity within the genus Agaricia (Prata et al., unpublished). Circles represent 
samples of target organisms (as depicted in close-up photos) colored by genotype (except for in B). 

Selection is expected to play a dominant role in shaping the genetic variation of coral reef 
inhabitants due to the marked environmental heterogeneity occurring between and within 
reef habitats. Existing approaches investigating adaptive variation can be divided into those 
that identify genetic signatures of selection resulting from environmental conditions (e.g., 
outlier tests and genetic-environment association (GEAs); Rellstab et al., 2015) and those 
that identify associations between genotypes and phenotypic traits (e.g., quantitative trait 
loci (QTL mapping); Stinchcombe and Hoekstra, 2008, genome-wide association studies 
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(GWAS); Korte and Farlow, 2013, and genome-wide selection (GS); Meuwissen et al., 
2001). However, in coral reef invertebrates, genetic-environment associations have almost 
exclusively been explored in relation to either broad-scale oceanographic settings or 
discrete reef habitats. Characterization of the reefscape now opens the opportunity to 
investigate the role of fine-scale and biotic selective pressures in population genetic 
structuring (Gorospe and Karl, 2013), and to explore whether the “sympatric” distribution 
of morphologically cryptic lineages (Warner et al., 2015) may have overlooked niche 
partitioning across micro-environments. Moreover, the difficulty of conducting large-scale 
phenotypic characterization through aquarium-based (due to collection impact concerns) 
or natural experiments (due to the challenges of the underwater environment) has hindered 
the ability to detect genetic-phenotypic associations. As photogrammetry offers the 
opportunity of repeated characterization of target organisms, it has the potential to scale up 
phenotyping efforts of critical traits. Large sample sizes are particularly important for the 
detection of polygenic signals (i.e., where the phenotype is influenced by more than one 
locus), such as those identified in relation to thermal bleaching susceptibility (Bay and 
Palumbi, 2015; Jin et al., 2016; Fuller et al., 2020). Overall, the most promising advance 
of reefscape genomics is the ability to simultaneously consider the interaction of genotype, 
(micro-)environment, and phenotype. Disentangling this interaction could elucidate 
fundamental but poorly understood processes affecting natural evolutionary trajectories, 
such as cryptic diversification, hybridization, and heritable changes in gene expression 
(epigenetics). Considering this interaction would also have substantial benefits in terms of 
restoration and assisted evolution efforts, through more informed identification of resilient 
natural genotypes and selection of suitable outplanting/transplantation environments (as 
described in van Oppen et al., 2015; Baums et al., 2019). 

Conclusions 

As advances in genomics have offered the opportunity to transition from few neutral 
markers to genome-wide assessments, advances in underwater imaging now unlock the full 
potential of these assessments in benthic marine ecosystems by enabling spatially-explicit 
(individual-based) sampling integrated with fine-scale biotic and abiotic characterization. 
As discussed in this perspective, this provides the unprecedented potential to apply fine-
scale landscape genomics approaches to coral reef environments, allowing us to address 
fundamental knowledge gaps regarding the role of neutral and adaptive processes in the 
structuring of coral reef biodiversity. Additional methodological advantages are the 
opportunities for simultaneous mass-phenotyping (e.g., growth and thermal susceptibility), 
repeatable surveys (e.g., explaining how demographic changes contribute to changing allele 
frequencies), cumulative data gathering (e.g., revisit and expand sampling to additional 
individuals or species), efficient characterization of difficult-to-access environments (e.g., 
mesophotic habitats), and robust sampling design planning (e.g., based on a priori mapped 
individuals). Although close-range photogrammetry is uniquely suited to document the 
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static structures of reef-building corals, a “benthoscape genomics” approach (to use a more 
inclusive term) is equally applicable to other marine benthic habitats (e.g., deep-sea 
bioherms, mangroves or sponge-dominated rocky reefs) where the requirement of a largely 
static environment can be met. Studying fine-scale patterns and processes in marine 
ecosystems will be critical in advancing our understanding of contradictory metapopulation 
structures, our ability to accurately analyze and interpret broader-scale patterns, and 
ultimately, our capacity to effectively conserve these ecosystems into the future. 
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