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Abstract
1. Simulation models are valuable tools for estimating ecosystem structure and function under various climatic and environmental conditions and disturbance regimes, and are particularly relevant for investigating the potential impacts of climate change on ecosystems. However, because computational requirements can restrict the number of feasible simulations, they are often run at coarse scales or for representative points. These results can be difficult to use in decision-making, particularly in topographically complex regions.
2. We present methods for interpolating multivariate and time series simulation output to high resolution maps. First, we developed a method for applying k-means clustering to optimize selection of simulation sites to maximize the area represented for a given number of simulations. Then, we used multivariate matching to interpolate simulation results to high-resolution maps for the represented area. The methods rely on a user-defined set of matching variables that are assigned weights such that matched sites will be within a prescribed range for each variable. We demonstrate the methods with case studies using an individual-based plant simulation model to illustrate site selection and an ecosystem water balance simulation model for interpolation.
3. For the site-selection case study, our approach optimized the location of 200 simulation sites and accurately represented 96% of a large study area (1.12 x 106 km2) at a 30-arcsecond resolution. For the interpolation case study, we generated high-resolution (30-arcsecond) maps across 4.38 x 106 km2 of drylands in western North America from simulated sites representing a 10 x 10 km grid. Our estimates of interpolation errors using leave-one-out cross validation were low (<10% of the range of each variable).
4. Our point selection and interpolation methods provide a means of generating high-resolution maps of complex simulation output (e.g., multivariate and time-series) at scales relevant for local conservation planning and can help resolve the effects of topography that are lost in simulations at coarse scales or for representative points. These methods are flexible and allow the user to identify relevant matching criteria for an area of interest to balance quality of matching with areal coverage to enhance inference and decision-making in heterogenous terrain. 
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1. Introduction
	Ecosystem structure and function are influenced by factors that vary in their spatial and temporal extent: climate exerts important control at broad-scales, and acts in concert with fine-scale heterogeneity in topography, edaphic conditions, and disturbance history. In dryland regions, soil moisture availability is an important control over vegetation; seasonal soil moisture dynamics are broadly controlled by climate (Lauenroth et al., 2014) while soil texture can impact soil moisture at finer scales (Lauenroth & Bradford, 2012). As a result, estimating ecosystem structure and function at high spatial resolution over broad spatial extents is challenging, particularly in highly heterogeneous dryland landscapes. Direct observation is limited by time and funding, and is temporally restricted. Mechanistic simulation modeling is a useful tool that enables process estimation over a wide range of conditions using relationships derived from empirical data (Grimm & Berger, 2016; Pennekamp et al., 2017; Radchuk et al., 2019). Such models have particular utility for projecting the potential impacts of multiple climate change scenarios and their interactions with disturbance on ecosystem structure and function (Jeltsch et al., 2008). 
Although simulation models can incorporate a wide range of conditions, estimating complex, data-intensive processes like plant community dynamics or ecosystem water balance at high resolution over large geographic areas is often limited by computational requirements. In addition, the number of model simulations required can quickly compound when assessing a suite of climate scenarios (encompassed by multiple general circulation models, time periods, and scenarios of global greenhouse gas emissions), disturbance and management scenarios (e.g., fire, grazing), and environmental conditions (e.g., soil properties) for hundreds to millions of sites. As a result, these models are often run at low resolution (Schlaepfer et al., 2017; Bradford et al., 2019) or for representative points (Palmquist et al., 2016b; Renwick et al., 2018). The low resolution or site-specific nature of these results can be difficult to use for decision-making at local scales, particularly in topographically and edaphically complex regions. 
Efforts to downscale low-resolution model results or interpolate representative points usually focus on one variable, such as environmental suitability represented by species distribution models (Kiel et al., 2013) or soil moisture (Kearney et al., 2019). Yet, output from process-based simulation models is often multivariate and interpolating output one variable at a time can create incoherence that ignores covariance among output variables. Weather prediction and climate downscaling efforts have addressed the need for internally consistent multivariate predictions. One approach uses multivariate matching to identify weather analogs and predicts weather by assigning conditions from the best match or one of a series of best matches (Zorita et al., 1995; Zorita & Storch; 1999; Gangopadhyay et al., 2005). 
Here, we present methods for generating high resolution maps of complex, highly multivariate (and time series) ecological simulation output and quantify the uncertainty arising from our method. We draw from the concepts of analog weather types used in weather prediction and climate downscaling to develop methods that address two specific challenges: 1) selecting a set of sites from within an area of interest that optimizes the proportion of the area that can be reasonably represented by those sites while minimizing the number of sites needed (subset cells, Fig. 1); and 2) interpolating simulation output from a defined set of sites (derived from the first method or otherwise) to produce high resolution maps by multivariate matching (output variables, Fig. 1). We demonstrate site selection (challenge 1) by identifying optimal sites for simulation of dryland plant community dynamics to represent sagebrush ecosystems across western North America and we demonstrate interpolation (challenge 2) by interpolating results from an ecosystem water balance model applied in a coarse grid to generate high resolution water balance estimates across North American drylands.
2. Materials and Methods 
We propose two algorithms based on weighted multivariate matching to select an optimal set of sites and to produce high-resolution interpolations (Fig. 1). These algorithms can be used together or individually. Unless otherwise noted, we conducted all calculations and analyses in R v4.0.3 (R Core Team 2020).
2.1 Challenge 1: Selecting optimal sites for simulation and/or sampling
2.1.1 Site selection methods
Identify variables for matching: Our site selection method uses a clustering algorithm (“k-points”, described below) to group cells in raster datasets based on a set of user-specified “matching variables” (e.g., climate and soil variables), and identifies a representative cell from each group (Fig. 1). The matching variables used will depend on the goals of the site selection effort and should be based on knowledge of the ecosystem and processes in question. Sites for simulation and/or sampling are then defined in space by the geographic centroids of these representative cells. Our method for selecting n “subset” cells from within an area of interest (defined by N “target” cells of a larger grid) maximizes the area (AreaM where M is a large subset of N) that can be reasonably represented by n cells (i.e., sites) to be simulated or surveyed in the field. 
User-defined criteria for matching variables: Matching criteria are used to weight the matching variables such that one unit of each weighted variable is equal to the maximum acceptable difference between subset and target cells. This method of weighting variables measures similarity using ecosystem- and process-relevant criteria defined by the user and distances are calculated using Euclidean distance of the weighted matching variables. This approach is a generalization of Mahalanobis distance (Mahalanobis, 1930), which calculates distance based on the multivariate distribution of variables. Setting our matching criteria to one standard deviation of each variable would be equivalent to using Mahalanobis distance. Although this would ensure that selected sites would be representative of the multivariate distribution of the matching variables within N, the drawback to this approach is that it could result in unacceptably large differences for some variables but not others. Our method of weighted Euclidean distances ensures that distances for all variables are within the user-defined criteria for each matching variable.
Overview of the k-points site-selection algorithm: To identify representative sites for a given number of n (subset cells, Fig. 1) within an area of interest, we developed an algorithm, “k-points”, based on the unsupervised classification method k-means (MacQueen, 1967). First, n cells (where n = the number of sites desired) are randomly selected from the N target cells. Then, all N cells are assigned to one of the n cells by determining the nearest neighbor using Euclidean distance of the weighted matching variables. Next, the centroids of the n groups are calculated and the cell that is the nearest neighbor to the centroid of each group is selected as one of an updated set of n cells. All N cells are then assigned to one of the updated n cells and the process continues until a stopping criterion is met: either a predefined number of iterations are completed or the change in area represented is at or below a designated threshold for five consecutive iterations. Appropriate stopping criteria should be determined such that the change in area represented by each iteration levels out before stopping (Appendix S1). Once a stopping criterion is met, the n subset cells for the iteration that represented the largest proportion of the study area are saved as the best solution. 
Select the value of n such that n is minimized and AreaM is maximized: The optimal number for n is determined by examining the relationship between n and the area represented by n (AreaM). This is achieved by finding solutions for the k-points algorithm for a range of n that includes the maximum number of sites that can feasibly be sampled or simulated. AreaM will increase with increasing n, but the rate of increase should level off, and n can be chosen by determining the point at which the increase in computational demand associated with increasing n is greater than the increase in AreaM. Importantly, matching criteria can also be evaluated during this step by comparing the change in AreaM when the matching criteria are increased or decreased for a given value of n.
Identify the n cells: Like k-means, the solution for k-points is sensitive to the initial subset of randomly selected n cells (Celebi et al., 2013) and the algorithm should be run with multiple initial random selections of n cells. For assessment of the optimal number of points, a small number of random selections of n cells (e.g., 10) can be used to compare AreaM for different values of n. Solving the k-points algorithm with only a small number of initial point selections may underestimate potential AreaM for a given n. However, this should be adequate for efficiently determining the optimal value for n. Once the optimal value of n is determined, a much larger number of random initial point selections (e.g., 100) will help maximize AreaM for the final selection of n.
2.1.2 Case study for challenge 1: selecting optimal sites to represent a heterogeneous region
Our goal was to apply the k-points algorithm described above to find an optimal subset of sites to simulate using STEPWAT2, an individual-based, gap dynamics plant simulation model (Palmquist, Bradford et al., 2018; Palmquist, Schlaepfer et al., 2018), to project the impacts of climate change, wildfire, and livestock grazing on big sagebrush (Artemisia tridentata Nutt.) plant communities across their extent in the western United States. We defined an area of interest of approximately 1.19 x 106 km2 defined by 30-arcsecond cells (N = 1.91 x 106; detailed in Appendix S2).  It was imperative to conduct simulations for a relatively small number of subset cells because the simulation design included current conditions, 52 future climate scenarios, four grazing treatments, and four fire treatments, resulting in 848 unique combinations for each site.
[bookmark: _Hlk57464567]Soil water that is available for transpiration determines resource availability and ultimately plant biomass in STEPWAT2 and is largely governed by climate and soil variables (Palmquist, Bradford et al., 2018). We controlled for soil by using a single representative soil type for simulations (median soil type across big sagebrush ecosystems, Palmquist et al. in revision: Appendix S4), and we selected six key climate variables to use as matching variables for site selection (Table 1) to represent the major climatic drivers of plant community structure in big sagebrush ecosystems (Paruelo & Lauenroth, 1996; Renne et al., 2019). We set matching criteria for differences between subset and target cells to 10% of the range of each variable (Table 1). We used DayMet (Thornton et al., 2018) data to derive 30 year (1981-2010) normal monthly precipitation and temperature values for every cell within our study area using Google Earth Engine (Gorelick et al., 2017).
We ran the k-points algorithm for all cells within our study area, with the maximum number of iterations set to 50 and the stopping criterion for change in AreaM set to 50 km2. We determined the optimal number of sites (n) by finding solutions from 25 to 500 in steps of 25 using 10 random initial selections of sites for each value of n. After we determined the optimal value for n, we obtained our final selection of subset cells by running the k-points algorithm for 100 random initial selections of sites. 
2.2 Challenge 2: interpolating spatially coarse or sparse simulation output to produce high resolution, continuous maps
2.2.1: Interpolation methods
Our method for generating high-resolution maps of complex simulation output can be used for any set of simulated sites (representing subset cells, Fig. 1). These sites may have been selected by any approach, e.g., by the method described above, defined by establishing a regular grid over the study region (as in the case study below), or defined by the locations of long-term research sites. Our method uses multivariate matching for interpolating results to the broader study region by assigning simulation results from the n subset cells to N target cells within an area of interest. As in the site selection method, each of the N target cells is defined by a set of weighted matching variables. Each target cell is matched to the subset cell identified by the shortest Euclidean distance of the weighted matching variables; then, simulation output from the matching subset cell is assigned to the target cell to generate continuous maps of all simulated output (Fig. 1).
2.2.2 Case study for challenge 2: interpolating to generate high-resolution maps 
Our goal was to generate high-resolution, 30-arcsecond (~1 km) maps of output from low spatial resolution simulations of SOILWAT2, a process-based ecohydrological simulation model (Schlaepfer et al., 2012; Schlaepfer & Andrews, 2018; Schlaepfer & Murphy, 2018). Our area of interest included drylands (defined as locations where the ratio of mean annual precipitation to potential evapotranspiration is < 0.6 for 1970-2000) in the western United States and Canada at 30-arcsecond resolution (N = 7.52 x 106 cells covering about 4.74 x 106 km2; Appendix S3, Fig. S1; Trabucco & Zomer, 2019). We conducted the simulations using mean current and future climate conditions at 41,477 dryland sites defined by a 10-km grid (detailed in Bradford et al. 2019). For each 10-km cell, we simulated conditions for five different soil types: site-specific soils derived from STATSGO (Miller and White 1998) and four fixed soil types (Table 2), for a total of 207,385 sites with unique location x soil combinations. Simulations included current conditions and two future time periods under two relative concentration pathways (RCP) for all available general circulation models (GCMs) from CMIP5 (RCP4.5–37 GCMs; RCP8.5–35 GCMs; Taylor et al., 2012). 
Inputs for SOILWAT2 include weather and climate data, soils information, and vegetation parameters. Site-specific vegetation parameters are estimated from climate (Bradford et al., 2014; Palmquist et al., 2016a), so we used two soil and six climate variables (that represent the major climatic drivers of ecohydrology and plant community structure in drylands) as matching variables (Table 3). Because there were five soil types simulated for each set of climate conditions, we tested several matching schemes to adapt the matching method to fit this experimental design (Appendix S4) and devised a two-step matching process where target cells were matched to subset cells first by finding the nearest neighbor using climate variables, then the nearest neighbor among the available soil types (Table 2). We used DayMet (Thornton et al., 2018) data to calculate 30-year (1981-2010) normal monthly precipitation and temperature values using Google Earth Engine (Gorelick et al., 2017) and obtained soils data from Soilgrids+ (Hengl et al., 2017; Appendix S3). We set the matching criteria to 5% of the range of each variable, and further limited mean annual precipitation and mean annual temperature to 25 mm and 0.5° C, respectively (Table 3).  
2.3 Evaluating matching and estimating matching error
We provide four metrics to quantify the strength of the match between subset and target cells. The site selection and interpolation methods match every target cell to a subset cell based on minimum Euclidean distance of the weighted matching variables. Thus, the first evaluation of matching is this distance, and distances less than or equal to one indicate high-quality matching. Distances greater than one indicate that the difference between these target cells and their matched subset cell exceeds the matching criterion for one or more variables. The Euclidean distance of weighted matching variables between subset and target cells can be interpreted as a continuous variable measuring matching quality. Matching quality can be used to exclude target cells for which there is insufficient matching, i.e., no subset cell is analogous, and to determine the spatial extent of the represented area. 
Second, matching can be evaluated by calculating the standard deviation of differences between target and subset cells for a set of variables relevant to the project, which is particularly informative if the variables were not used as part of the matching process. Third, the quality of matching will depend on the extent to which spatiotemporal patterns are maintained between sites. Our methods do not explicitly incorporate geographic proximity. Thus, target cells may be matched to geographically distant subset cells and neighboring target cells may be matched to two subset cells that are geographically distant. Although these cells may be well matched using the matching variables, they may exhibit daily patterns (e.g., precipitation, soil moisture) that are much less similar than would be expected for adjacent cells. Two measures of distance can be calculated to estimate the extent to which spatiotemporal patterns may have been maintained during matching: 1) the distance between target cells and their matched subset cells, and 2) the average distance between a matched subset cell and the subset cells matched to the eight adjacent neighbors. 
Finally, once simulations are complete for the subset cells, interpolation errors can be estimated using leave-one-out validation. Each subset cell is matched to its nearest neighbor (using Euclidean distance of the weighted matching variables) from among the remaining subset cells. Then, an estimate of the interpolation error can be calculated using the following equation:

Where n is the number of subset cells, y is the value of the simulated output variable, and  is the matched value.
3. Results
3.1 Site selection
For our site-selection case study, the proportion of the study area represented by the subset cells increased steadily up to about n = 200 points, where incremental gains in area represented by additional cells began to decrease (Fig. 2). Thus, we used 200 points to represent our region and minimize computational burden. Using 200 points, we achieved high quality matching (weighted Euclidean distance ≤ 1) for about 93% of the study area. We achieved moderate matching quality (weighted Euclidean distance between 1 and 1.5) for an additional 3% of the study area (Fig. 3a). We included all cells with high and moderate quality matching in our final interpolated area, achieving 96% coverage of the study area (1.15 x 106 km2 represented by 1.82 x 106 cells) and the subset cells were distributed across geographic and climate space (Fig. 3). 
Cells with poor quality matching were generally found in topographically rich areas, at the edges of the study area, and in areas with sparse or isolated cells (Fig. 3a). Of the additional climate variables we examined, most temperature variables had relatively low standard deviation of differences between subset and target cells (<2° C; Appendix S5, Fig. S5) and spatial patterns of differences were similar to those of the matching variables (Appendix S5, Figs. S1, S2, & S3). Mean temperature of the wettest quarter was an exception, with standard deviation of differences around 3.5° C and discrepancies of over 15° C along the western side of the Colorado Plateau and in central Idaho and northern Washington. The standard deviation of differences between target and subset cells was relatively low (<15 mm) for the precipitation variables we examined (Appendix S5, Figs. S1 & S5), and the largest differences appeared to be in topographically rich areas (Appendix S5, Fig. S4). 
The median geographic distance between subset and target cells was 81 km and ranged from 0 to 1724 km. Larger distances were found in topographically rich areas and the largest distances were concentrated geographically in west central and southeast Wyoming, eastern Washington, along the Snake River in southwestern Idaho, and on the Columbia Plateau in eastern Oregon (Appendix S5, Fig. S6). The median of the average distance between the subset cell matched to a target cell and the subset cells matched to the eight adjacent neighbors was 0 km and ranged from 0 to 1309 km. Again, the largest distances were found in topographically rich areas (Appendix S5, Fig. S7). 
3.2 Interpolation 
We achieved high-quality matching (weighted Euclidean distance ≤1) for 91% of western North American drylands for climate matching variables and for 19% of the area for soil matching variables (Appendix S6; Figs. S1 & S2). We included all target sites with a climate matching quality value of ≤1.5 in our final interpolated area, resulting in 92% coverage of North American drylands (4.38 x 106 km2 represented by 6.92 x 106 cells). Areas with poor matching were mostly found in regions that were classified as drylands at 30-arcsecond resolution but not at 10-km resolution in the Rocky Mountains, adjacent to the Sierra and Cascade Mountain ranges, and along the eastern and northern edges of the study area (Appendix S3, Fig. S1 & Appendix S6, Fig. S1, S5, & S6). We did not exclude any cells with poor matching quality of soil variables because soils can be highly variable at scales smaller than our interpolation efforts and because climate has a greater influence than soils over ecohydrological conditions (Lauenroth et al., 2014). Soils information from the subset cell matched to each target cell were included as part of the interpolated datasets to improve interpretation of results (Appendix S6: Fig. S3). 
The standard deviations of differences between target and subset cells were low (<0.5° C) for most of the temperature variables and did not exhibit distinct geographical patterns (Appendix S6, Figs. S5-S8). However, the standard deviation of differences was 1.6° C for mean temperature of the wettest quarter, with larger differences found in topographically rich areas in the western part of the study area (Appendix S6: Fig. S8C). All precipitation variables that we examined had low standard deviations of differences (<5 mm) between target and subset cells, and larger differences were not concentrated geographically (Appendix S6: Figs. S9 & S10). 
The median geographic distance between subset and target cells was 12 km and ranged from 0 to 2106 km. Larger distances were found in topographically rich areas and along the eastern and northern edges of the study area (Appendix S6: Fig. S11). The median of the average distance between the subset cell matched to a target cell and the subset cells matched to the eight adjacent neighbors was 6 km and ranged from 0 to 2137 km. These distances were again largest in topographically rich areas in the central and western parts of the study area (Appendix S6: Fig. S12).
Finally, we estimated interpolation errors using leave-one-out cross validation (Appendix S7) for six output variables relevant to our work investigating current and future soil temperature and moisture regimes in western North American drylands (Bradford et al., 2019). Our estimated interpolation errors were relatively small (root CVerror < 10% of the range of each variable). The differences between simulated and matched output variables were normally distributed with means very close to 0 (Fig. 4). Although differences appeared to be larger in topographically rich areas, there were no distinct geographic patterns in these differences (Appendix S7: Fig. S4). The cross-validated matching resulted in correctly assigned soil temperature and moisture (STM) regimes for 66% of cells (i.e., simulated STM = matched STM). STM regimes were incorrectly assigned to 4% of cells and the remaining 29% of cells were assigned correctly to either soil temperature or soil moisture regime, but not to both. The results of this matching and interpolation method are accurate, high-resolution maps of SOILWAT2 output variables across western North America that provide greater detail than maps generated by the low-resolution grid used to define simulations (Fig. 5). Furthermore, although high-resolution maps of single variables are useful, our method, by design, interpolates highly multivariate and time series data (e.g., daily soil water availability, Fig. 6).
4. Discussion
	The spatial resolution of information generated by complex ecological simulation models is often limited by computational restrictions and thus fails to represent fine-scale heterogeneity in topography, soils, and other environmental variables. We addressed this limitation by first developing a method to select sites from a given study area that maximize the area represented by those sites. Then, we developed a multivariate interpolation method that matches simulated sites to all locations across the study area to produce high-resolution, continuous maps, with spatially-explicit estimates of interpolation error. These methods are designed to facilitate the application of low-resolution simulation model results to local-scale resource management and conservation decisions, which often require high resolution information about complex ecological processes in heterogeneous regions.
We applied these methods to results from previous studies investigating current and future soil temperature and moisture regimes (Bradford et al., 2019) and ecological drought (Bradford et al., 2020) in North American drylands, as well as our efforts to predict climate change and disturbance impacts on big sagebrush plant communities in the western U.S. (Palmquist et al., in revision). The case studies presented in this paper are taken from those projects. While soils and vegetation can vary at scales smaller than the resolution of our interpolated variables here, our method could produce higher resolution maps if matching variables are available at such a resolution. Nevertheless, the 30-arcsecond (~1 km) resolution maps we produced can resolve spatial patterns across management areas (e.g., Fig. 6), with obvious application to management decisions at local and regional scales.
Our methods rely on a relatively small subset of variables to match simulated sites to target cells. In our case studies, we simulated ecosystem water balance and plant community composition in drylands and chose climate (or climate and soil) variables that are the major drivers of soil water dynamics and plant community structure in North American drylands. We used six to eight variables for each case study and assessed matching success by confirming that sites were also relatively similar in terms of other climate variables (Appendix S5: Fig. S1-S5 & Appendix S6: Figs. S5-S10). Application of these methods for other studies will require selection of appropriate matching variables that are relevant to the modeling approach and the study system. The number of matching variables could be larger than ours, but increasing the number of matching variables could make the approach more computationally intensive. In our interpolation case study, the experimental design of the simulations meant that we needed to match sites based both on climate and on soil texture. Our efforts to match in a single step that incorporated both climate and soils resulted in large differences in climate variables (Appendix S4) and we were challenged to determine matching criteria that would be equivalent for climate and soils. Thus, we adapted our matching method to fit the needs of our study and completed matching as a two-step process. We suggest that future use of these methods carefully consider experimental design to determine an appropriate matching scheme.
Our method of interpolation uses multivariate matching to determine climatic and environmental analogs for all cells in a given area from among a subset of simulated sites, then assigns the complete output of results from each simulated site to all the analogous cells. Thus, the method is able to interpolate highly multivariate and time series data and maintains internal consistency in the structure and distribution of output variables for a given site. This avoids the need to correct interpolated variables to maintain realistic values (e.g., Hengl et al., 2017). In both case studies, the relatively low standard deviations of differences between target and subset cells for a comprehensive set of climate variables indicate that the methods successfully found analogous sites in most cases. However, the larger discrepancies in temperature of the wettest quarter suggest that subset cells failed to represent precipitation seasonality in some locations. Adding additional matching variables could improve representation of precipitation seasonality. For the interpolation case study, soil matching quality was low and only 19% of the study area had matching quality ≤1. This may be in part due to differences in the data sources used to derive soils for subset and target cells. The soils used for the simulations were, on average, lower in sand and clay content than those derived from SoilGrids+ (Hengl et al., 2017) for the interpolated cells (Appendix S6: Figs. S3 & S4). 
Importantly, our methods do not explicitly incorporate geographic proximity, which could result in inconsistencies in spatiotemporal patterns between cells matched to geographically distant subset cells. In our case studies, the small median distances between subset and target cells and adjacent matched cells suggests that matching maintained spatial coherence. However, this issue could be addressed in future implementations by incorporating geographical distance into the algorithms, (e.g., matching target cells to the nearest geographical neighbor from all subset cells within a given weighted Euclidean distance).
The site-selection method is highly flexible and allows users to balance the cost of simulating additional sites with the benefit of enlarging the area represented by those sites. Whereas other point selection techniques (e.g., conditioned Latin hypercube (Minasny & McBratney, 2006) or systematic spatial point selection) do not consider the relative importance or scale of variables used in matching, our method specifically integrates user-specified criteria for the maximum allowable difference for each variable used in matching. Furthermore, this method has potential to improve the efficiency of field-based observational studies by optimizing the number and locations of field sites necessary to adequately represent a study area. The interpolation method presented here is sufficiently simple from a computational standpoint that it provides an obvious advantage in situations where computational capacity would limit both the number of simulated sites and implementation of an algorithm that would be capable of interpolating complex simulation output. Together, our multivariate matching algorithms provide a flexible and relatively simple method of efficiently leveraging computational resources to produce geographically extensive estimates of complex ecological variables at scales relevant to local and regional management decisions, with clear paths for evaluating accuracy and error.
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Table 1: Summary of six matching variables for the site selection case study with matching criteria (maximum difference between subset and target cells), defined as 10% of range of each variable.
	Variable
	Mean annual temperature (°C)
	Mean annual precipitation (mm)
	Temperature seasonality
	Precipitation seasonality
	Mean temperature of driest quarter (°C)
	Mean precipitation of warmest quarter (mm)

	Mean
	7.39
	395
	874
	44.2
	9.10
	81.5

	5th percentile
	2.92
	227
	726
	22.3
	-6.33
	28

	95th percentile
	11.15
	664
	1031
	67.9
	20.71
	154

	Matching criterion 
	1.55
	84.9
	61.1
	9.21
	3.53
	33.8



Table 2. Soil types used in the interpolation case study.
	Soil type
	Sand (%)
	Clay (%)
	Silt (%)

	Clay loam
	27
	35
	38

	Sandy loam
	66
	9
	25

	Silt loam
	16
	9
	75

	Median* (silt loam)
	30
	18
	52

	Site specific
	variable
	variable
	variable


 *median soil type for all big sagebrush ecosystems (Palmquist et al., in revision: Appendix S4).
Table 3: Summary of matching variables for the interpolation case study with matching criteria (maximum difference between subset and target cells), defined as 5% of range for all but mean annual precipitation and temperature.
	Variable
	Mean annual temperature (°C)
	Mean annual precipitation (mm)
	Temperature seasonality
	Precipitation seasonality
	Mean temperature of driest quarter (°C)
	Mean precipitation of warmest quarter (mm)
	Sand (%)
	Clay (%)

	Mean
	8.9
	472.4
	929.7
	53.3
	4.2
	147.5
	42.4
	24

	5th percentile
	1.5
	201.2
	698.4
	25.9
	-12.2
	20.9
	24
	13

	95th percentile
	18.4
	870.1
	1254.1
	76.8
	23.7
	275.6
	62.4
	34.6

	Matching criterion
	0.5
	25
	62.8
	5
	2.5
	19.9
	4.4
	3.8

	
	
	
	
	
	
	
	
	



Figure 1: Conceptual diagram and overview of site selection and interpolation methods. First, a set of “matching variables” are selected and weighted with user-defined matching criteria. Next, the k-points algorithm is used to determine an optimal set of n “subset cells” for use in field sampling or simulation modeling. All “target cells” are matched to one of the subset cells (matches are denoted by color in central panel). Point results (e.g., simulation output) for those cells are interpolated across the study area (N target cells) using multivariate matching to produce continuous, high-resolution maps of output, such as plant functional type biomass or ecohydrological variables.     [image: ]
Figure 2: Proportion of the study area represented by different numbers of n subset cells selected using the k-points algorithm. Increases in coverage begins to level off around n = 200 and we selected this as the final value for n. 
 [image: ]
Figure 3:  Map of the 200 subset cells (black points) that represent the big sagebrush biome and estimates of matching quality (colors) across this region. Below, the subset cells (black points) are shown in climate space of the six matching variables (b-d). The density of target cells in these panels is indicated by darker colors, and the panels show all cells in the study area, including those with poor matching quality (weighted Euclidean distance >1.5). 
 
Figure 4: Estimated interpolation errors for six output variables from a study investigating soil temperature and moisture regimes in western North America (Bradford et al., 2019). These variables describe the frequency and seasonality of wet (>-1.5MPa) soil conditions within the moisture control section (MCS: soil layers with depth ranging from 10-30 cm for fine textures to 30–90 cm for coarse textures; Soil Survey Staff, 2014). DRYPROP (A) refers to the proportion of days that all layers within the MCS are dry when soil temperature at 50 cm >5°C, CWETWINTER (B) is the number of consecutive days with all MCS layers wet during the winter, CDRYSUMMER (C) is the number of consecutive days with all MCS layers dry during the summer, CWET8 (D) is the number of consecutive days with any layer wet when soil temperature at 50 cm depth is >8°C, DRYALL (E) is the number of days with all MCS layers dry, and DRYANY (F) is the number of days when any soil layer in the MCS is dry.
[image: ] 
Figure 5:  Maps of simulation results at 10 km resolution (left; results for site-specific soils) and high-resolution (30-arcsecond) interpolated results (right) for DRYPROP, the proportion of days in which all layers within the moisture control section (soil layers with depth ranging from 10-30 cm for fine textures to 30–90 cm for coarse textures; Soil Survey Staff, 2014) are dry when soil temperature at 50 cm >5°C). Panels a-e show detailed maps corresponding to the inset boxes in each large panel. 
 
Figure 6: Interpolated map of CWETWINTER for the Elko Bureau of Land Management District in northeastern Nevada. CWETWINTER is the number of consecutive days with all moisture control section (soil layers with depth ranging from 10-30 cm for fine textures to 30–90 cm for coarse textures; Soil Survey Staff, 2014) layers wet during the winter. Panels show average soil water availability (SWA) under current (black), mid-century (2020-2050) RCP 8.5 (orange), and end of century (2070-2100) RCP 8.5 (purple) conditions for five locations. Lines depicting future SWA represent the median and shaded areas show the range for each day across 35 GCMs.[image: ]
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