- 1 TITLE
- 2 The European Turtle Dove in the ecotone between woodland and farmland: multi-scale
- 3 habitat associations and implications for the design of management interventions
- 4
- 5 RUNNING TITLE
- 6 Turtle Dove habitat associations review
- 7
- 8 AUTHORS
- 9 Carles Carboneras<sup>1,2\*</sup>, Lara Moreno-Zarate<sup>1</sup>, Beatriz Arroyo<sup>1</sup>
- 10
- 11 AUTHORS' AFFILIATIONS
- 12 1 Instituto de Investigación en Recursos Cinegéticos (IREC) (CSIC-UCLM-JCCM), Ciudad
- 13 Real, Spain
- 14 2 RSPB Centre for Conservation Science, Sandy, United Kingdom
- 15 \* corresponding author: carles.carboneras@rspb.org.uk
- 16

#### 17 ACKNOWLEDGEMENTS

18 We are indebted to Susana Dias and to Carolina Ruiz for helping locate some difficult-to-find

19 references, and to Alexandre Czajkowski from OMPO, Migratory Birds of the Western

20 Palearctic, for his assistance with publications in eastern Europe including Russia. We are

also grateful to Sergi Herrando, Verena Keller and the European Bird Census Council for

22 kindly allowing us to use the detailed outputs of the turtle dove distribution model prepared

23 for the second European Breeding Bird Atlas EBBA2. This work was funded by the European

24 Commission through contract ENV.D.3/SER /2019/0021 "Development of a population

25 model and adaptive harvest mechanism for Turtle Dove (*Streptopelia turtur*)".

- 27 The European Turtle Dove in the ecotone between woodland and farmland: multi-scale
- 28 habitat associations and implications for the design of management interventions
- 29
- 30

### 31 Abstract

The European Turtle Dove (turtle dove) is a globally threatened species that is undergoing a 32 sustained and generalised decline across its breeding range, with habitat deterioration and 33 loss suggested as the main driver. Here, we review the scientific literature on habitat 34 35 associations across the European breeding range, in relation to turtle dove distribution, breeding numbers, nesting substrates and food and foraging habitats, to identify optimal 36 habitat management measures. Large-scale (national) distribution seemed to depend on the 37 38 availability, but not dominance, of forest; abundance at the landscape scale was generally higher in woodland than on farmland, highlighting the importance of forest habitats for the 39 40 species. However, abundance in woodland increased with additional structural diversity and 41 proximity to farmland, and abundance on farmland increased with greater availability of 42 non-farmland features (including forest patches, shrubs, hedges), indicating a preference in 43 this species for a mixture of habitats. Nesting occurred most frequently on trees 44 (secondarily on bushes) but we found geographical differences in the type of nesting substrate, with thorny bushes (or trees with lianas) being used more frequently in the north, 45 46 and open canopy trees (including ever-green oaks and olive trees) in the south. Turtle doves used a wide spectrum of food items with a predominance of wild seeds, particularly of 47 48 early-flowering plants, but we could not identify a single plant species whose abundance determined turtle dove numbers. In several parts of the distribution range, a shift from wild 49 50 to cultivated seeds occurred as the season progressed. However, various results indicate 51 that interventions to improve food availability should favour the provision of wild seeds 52 rather than of crop seeds. Our review indicates that the most efficient habitat management 53 interventions depend on the dominant landscape (farmland or woodland) and that, overall, 54 interventions should seek to augment the heterogeneity of the landscape by increasing the 55 mixing of farmland and woodland. Forestry and agricultural policies should be combined to 56 provide the right conditions for species that favour the ecotone between woodland and 57 farmland, like the turtle dove.

- 58
- 59
- 60 Keywords: Streptopelia turtur, European Turtle-dove, migratory species, migrant,
- 61 conservation, vulnerable, threatened, Species Action Plan
- 62

#### 63 INTRODUCTION

- 64 The globally threatened European Turtle Dove (Streptopelia turtur; hereafter, turtle dove) is
- one of Europe's most rapidly declining species and a priority for conservation. In 2015, it
- 66 was uplisted to the IUCN Vulnerable category, following a >30% population loss in 3
- 67 generations (BirdLife International 2015). The first EU management plan on the species
- 68 (Boutin & Lutz 2007) failed to achieve its conservation objectives. Following that, an
- 69 International Single Species Action Plan (SAP) (Fisher *et al.* 2018) was adopted to tackle the
- 70 main identified threats: habitat loss and deterioration on the breeding and wintering
- 71 grounds, illegal killing and unsustainable hunting during migration. The top conservation
- objective of the turtle dove SAP was to maintain and increase good quality habitats on the
- breeding grounds, with available and accessible water and food. Recognising further that
- 74 current knowledge may be biased towards a small part of its distribution, an additional
- objective of the turtle dove SAP was to improve knowledge of habitat selection and dietary
   needs on the breeding grounds across its wide range. An improved understanding of the
- 77 relationships between habitat and occurrence, numbers and nesting preferences would
- 78 allow designing better management.
- Although frequently portrayed as a farmland specialist (Dunn *et al.* 2018, PECBMS 2020), a
  wealth of published work indicates that the turtle dove occupies a wider range of habitats
- 81 during the breeding season, generally at low altitude (mostly below ca. 1000 m a.s.l.) and
- 82 often combining open ground (arable or grassland) with hedges, trees or small woods
- 83 (Kotov 1974, Peiró 1990, Dias & Fontoura 1996, Mason & Macdonald 2000, Browne et al.
- 84 2004, Browne & Aebischer 2005). Dominant extensive woodland as well as heath are
- 85 apparently avoided at least in some areas (Bijlsma 1985, Gutiérrez 2001) but young
- 86 plantations and managed woodlands, felled or coppiced, may hold high densities of
- breeding turtle doves (Kraus et al. 1972, Bijlsma 1985, Genard 1989, Gaitzenauer 1990,
- 88 Browne *et al.* 2004, Fuller *et al.* 2004). The species has also been described as favouring
- 89 disturbed conditions and typically not being found in climax plant communities. Thus, at a
- 90 time when the species was abundant in the UK, the ecotone where deciduous woodland
- 91 gives way to open grassland was described as its preferred habitat (Murton 1968).
- 92 The European Turtle-dove occupies a very large breeding range; for comparison, it is
- 93 equivalent to 32-65 times the size of France, western Europe's largest country (Newton
- 94 1995, BirdLife International 2021). In this massive area, turtle doves must necessarily
- 95 associate with multiple habitats and diverse landscapes. Our aim was to determine whether
- habitat associations in this species are general or context-specific because this may have
   implications on whether recommendations for habitat management deduced from one
- 98 particular area could be applicable elsewhere.
- 99 We reviewed the literature on turtle dove habitat associations across its European
- distribution at several spatial scales, from the breeding range (continental scale) to the
- 101 individual nesting tree. We explored the relationship of habitat with large-scale distribution
- 102 and of landscape characteristics with variations in density, and we examined studies of

- nesting and foraging habitats. As there was relatively little information on the latter, we also
- 104 reviewed information on diet as a surrogate for habitats that would be suitable for foraging.
- 105 We discuss our results in terms of habitat management for the species, and in terms of
- 106 ecological requirements across some parts of the species' vast range.
- 107

# 108 METHODS

- 109 We started by searching all the literature referenced in the two action plans (Boutin & Lutz
- 110 2007, Fisher *et al.* 2018) and the seven PhD theses (Rocha 1999, Browne 2002, Dias 2016,
- 111 Gutiérrez-Galán 2017, Marx 2018, Bermúdez 2020, Moreno Zárate 2021) known to us that
- focused on the turtle dove's European breeding grounds. In addition, we reviewed all the
- 113 papers cited in those works as well as all the recent literature on the species, through
- searches on the Web of Science (apps.webofknowledge.com), Google Scholar
- 115 (scholar.google.com) and Connected Papers (www.connectedpapers.com) websites using
- the keywords "Streptopelia turtur" and "turtle dove", alone and in combination with
- 117 "habitat", "farmland", "woodland" and "diet".
- 118 We restricted our analyses to the European breeding grounds, for two reasons. One was
- 119 that the European part of the distribution is occupied by a single subspecies, *turtur*,
- 120 taxonomically different to the three forms breeding in North Africa and Asia (Baptista *et al.*
- 121 2020). The second reason was that our objective was not to describe the habits of the
- 122 species at large but to provide a synthesis of evidence to help improve habitat management
- 123 on the breeding grounds, to complement the propositions of the SAP, and we were
- 124 interested in proposing habitat management measures that are applicable within this range
- as part of the SAP. Like it, we focussed especially on the populations of *turtur* that have
- suffered, or risk undergoing, the heaviest declines. We however compared our findings with
- 127 information from other areas (e.g., North Africa) when appropriate.
- 128 For plant species described as being consumed by turtle doves, we assessed whether they
- 129 were annual, biennial or perennial according to information in World Flora Online
- 130 (www.worldfloraonline.org), Encyclopedia of Life (www.eol.org) and Flora Ibérica
- 131 (www.floraiberica.es). For studies made in the Iberian Peninsula, we also assessed flowering
- 132 phenology from Flora-On www.flora-on.pt. We restricted that assessment to Iberia because
- 133 the onset of spring progresses markedly from SW to NE throughout Europe (Menzel *et al.*
- 134 2005) and the Portuguese dataset was the only one available with complete phenological
- 135 information including the very early part of the season.
- 136

# 137 **RESULTS**

# 138 Turtle dove large-scale distribution

- 139 On a broad continental scale, the distribution of turtle doves appeared mostly associated to
- 140 lower latitudes and warmer temperatures. The results of the distribution model for the

- second European Breeding Bird Atlas, EBBA2 (Keller *et al.* 2020), showed that latitude had
- 142 the single heaviest weight (32.5%) in predicting the probability of occurrence (PO) and that
- 143 PO decreased sharply north of the 48° N line. Several additional variables related to
- temperature had a combined weight of 42% (Supporting Online Information table S1). Of
- 145 these, the most important climatic variables were the mean temperature during the entire
- breeding season, with a weight of 24%, and the mean annual temperature, with 5.5%. The
- 147 European breeding distribution pattern thus fits with that of a thermophilic species linked to
- sustained warm temperatures over prolonged periods, confirming earlier studies at national
- 149 level in Germany and the UK (Norris 1960, Kraus *et al.* 1972). Overall, >85% of PO in EBBA2
- came from abiotic factors (geographic, climatic, human density, soil type), while factors
  associated to habitat contributed less than 15% to the model. On a continental scale, the
- 152 only land cover variable with any significant effect in predicting turtle dove PO was rainfed
- 153 (= non-irrigated) cropland (weight: 6%), with a positive relationship (Keller *et al.* 2020).
- 154 At a lower (national) scale, abiotic variables also seemed to be more important than land
- use to explain distribution in Germany (Marx & Quillfeldt 2018), mainly mild minimum
- temperatures in January (which might be linked to food availability during the early
- 157 breeding season) and lower precipitation during the warmest quarter (which might relate to
- nestling survival), although models also suggested a quadratic relationship with forest cover,
- i.e., positive effects on PO when canopy closure was >40% but negative when it was >60%.
- 160 In contrast, habitat characteristics seemed to be a much stronger determinant of
- 161 distribution in Spain than topo-climatic factors. A study on turtle dove distribution at
- 162 national scale (Moreno-Zarate *et al.* 2020) showed that turtle dove occurrence was
- 163 positively but quadratically related to the availability of coniferous forests, sclerophyllous
- vegetation, olive groves and orchards, areas of complex cultivation patterns and mosaics of
- 165 farmland and natural vegetation, and the dominance of any of those vegetation types led to
- 166 a decrease in PO.
- 167

# 168 Relationships between habitat and breeding numbers at the landscape scale

- 169 We found 32 studies, summarised in Tables 1a and 1b, that compared turtle dove
- abundance or other related variables across different habitats in European landscapes: one
- third from the UK, another third from Spain, and the rest from several different countries.
- 172 In most areas, abundance was generally higher in woodland than on farmland; the only
- exceptions came from one study in the UK and two studies in Spain (Table 1b). However, the
- 174 two studies in Spain compared densities across very disjunct areas (Table 1a), so their
- 175 results may be influenced by spatial variation in abundance for reasons unrelated to habitat
- 176 (e.g., if the proportion of woodland is higher in study areas of higher altitude). Where
- assessed (one study each in Spain, Italy, Portugal and Bulgaria), riparian forests also showed
- 178 high average densities compared to other habitats (Table 1a).

- 179 In forest habitats, several features were associated with high turtle dove densities (Table
- 180 1b), including increased structure diversity; open canopy and thin tree cover; forest
- 181 clearings with grassy undergrowth; forest stands of intermediate age/size; and proximity to182 farmland.
- On farmland, higher abundance in the UK, France, Italy, Austria and northern Spain was associated to the availability of hedgerows, windbreaks and woodland edges (Table 1b); in Mediterranean environments of the Iberian Peninsula, higher abundance was found in areas with high availability of tree crops. The presence of patches of natural vegetation (scrub, natural woodland, or fallow) and of water bodies also appeared to have positive effects for
- 188 turtle doves on farmland.
- 189 Some of the 32 studies provided a sufficiently detailed description of the study sites, or it
- 190 was possible to infer their characteristics from those of the general area, to allow a deeper
- 191 understanding of the relationship between breeding numbers and habitat structure; they
- are summarised in Table 2. Assessment of those studies showed that in landscapes
- dominated by semi-natural habitats (i.e., where the unmanaged or non-farmland
- 194 components within the farmland landscape occupied the biggest portion), turtle doves
- appeared to be more abundant in broadleaved or Mediterranean mixed woodland with an
- 196 open canopy and a herbaceous understorey. Most often, grassy understoreys in those areas
- 197 were associated with grazing or browsing herbivores.
- 198 In semi-transformed landscapes, where farmland mixed with unmanaged forested areas at
- the landscape level, the combination of trees and open spaces associated with higher
- 200 breeding densities was more varied, although turtle doves also consistently associated with
- 201 open canopy cover and an herbaceous understorey. Densities in broadleaved or mixed
- 202 woodland were generally higher than in tree crops and conifers and, in turn, those held
- higher numbers than more open spaces such as arable land or grassland. Riparian forests
- also had high densities (although not necessarily the highest) in this type of landscape. The
   association with herbivory for maintaining the herbaceous understory was weaker (Table 2).
- 206 Where the farmland component of the landscape clearly dominated and wooded /
- 207 unmanaged elements were small or isolated, turtle doves appeared to prefer wild or
- 208 planted broadleaved and mixed stands, even if occurring in dense formations with closed
- 209 canopy and a woody understorey (Table 2). More open habitats, such as residential areas,
- 210 pasture and arable, had relatively lower nesting densities, and shrubs and hedgerows were
- commonly mentioned for breeding but not necessarily as the species' first choice.
- 212 Several of the above-mentioned studies also highlighted the positive effect of unpaved
- tracks on breeding densities (Mason & Macdonald 2000, Bermúdez 2020, Vreugdenhil-
- Rowlands 2020). This may be related to the association of tracks with ruderal plants (see
- also below) and the fact that seeds may be more easily accessible in the bare areas of
- tracks, or else to the fact that tracks increase landscape heterogeneity.

217 Most of the studies reviewed (Tables 1a, 1b and 2) were correlational; however, a few 218 studies were quasi-experimental, showing before-after relationships. In Catalonia (Spain), a 219 forest management experiment linked to wildfire prevention showed that turtle doves 220 responded positively to undergrowth clearing; their numbers increased following the 221 removal of the understorey and the thinning of trees (Camprodon & Brotons 2006). In Kent 222 (UK), after the coppicing of a plot of Sweet Chestnut Castanea silva forest, numbers of turtle dove gradually increased and peaked when the forest was 14 years, by which time the 223 canopy had closed, the field layer had disappeared, and the ground was bare (Fuller & 224 Moreton 1987). A rewilding experiment in the UK saw territories increase from 0 to 16 225 following the restoration of intensive farmland to its natural uncultivated state and the 226 introduction of herbivores. The rootling action of pigs was shown to favour annual ruderal 227 plants, although the direct effect on turtle doves was not demonstrated (Tree 2018, Klee 228 2019). Finally, also in the UK, the deployment of agri-environment schemes aiming to 229 provide seed-rich habitats for turtle doves resulted in a slower temporal decline in the 230 abundance of breeding males on intervention sites, reflecting enhanced habitat suitability 231 232 for territory settlement (Dunn et al. 2021).

233

#### 234 Nesting substrates

- 235 We found 18 studies containing information on the relative frequency of nest substrates
- used on the European breeding grounds, totalling more than 1600 nests (Table 3). Nests
- 237 were reported from a wide variety of trees and shrubs, revealing great flexibility in this
- 238 species. We found indication of a latitudinal variation along the western flyway in the
- relative use of different nest substrates (Fig. 1). Nests were most commonly situated on
- thorny bushes in more northerly areas, and these were replaced progressively further south
- by broadleaved trees and conifers, later by evergreen trees (*Quercus*) and finally by olive
- 242 groves in southern Iberia.
- 243 The regular presence of climbers ('lianas') on or over the nest was mentioned in some 244 studies from France and UK (Aubineau & Boutin 1998, Browne & Aebischer 2004, Lormée 2015), and suggested as a protection to improve breeding success. In Mediterranean 245 environments, nests were generally more exposed, often on dispersed trees, and devoid of 246 247 climbers (Sáenz de Buruaga et al. 2013, Dias 2016, Arroyo et al. 2019). Further east, in Austria, nests were often situated in prickly bushes, arguably to protect them from corvid 248 predation (Gaitzenauer 1990); in Bulgaria, nests were found predominantly on deciduous 249 broadleaved and fruit trees (Nankinov 1994), but no mention was made of their association 250 251 with thorns or lianas.
- 252

#### 253 Food, and feeding habitats

- 254 The large number of seed types reported in studies from breeding grounds across Europe
- shows the wide variety of seeds consumed by the species (Table 4). Using the four

- categories in Dunn et al.'s (2018) analysis, most taxonomic units on the list of seed types are
- known to occur naturally in the environment (78%), whilst only 11% are cultivated (Table 4).
- 258 Some seed types appeared to be particularly favoured, either because of their size,
- 259 nutritional value or accessibility, including, e.g., species of Amaranthaceae, Asteraceae,
- 260 Boraginaceae, Brassicaceae, Caryophyllaceae, Fabaceae, Geraniaceae, Papaveraceae,
- 261 *Poaceae, Polygonaceae, Primulaceae, Ranunculaceae* and *Violaceae*, as well as nettles
- 262 Urtica. In general, the species was found to feed mainly on annual ruderal plants growing
- wildly in disturbed environments (Fig. 2, Table 4). However, there was not one plant species
- to which Turtle dove abundance or distribution would be particularly linked, and Irby's
- 265 (1875) claims about the close association with *Cerinthe major* in Andalucía, Murton *et al.*'s
- 266 (1964) about *Fumaria officinalis* in Britain or Gutiérrez-Galán *et al.*'s (2019) about *Echium*
- 267 *plantagineum* also in Andalucía probably described only local phenomena, rather than
- 268 general associations.
- 269 We assessed the flowering phenology for the species reportedly taken as food in the Iberian
- 270 Peninsula (Dias & Fontoura 1996, Jiménez et al. 1992, Gutiérrez-Galan & Alonso 2016). This
- 271 showed that most species mentioned had long flowering periods (starting in April or before,
- and finishing in June-July or later), with many species taken showing flowering peaks in April
- 273 and June (Fig. 3).
- 274 Few studies analysed the use of foraging habitat separately from that of breeding habitat.
- 275 Turtle doves were mentioned to feed invariably on the ground, with several studies
- 276 describing their principal habitat requirement for feeding as weed-rich areas with low open
- 277 vegetation cover, hayfields, field strips, tracks and also as an herbaceous understorey within
- forests or on land disturbed through tillage, burning or grazing (Mason & Macdonald 2000,
- 279 Browne & Aebischer 2003a, Bakaloudis *et al.* 2009, Dias *et al.* 2013, Gutiérrez-Galán *et al.*
- 280 2019, Moreno-Zarate *et al.* 2020, Vreugdenhil-Rowlands 2020). Birds tended to feed more
- often in natural environments during the first half of the breeding season and there was
- 282 generalised use of man-made structures (spilt grain, livestock feed, manure heaps,
- 283 maintained feeding sites and harvested stubbles) during the second half (Browne 2002,
- Browne & Aebischer 2003a, Gutiérrez-Galán & Alonso 2016, Dunn et al. 2018). The use of
- supplementary food (grain) provided during or at the end of the breeding season has thus
- been suggested as an emergency conservation measure for the species (Fisher *et al.* 2018)
- and is regularly used as part of hunting management
- 288 (https://www.fundacionartemisan.com/investigacion/ pirte). A study in Spain (Rocha &
- 289 Quillfeldt 2015) showed that sites where grain had been provided had a higher young/adult
- 290 ratio in the birds observed by mid-August, suggesting that local breeding success could have
- been enhanced. On the other hand, Dunn *et al.* (2021) did not find better breeding success
- or better nestling condition in areas where improved foraging habitats had been provided,
- and the physical condition was worse in nestlings fed with crop seeds rather than those fed
- with wild seeds (Dunn *et al.* 2015).

295 Most studies assumed that most foraging occurred within or near the breeding territories 296 and, therefore, authors often recommended conservation interventions intended to provide 297 seed-rich habitat in close proximity to suitable nesting habitat (Browne et al. 2004, Browne 298 & Aebischer 2005, Dunn & Morris 2012, Fisher et al. 2018, Moreno-Zarate et al. 2020). 299 While this could be true for a majority of Turtle dove territories, use of tracking technology 300 has revealed that feeding sites could be spatially disjunct from breeding sites by up to 10 km 301 (Calladine et al. 1997, Browne & Aebischer 2003a, Gutiérrez-Galán & Alonso 2016, Arroyo et 302 al. 2019, Vreugdenhil-Rowlands 2020). A recent study on farmland showed that home range size decreased with an increasing proportion of non-farmed habitat in the home range 303 304 (Dunn et al. 2021), indicating that food was likely more easily obtained in the semi-natural parts of the farmland area; however, the presence of seed-rich habitats led to larger home 305 ranges, suggesting that turtle doves expanded their home ranges to exploit those favoured 306 areas. In general, turtle doves were shown to use grassland for foraging more often than 307 expected from their availability, indicating that it was a preferred foraging habitat. 308

309

#### 310 DISCUSSION

#### 311 The European Turtle Dove as an ecotone species

- 312 Our review has shown that the turtle dove should not be considered to associate
- 313 predominantly to farmland, but rather to the ecotone between forest and farmland, as
- 314 stated by Murton (1968). Overall, large-scale (e.g., national) distribution seemed to be more
- linked to the availability (but not dominance) of forest, and abundance at the landscape
- scale was also higher in woodland than on farmland. However, abundance increased in
- 317 woodland when it was more structurally diverse and it was closer to farmland, and
- abundance on farmland increased with the presence of non-farmland features (e.g., forestpatches, shrubs or hedges), highlighting the preference for a mixture of habitats in this
- 320 species.
- 321 Our review also showed a large variation in nesting substrates and food types consumed by
- 322 turtle doves in line with the species' broad distribution over different habitats; this shows
- that the species can potentially adapt to a variety of habitats as far as they provide
- 324 necessary nesting and feeding resources.
- 325 We discuss these topics below.

326

## 327 Geographical variation in use of nesting substrates

328 The available studies on nest site selection differed in search methodology, and this may

329 influence the likelihood of finding nests in different substrates: nests situated on bushes or

330 on low broadleaved and evergreen trees are easier for humans to find and they may thus

331 occur disproportionately in studies based on cold searching; when this method was

complemented with radio-tagging the percentage of nests found on conifers and taller trees
was much higher (cfr. Browne & Aebischer 2004, Arroyo *et al.* 2019).

334 However, and despite the potential effect of search methodologies on differences among 335 studies, our review indicated marked geographical differences in the relative use of different substrates. Such differences may be explained by their relative availability. For 336 example, extensive tree crops (almonds, olives) are commoner in southern Europe than in 337 338 the north, and their proportion is even higher in North Africa; there, turtle dove nesting territories are mainly found in agricultural landscapes, mostly irrigated crops dominated by 339 340 orange and olive groves (Hanane & Baamal 2011, Hanane & Besnard 2014, Kafi et al. 2015, Hanane 2016). 341

Additionally, differences in the risk of nest predation could explain the observed differences 342 in nest substrates and characteristics of the nest: height, accessibility and exposure (Lormée 343 2015). The composition of predator communities varies spatially; while recorded predation 344 345 was almost entirely by corvids in Britain (Murton 1968, Browne & Aebischer 2004, Browne et al. 2005), on continental Europe ground-based predators such as snakes and mammals 346 also added to the guild, as did some birds of prey (Gaitzenauer 1990, Peiró 1990, Rocha & 347 Hidalgo 2002, Dias 2016, Sáenz de Buruaga et al. 2016, Arroyo et al. 2019). A strategy to 348 hide nests in closed environments, often protected by thorns, might be a good response to a 349 predominantly avian predation risk, since avian predators generally detect breeding birds 350 from above and based on visual cues (Engel et al. 2020). Nests are often protected by thorns 351 and lianas in northern Europe, and this might be a measure to reduce predation from birds 352 (Aubineau & Boutin 1998, Browne & Aebischer 2005, Lormée 2015). Ground-based 353 predators, on the other hand, may use other cues to locate their prey, and the turtle dove 354 strategy to reduce the probability of being detected and attacked by ground predators may 355 be to distance their nest from the tree trunk, as it has been observed in Mediterranean 356 357 environments (Dias 2016, Arroyo et al. 2019). Whether the choice of nest substrate is 358 related to a hypothetical protection from predators remains to be assessed, however, as 359 well as whether there is a connection between the type of nesting substrate and nest success. So far, there is no evidence that variation in nest failure might be driving population 360 361 trends (Browne 2002, Browne & Aebischer 2004). In contrast, productivity (the number of offspring produced per female and breeding season) in this species might be rather based 362 363 on the ability to quickly produce a replacement clutch after a failed attempt. The number of breeding attempts per season has been suggested to be dependent on body condition and 364 365 ultimately on food availability (Browne 2002). Improving access to abundant food may be more critical than changing conditions at the nesting sites for boosting turtle dove 366 367 populations, something that had been highlighted by the SAP (Fisher et al. 2018). 368

#### 370 Importance of seeds of early-flowering wild plants

- Across the range, turtle doves have been shown to consume a wide variety of plant species.
- 372 The observed geographical variation in the plant species consumed suggests that the actual
- 373 choice is probably dependant on what is locally and temporally variable, but overall our
- 374 review highlights the importance of the seeds of wild plants, and particularly of those that
- flower early and provide seeds at the appropriate time for breeding (Figs. 2 & 3, Table 4).
- 376 During the first weeks after arrival to the breeding grounds, foraging will depend most
- heavily on wild seeds in all habitats, including woodland and farmland (Murton et al. 1964,
- 378 Browne & Aebischer 2003a, Gutiérrez-Galán et al. 2019); crucially, during this time period,
- breeding pairs will have raised their first brood (Arroyo et al. 2019). The first generation of
- 380 chicks must thus be fed primarily on natural seeds, except in the few places where, e.g.,
- 381 birds have access to spilt grain from farmyards being moved from the storage barns
- 382 (Browne & Aebischer 2003a).
- In several parts of the distribution range, it has been shown that there is a shift from wild
- seeds to cultivated seeds as the season progresses (Murton et al. 1964, Browne & Aebischer
- 2004, Browne et al. 2004, Dunn et al. 2015, 2018, Gutiérrez-Galán & Alonso 2016, Gutiérrez-
- Galán et al. 2019; Table 4). There is also a marked historical trend as the main diet has
- 387 shifted from natural to cultivated seeds, particularly evident in places such as the UK, where
- 388 changes in agricultural practices have reduced or removed many of the feeding
- opportunities available in the 1960s and 1970s (Browne & Aebischer 2001, 2004, Browne
- 2002). Because crop seeds are more nutritious than wild seeds (Díaz 1990), they are
- 391 probably preferred when both food types are available; this happens from mid-June in
- 392 southern Europe and progressively northwards.
- 393 A study by Rocha & Quillfeldt (2015) showed that sites where grain had been provided had a 394 higher young/adult ratio among birds present in mid-August, leading to the interpretation 395 that local breeding success could have been enhanced. However, those results could also 396 indicate that juveniles forage more often where food is both abundant and predictable, 397 even if (relatively) far from the breeding site. In other words, such results demonstrate use 398 of anthropogenic food in late summer by juveniles and adults, in line with the home range 399 studies, but they do not necessarily prove better breeding success. Additionally, Dunn et al. 400 (2018) finding that the nestling condition of chicks fed with crop seeds was worse than 401 those fed with wild seeds further emphasizes the benefits of favouring wild plants rather
- than providing crop seeds as supplementary food. Therefore, interventions to improve foodavailability should favour the provision of wild seeds rather than the provision of crop seeds.
- 404

#### Is there a link between migration phenology and food availability in the early season?

- 406 Given the importance of wild annual seeds highlighted in our review, these results suggest
- 407 that migration phenology may be tuned to the availability of food on arrival from the
- 408 wintering quarters. The turtle dove is one of the very few long-distance migrants that are

- also obligate granivores; of the 99 species of long-distance migratory birds in the Afro-
- 410 Palaearctic system assessed by Moreau (1970), only two larks, three buntings, the Quail
- 411 Coturnix coturnix and the turtle dove are wholly or largely dependent upon seeds; the other
- 412 92 species live on insects, some with a local and temporary supplement of berries.
- 413 Compared to other Afro-Palaearctic bird species, the spring migration of the European
- 414 Turtle Dove takes place relatively late in the season, with the bulk of birds arriving to the
- European shores between the end of April and early May. Irby (1875) and Brú (1913)
- already noticed this comparatively late phenology in the 19<sup>th</sup> century; the same pattern was
- observed through the 20<sup>th</sup> century (Bernis & Castroviejo 1968, Nankinov 1994, Urcun *et al.*
- 418 1995, Tryjanowski *et al.* 2002) and still continues at present (Fink *et al.* 2020). This late
- 419 migration phenology may be an evolutionary adaptation to arrive to the breeding grounds
- 420 when sufficient food is available, and not before.
- 421

## 422 Recommendations for habitat management to favour Turtle doves

423 As a globally-threatened species (BirdLife International 2019), the Turtle dove has justifiably

- 424 received much attention from the conservation and scientific communities, who have
- 425 proposed a number of practical habitat management measures aimed at reducing or
- 426 reversing its ongoing population decline (Browne *et al.* 2004, Browne & Aebischer 2005,
- 427 Bakaloudis et al. 2009, Dunn et al. 2015, Marx & Quillfeldt 2018). The internationally agreed
- 428 Species Action Plan (Fisher *et al.* 2018) provides a list of recommendations for management
- 429 with the objective to halt the species decline in the decade 2018-2028, and should be
- 430 implemented as a matter of priority.
- 431 This review complements the Species Action Plan with a more specific analysis of habitat
- 432 associations in the species. In particular, evidence of the association of breeding numbers
- 433 with type of habitat, or with certain habitat features, allows making suggestions for
- 434 potential habitat interventions to boost turtle dove densities. Such improvements could play
- 435 an essential role in consolidating population growth when they are linked with measures to
- 436 increase survival (for example, through hunting regulations). Our review indicates that the
- 437 most efficient habitat management interventions would depend on the dominant landscape
- 438 (farmland or woodland), but that overall those interventions should seek to increase the
- 439 mixing of farmland and woodland, i.e., to augment the ecotone between them. In other
- 440 words, management actions to favour turtle doves should aim to retain or recover elements
- of heterogeneity in the landscape, combining and integrating patches of farmland, grasslandand forest in a mosaic pattern where possible. This means, in woodland, opening the canopy
- 443 through thinning (if dense), creating forest clearings and preventing their subsequent
- 444 encroachment; and on farmland, retaining or creating patches of shrub or areas with trees.
- In all cases, it is important to ensure the provision of areas with high food availability, which
- is accessible for turtle doves, i.e. herbaceous grasslands with low vegetation height. Given
- the turtle dove's specialised diet on seeds, and the importance of annuals in their diet (Fig.

448 4, Table 4), habitat management interventions aimed at increasing food availability at the 449 beginning of the breeding period may allow earlier breeding and thus increased number of 450 breeding attempts over the breeding period, something that forms the basis of conservation 451 actions for the species in the UK (Browne & Aebischer 2004, Dunn & Morris 2012, Dunn et 452 al. 2015, 2021). In southern latitudes, food availability in the early season may be less 453 limiting. It is generally assumed that farmland intensification there is less acute, and ruderal 454 plants are still widespread; at the same time, climate allows for early flowering (Fig. 3) in 455 southern Europe. However, it would be critical to make sure that this is still the case, and to favour the proliferation of early-flowering wild plants, e.g., by maintaining grassy margins 456 457 between farmland plots, keeping weedy tracks on farmland and woodland, as well as maintaining forest clearings through herbivory so they do not become encroached. Some of 458 459 the studies in our review specifically suggest that maintaining extensive herbivory would be beneficial for this aim (particularly in forest), and this could be achieved either with wild 460 ungulates or extensive livestock farming (Gutiérrez-Galán & Alonso 2016, Gutiérrez-Galán et 461 al. 2019). 462 In summary, priority recommended actions in tree-dominated areas include: 463 clear forest undergrowth to provide an open forest structure with only an 464 • 465 herbaceous understorey; this can be part of fire prevention management maintain or introduce grazing in forest areas, by livestock or wild ungulates, at low 466 467 densities and allowing for the proliferation of certain wildflowers (such as Echium plantagineum and Amaranthus deflexus) known to be part of the Turtle dove's diet 468 On the other hand, priority recommended actions on farmland-dominated areas include: 469 maintain or promote elements of non-farmland habitats (natural grasslands, patches 470 • of forest, shrub) 471 promote complex cultivation landscapes including grassy field margins and open 472 • 473 areas (e.g., fallow land being ploughed in late winter) wherever possible after harvesting of cereal crops, retain stubble at least until October so that turtle 474 doves have opportunities to feed on grain leftovers and ruderal plants growing in 475 stubble (e.g., Chenopodium album); where grain storage occurs, allow birds to access 476 spilt grain. 477 On both farmland and woodland landscapes, it would probably be useful to retain or open 478 unpaved tracks with medium levels of disturbance (e.g., through public use) that allow for 479 the proliferation of ruderal plants and other annuals in their margins, especially early-480

481 flowering ones, and to allow those plants to complete their full reproductive cycle and to

offer seeds. Additionally, it would be necessary to ensure that enough suitable breeding

483 habitat is available for Turtle doves, adapted to the local choice of nest site characteristics.

#### 485 Conclusions

- 486 The Turtle dove is one of many migratory landbirds that are in decline in the Afro-
- 487 Palaearctic system, many of which also have vast distribution ranges and therefore occupy
- also an ample selection of habitats. Our review highlights that for widespread species,
- 489 knowledge on habitat associations obtained at a small part of their vast range may not be
- 490 representative of what happens elsewhere and should not be generalised. When designing
- 491 habitat interventions to promote the conservation of the species, it may therefore be
- 492 necessary to have evidence of habitat relationships from a large part of the range. In the
- case of the turtle dove, most of the evidence analysed in this review comes from studies in
- the United Kingdom, France, Spain and Portugal and it focuses on the population that
- migrates along the western flyway (Marx *et al.* 2016, Fisher *et al.* 2018, Lormée *et al.* 2020).
- 496 In contrast, a comparatively reduced number of studies are available for the central-eastern
- flyway population, which highlights the need for more evidence from that part of the range.
- Finally, our review highlights that for the many declining species that favour the ecotonebetween woodland and farmland in the Afro-Palaearctic system, forestry and agricultural
- 500 policies need to be combined to provide the right conditions. The case of the turtle dove
- 501 provides compelling evidence that too much of any one thing (farmland or woodland) is
- 502 detrimental to the abundance of the species, as is too little. Management interventions are
- needed in both tree-dominated and farmland-dominated landscapes, to provide for the
   combination of open forest interspersed with low grazing areas and complex cultivation
- 505 systems with small parcels of mixed crop types, including woody permanent crops, where
- 506 turtle dove populations have been shown to fare better. This may make it more complicated
- as more actors need to be involved. Also, it may make it more difficult to use certain
- resources (e.g. CAP funds) to provide exactly the right combination of measures needed in
- all places, as they may not necessarily be applicable in woodland. This realisation highlights
- 510 the need to look for joint initiatives between forestry, farming and conservation to
- 511 guarantee the continuation of sustainable practices and the preservation of biodiversity-rich
- areas in the human-dominated landscapes found across most of Europe.
- 513

#### 515 **REFERENCES**

516 Arroyo, B., Moreno-Zarate, L., Fernández Tizón, M., Sardà-Palomera, F. & Bota, G. 2019. 517 Parámetros poblacionales críticos para la tórtola europea: aplicaciones para su gestión. 518 Informe para la Fundación Biodiversidad, 32 p. 519 Aubineau, J. & Boutin, J.-M. 1998. L'impact des modalités de gestion du maillage bocager sur les 520 colombidés (columbidae) nicheurs dans l'ouest de la France. Gibier Faune Sauvage 15: 55-521 63. Bakaloudis, D.E., Vlachos, C.G., Chatzinikos, E., Bontzorlos, V. & Papakosta, M. 2009. Breeding 522 523 habitat preferences of the turtledove (Streptopelia turtur) in the Dadia-Soufli National Park and its implications for management. Eur. J. Wildl. Res. 55: 597. 524 525 Baptista, L.P., Trail, P.W., Horblit, H.M., Boesman, P.D.F., Sharpe, C.J., Kirwan, G.M. & Garcia, 526 E.F.G. 2020. European Turtle-Dove (Streptopelia turtur), version 1.0. In: Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. 527 528 Bermúdez, A.O. 2020. Ecología y selección de hábitat de la tórtola común (Streptopelia turtur 529 Linnaeus, 1758) y tórtola turca (Streptopelia decaocto Frivaldszky, 1838) en el Este de España. Tesis de doctorado. Universidad de Valencia. 530 531 Bernis, F. & Castroviejo, J. 1968. Aves de las islas Columbretes en primavera. Ardeola 12: 143–163. 532 Bijlsma, R.G. 1985. De broedbiologie van de Tortelduif Streptopelia turtur. Het Vogeljaar 33: 225-533 232. BirdLife International. 2015. Streptopelia turtur. European Red List of Birds. Office for Official 534 535 Publications of the European Communities Luxembourg. 536 BirdLife International. 2019. Streptopelia turtur. The IUCN Red List of Threatened Species 2019: 537 e.T22690419A154373407. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22690419A154373407.en. Downloaded on 11 March 2021. 538 BirdLife International. 2021. Species factsheet: Streptopelia turtur. BirdLife International (2021) 539 540 Species factsheet: Streptopelia turtur. Downloaded from http://www.birdlife.org on 541 11/03/2021. Boutin, J.M. & Lutz, M. 2007. Management plan for turtle dove (Streptopelia turtur) 2007–2009. 542 543 Eur. Comm. Luxemb. 544 Browne, S.J. 2002. The breeding ecology of a declining farmland bird: the turtle dove Streptopelia 545 *turtur*. PhD thesis, De Montfort University. 546 Browne, S.J. & Aebischer, N.J. 2003a. Habitat use, foraging ecology and diet of Turtle Doves 547 *Streptopelia turtur* in Britain. *Ibis* **145**: 572–582.

- Browne, S.J. & Aebischer, N.J. 2003b. Temporal changes in the migration phenology of turtle doves
   Streptopelia turtur in Britain, based on sightings from coastal bird observatories. J. Avian
   Biol. 34: 65–71.
- 551 **Browne, S.J. & Aebischer, N.J.** 2004. Temporal changes in the breeding ecology of European Turtle 552 Doves *Streptopelia turtur* in Britain, and implications for conservation. *Ibis* **146**: 125–137.
- Browne, S.J. & Aebischer, N.J. 2005. Studies of West Palearctic birds: turtle dove. *Br. Birds* 98: 58–
  72.
- Browne, S.J., Aebischer, N.J. & Crick, H.Q.P. 2005. Breeding ecology of Turtle Doves *Streptopelia turtur* in Britain during the period 1941-2000: An analysis of BTO nest record cards. *Bird Study* 52: 1–9.
- Browne, S.J., Aebischer, N.J., Yfantis, G. & Marchant, J.H. 2004. Habitat availability and use by
   Turtle Doves *Streptopelia turtur* between 1965 and 1995: an analysis of Common Birds
   Census data. *Bird Study* 51: 1–11.
- 561 Brú, F. 1913. Notas de caza. José Guix Ed., Valencia.
- 562 Calladine, J.R., Buner, F. & Aebischer, N.J. 1997. The summer ecology and habitat use of the Turtle
   563 Dove: A pilot study. English Nature.
- 564 Camprodon, J. & Brotons, L. 2006. Effects of undergrowth clearing on the bird communities of the
   565 Northwestern Mediterranean Coppice Holm oak forests. *For. Ecol. Manag.* 221: 72–82.
- 566 Dias, S. & Fontoura, A.P. 1996. The summer diet of the turtle-dove (*Streptopelia turtur*) in Southern
   567 Portugal. *Rev. Florest. Port.* 9: 227-241.
- Dias, S., Moreira, F., Beja, P., Carvalho, M., Gordinho, L., Reino, L., Oliveira, V. & Rego, F. 2013.
   Landscape effects on large scale abundance patterns of turtle doves *Streptopelia turtur* in
   Portugal. *Eur. J. Wildl. Res.* 59: 531–541.
- 571 Dias, S.M. de A. 2016. Critérios para a gestão sustentável das populações de rola-brava [*Streptopelia turtur* (L.)] em Portugal. Padrões de abundância, reprodução e pressão cinegética. Tese
   573 doctoral, Universidad de Lisboa.
- 574 **Dunn, J.C. & Morris, A.J.** 2012. Which features of UK farmland are important in retaining territories 575 of the rapidly declining Turtle Dove *Streptopelia turtur*? *Bird Study* **59**: 394–402.
- Dunn, J.C., Morris, A.J., Grice, P.V. & Peach, W.J. 2021. Effects of seed-rich habitat provision on
   territory density, home range and breeding performance of European Turtle Doves
   Streptopelia turtur. Bird Conserv. Int. 1–20.
- 579 Dunn, J.C., Morris, A.J., Grice, P. V & Dunn, J.C. 2015. Testing bespoke management of foraging
   580 habitat for European Turtle Doves *Streptopelia turtur. J. Nat. Cons.* 25: 23-34.

- Dunn, J.C., Stockdale, J.E., Moorhouse-Gann, R.J., McCubbin, A., Hipperson, H., Morris, A.J., Grice,
   P. V & Symondson, W.O.C. 2018. The decline of the Turtle Dove: Dietary associations with
   body condition and competition with other columbids analysed using high-throughput
   sequencing. *Mol. Ecol.* 27: 3386–3407.
- Engel, N., Végvári, Z., Rice, R., Kubelka, V. & Székely, T. 2020. Incubating parents serve as visual
   cues to predators in Kentish plover (*Charadrius alexandrinus*). *PLoS ONE* 15: e0236489.
   https://doi.org/10.1371/journal.pone.0236489
- Fink, D., Auer, T., Johnston, A., Strimas-Mackey, M., Robinson, O., Ligocki, S., Hochachka, W.,
   Wood, C., Davies, I., Iliff, M. & Seitz, L. 2020. European Turtle Dove eBird Status and
   Trends.
- Fisher, I., Ashpole, J., Scallan, D., Proud, T. & Carboneras, C. 2018. International Single Species
   Action Plan for the conservation of the European Turtle-dove *Streptopelia turtur* (2018 to
   2028). *Luxemb. Eur. Comm.*
- Fuller, R.J., Hinsley, S.A. & Swetnam, R.D. 2004. The relevance of non-farmland habitats, uncropped
   areas and habitat diversity to the conservation of farmland birds. *Ibis* 146: 22–31.
- Fuller, R.J. & Moreton, B.D. 1987. Breeding Bird Populations of Kentish Sweet Chestnut (*Castanea sativa*) Coppice in Relation to Age and Structure of the Coppice. J. Appl. Ecol. 24: 13.
- 598 Gaitzenauer, K. 1990. Die Bedeutung des Brutbiotopes der Turteltaube (*Streptopelia turtur*) im
   599 Seewinkel im Hinblick auf den Artenschutz. *BFB-Ber.* 74: 117–127.
- Gargallo, G., Lozano, C.B., i Àlvaro, J.C., Clarabuch, O., Escandell, R., Iborra, G.M.L., Idrissi, H.R.,
   Robson, D. & Suárez, M. 2011. Spring migration in the western Mediterranean and NW
   Africa: the results of 16 years of the *Piccole Isole* project. *Monogr. Mus. Ciènc. Nat.* 6: 1–364.
- 603 Genard, M. 1989. Contribution à la connaissance de la tourterelle des bois (*Streptopelia turtur*) en
   604 Gironde (France): migration et nidification. *Nos Oiseaux* 40: 11–24.
- 605 Gutiérrez, J.E. 2001. Les populations de tourterelles des bois en Andalousie. *Faune Sauvage* 253: 36–
  606 43.
- 607 Gutiérrez-Galán, A. 2016. Aspectos aplicados de la ecología de la tórtola común (*Streptopelia turtur* 608 L.) en un ambiente forestal mediterráneo. Tesis doctoral, Universidad Politécnica de Madrid.
- 609 Gutiérrez-Galán, A. & Alonso, C. 2016. European Turtle Dove *Streptopelia turtur* diet composition in
   610 Southern Spain: the role of wild seeds in Mediterranean forest areas. *Bird Study* 63: 490–
   611 499.
- Gutiérrez-Galán, A., López Sánchez, A. & Alonso González, C. 2019. Foraging habitat requirements
   of European Turtle Dove *Streptopelia turtur* in a Mediterranean forest landscape. *Acta* Ornithol. 53: 143–154.

- Hanane, S. 2016. Effects of location, orchard type, laying period and nest position on the
  reproductive performance of Turtle Doves (*Streptopelia turtur*) on intensively cultivated
  farmland. *Avian Res.* 7: 4.
- Hanane, S. & Baamal, L. 2011. Are Moroccan fruit orchards suitable breeding habitats for Turtle
   Doves *Streptopelia turtur*? *Bird Study* 58: 57–67.
- Hanane, S. & Besnard, A. 2014. Are nest-detection probability methods relevant for estimating
   turtle dove breeding populations? A case study in Moroccan agroecosystems. *Eur. J. Wildl. Res.* 60: 673–680.
- 623 Irby, L.H.L. 1875. *The Ornithology of the Straits of Gibraltar*. R.H. Porter, London.
- Kafi, F., Hanane, S., Bensouilah, T., Zeraoula, A., Brahmia, H. & Houhamdi, M. 2015. Les facteurs
   déterminants le succès de reproduction de la Tourterelle des bois (*Streptopelia turtur*) dans
   un milieu agricole Nord-Africain. *Rev. Ecol. (Terre et Vie)* 70: 271-279.
- Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P., Martí, D., Anton, M.,
   Klvaňová, A., Kalyakin, M. V, Bauer, H.-G. & Foppen, R.P.B. 2020. European Breeding Bird
   Atlas 2: Distribution, Abundance and Change. European Bird Census Council & Lynx Edicions,
   Barcelona.
- Klee, I. De. 2019. The Vegetation of the Pig Rootled Areas at Knepp Wildland and their use by
   Farmland Birds. MSc thesis, Imperial College London.
- Kotov, A.A. 1974. The ecology of the Turtle Dove in the southern Urals. *Bull. Mosc. Soc. Nat. Biol. Ser.* 79: 36–43.
- Kraus, M., Krauss, W. & Mattern, U. 1972. Zur verbreitung der Turteltaube (Streptopelia turtur) in
   Nordbayern. Anz Ornithol Ges Bayern 11: 263–268.
- 637 Lormée, H. 2015. Importance de l'habitat bocager pour une espèce à enjeu. *Faune Sauvage* 308: 22638 24.
- Lormée, H., Barbraud, C., Peach, W., Carboneras, C., Lebreton, J.D., Moreno-Zarate, L., Bacon, L. &
   Eraud, C. 2020. Assessing the sustainability of harvest of the European Turtle-dove along the
   European western flyway. *Bird Conserv. Int.* 30: 506-521. doi:10.1017/S0959270919000479
- Marx, M. 2018. Population connectivity of European Turtle Doves (*Streptopelia turtur*) Threats
   affecting European populations and modelling of species-habitat relationships at German
   breeding grounds. PhD thesis, Justus-Liebig-Universität Gießen, Gießen.
- Marx, M., Korner-Nievergelt, F. & Quillfeldt, P. 2016. Analysis of ring recoveries of European Turtle
   doves *Streptopelia turtur*—Flyways, migration timing and origin areas of hunted birds. *Acta Ornithol.* 51: 55–70.
- Marx, M. & Quillfeldt, P. 2018. Species distribution models of European Turtle Doves in Germany
   are more reliable with presence only rather than presence absence data. *Sci. Rep.* 8: 1–13.

- Mason, C.F. & Macdonald, S.M. 2000. Influence of landscape and land-use on the distribution of
   breeding birds in farmland in eastern England. J. Zool. 251: 339–348.
- Menzel, A., Sparks, T.H., Estrella, N. & Eckhardt, S. 2005. 'SSW to NNE' North Atlantic Oscillation
   affects the progress of seasons across Europe. *Glob. Change Biol.* 11: 909–918.
- Moreau, R.E. 1970. Changes in Africa as a Wintering Area for Palaearctic Birds. *Bird Study* 17: 95–
   103.
- Moreno Zárate, L. 2021. The status and hunting of European Turtle-dove (*Streptopelia turtur*) in
   Spain. PhD thesis, Universidad de Castilla-La Mancha, Ciudad Real.
- Moreno-Zarate, L., Estrada, A., Peach, W. & Arroyo, B. 2020. Spatial heterogeneity in population
   change of the globally threatened European turtle dove in Spain: The role of environmental
   favourability and land use. *Divers Distrib.* 26: 818–831. https://doi.org/10.1111/ddi.13067.
- 661 **Murton, R.K.** 1968. Breeding, migration and survival of Turtle Doves. *Br Birds* **61**: 193–212.
- Murton, R.K., Westwood, N.J. & Isaacson, A.J. 1964. The feeding habits of the Woodpigeon
   *Columba palumbus*, Stock Dove *C. oenas* and Turtle Dove *Streptopelia turtur*. *Ibis* 106: 174–
   188.
- Nankinov, D. 1994. The breeding biology of the turtle dove (*Streptopelia turtur*) in Bulgary. *Gibier Faune Sauvage* 11: 155–165.
- 667 Newton, I. 1995. Relationship between breeding and wintering ranges in Palaearctic-African
   668 migrants. *Ibis* 137: 241–249.
- 669 Norris, C.A. 1960. The breeding distribution of thirty bird species in 1952. *Bird Study* **7**: 129–184.
- 670 **PECBMS**. 2020. Pan-European Common Bird Monitoring Scheme. https://pecbms.info.
- 671 Peiró, V. 1990. Aspectos de la reproducción de la tórtola común (Streptopelia turtur, L.) en Madrid.
   672 *Mediterránea Ser. Estud. Biológicos N 12 Mayo 1990 Pp 89-95.*
- 673 Rocha, G. 1999. Análisis de los Factores que Afectan al Estatus de la Tórtola Común (*Streptopelia turtur*) en Extremadura. Tesis doctoral, Universidad de Extremadura, Cáceres.
- 675 Rocha, G. & Hidalgo, S. 2002. La tórtola común Streptopelia turtur. Análisis de los factores que
   676 afectan a su status. Universidad de Extremadura, Servicio de Publicaciones.
- 677 Rocha, G. & Quillfeldt, P. 2015. Effect of supplementary food on age ratios of European turtle doves
   678 (Streptopelia turtur L.). *Anim. Biodivers. Conserv.* 38: 11–21.
- Sáenz de Buruaga, M., Canales, F. & Robles, J.L. 2016. Estudio sobre la reproducción de la tórtola en
   España | Trofeo caza. Downloaded from https://www.trofeocaza.com/caza menor/reportajes-caza-menor/caza-menor-nacional/estudio-sobre-la-reproduccion-de-la tortola-en-espana/ on 11 March 2021.

- Sáenz de Buruaga, M., Onrubia, A., Fernández-García, J.M., Campos, M.Á., Canales, F. & Unamuno,
   J.M. 2012. Breeding habitat use and conservation status of the turtle dove *Streptopelia turtur* in Northern Spain. *Ardeola* 59: 291–300.
- Tree, I. 2018. Creating a mess The Knepp Rewilding Project. *Bull. Chart. Inst. Ecol. Environ. Manag.* 100: 29–34.
- Tryjanowski, P., Kuźniak, S. & Sparks, T. 2002. Earlier arrival of some farmland migrants in western
   Poland. *Ibis* 144: 62–68.
- 690 Urcun, J.-P., Gougeon, ludovic, Lebost, E. & Le Bris, Y. 1995. Etude de la migration prénuptiale à la
   691 Pointe de Grave (Gironde): printemps 1994. Ligue pour la protection des oiseaux, 72 pp.
- 692 Vreugdenhil-Rowlands, J. 2020. Turtle Doves in a Changing Landscape. Gaining Insight into the Daily
   693 Movements of Turtle Doves in relation to the landscape. Mid-Project Report: Field Season
   694 2019, 68 pp.
- 695

697 FIGURE LEGENDS.

698

Figure 1. Relative proportion of different nest substrates used by Turtle doves for nesting in
different study sites in Europe. Locations are ranked by latitude along the x axis, from
northernmost (left) to southernmost (right).

702

Figure 2. Proportion of plant species mentioned as food taken by turtle doves (Table 4) in relation to whether they are annual, biannual or perennial (A) or in relation to their type (B). In the latter, categories follow the classification developed by Dunn et al. (2018): "brassica" (any form of Brassicaceae plant family, either provisioned, cultivated or wild); "cultivated" (crop plants and seed mixes sown to provide seed for game or wild birds); "fed" (seed from anthropogenic source, such as bird tables); "wild" (any wild plant species).

709

710 Figure 3. Flowering phenology of plant species mentioned as turtle dove food in the Iberian

711 Peninsula, Lines indicate the number of species that are described to have a peak flowering

season in that month. Based on the information available on the project Flora-On website

713 from the Portuguese Botanical Society, https://flora-on.pt.





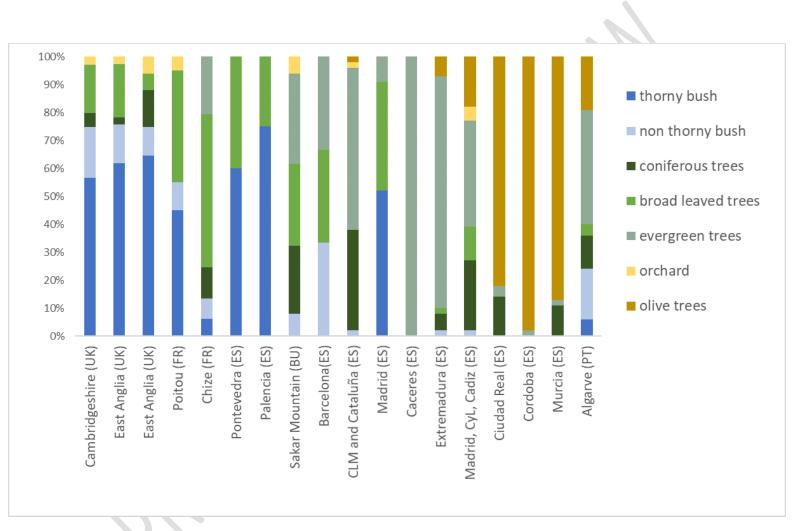



Figure 1. Relative proportion of different nest substrates used by Turtle doves for nesting in different study sites in Europe. Locations are
 ranked by latitude along the x axis, from northernmost (left) to southernmost (right).

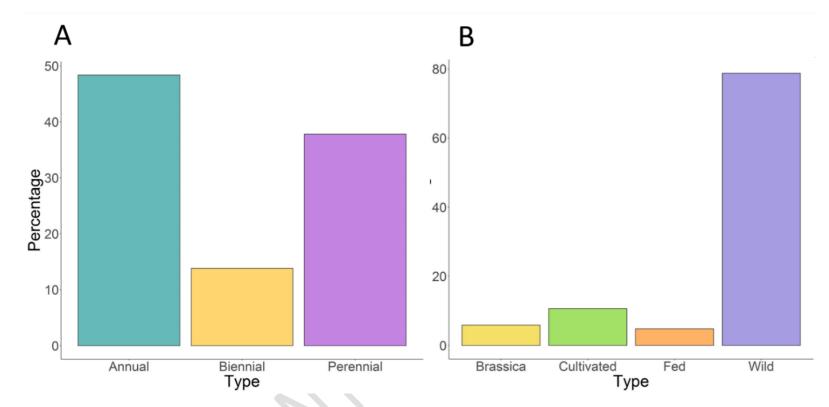



Figure 2. Proportion of plant species mentioned as food taken by turtle doves (Table 4) in relation to whether they are annual, biannual or perennial (A) or in relation to their type (B). In the latter, categories follow the classification developed by Dunn et al. (2018): "brassica" (any form of Brassicaceae plant family, either provisioned, cultivated or wild); "cultivated" (crop plants and seed mixes sown to provide seed for

game or wild birds); "fed" (seed from anthropogenic source, such as bird tables); "wild" (any wild plant species).

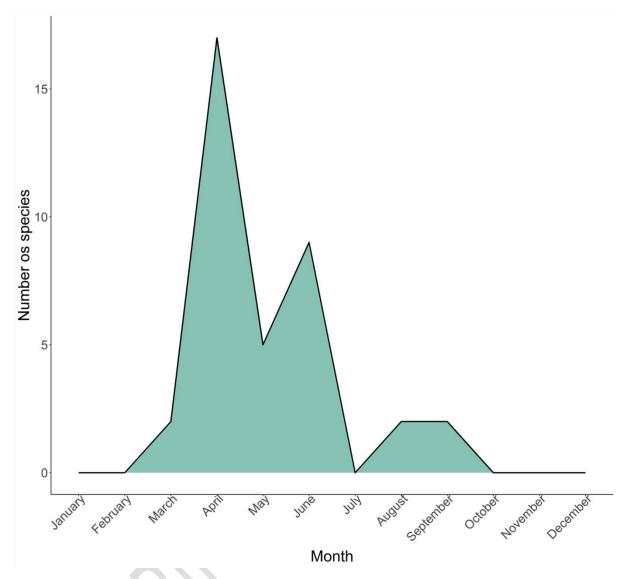



Figure 3. Flowering phenology of plant species mentioned as turtle dove food in the Iberian
Peninsula, Lines indicate the number of species that are described to have a peak flowering
season in that month. Based on the information available on the project Flora-On website
from the Portuguese Botanical Society, https://flora-on.pt.

**Table 1a.** Summary of main findings of the 32 studies reviewed that assessed the relationship between European Turtle Dove abundance (in the broad
 sense, including density, variation in numbers, etc.) and occurrence with habitat.

| Area                                             | Country | Study period          | Variable analysed                                                                                                                                                                     | Main Effect                                                                                                                                                                                                                                                               | Туре                           | Reference                   |
|--------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|
| United Kingdom                                   | UK      | 1960-1962<br>and 1966 | nest abundance                                                                                                                                                                        | Preferred habitat: ecotone where deciduous woodland gives way to open grassland. Fewer nests in conifer woodland and bushy heaths than expected from availability.                                                                                                        | peer-reviewed<br>paper         | Murton 1968                 |
| United Kingdom                                   | UK      | <1990´s               | review of previous<br>literature                                                                                                                                                      | Densities of TD on farmland ca. half than in woodland during 1968-72.<br>Within woodland habitats, TD favour scrub rather than pure woodland stands.                                                                                                                      | peer-reviewed<br>paper         | Browne & Aebischer<br>2005  |
| United Kingdom                                   | UK      | 1965-1995             | Suitable woodland areas support densities up to 6.5 times higher than on farmland. On farmland, density positively related to the amount of hedgerow and woodland edge per unit area. |                                                                                                                                                                                                                                                                           | peer-reviewed<br>paper         | Browne <i>et al</i> . 2004  |
| Kent                                             | UK      | 1975-1984             | After coppicing, TD numbers in a Castanea silva forest peaked at 14 years,                                                                                                            |                                                                                                                                                                                                                                                                           | peer-reviewed<br>paper         | Fuller & Moreton 1987       |
| United Kingdom                                   | UK      | 1988-1991             | relative abundance                                                                                                                                                                    | Higher abundance in 10km squares with higher proportion of farmland (>70%)                                                                                                                                                                                                | peer-reviewed<br>paper         | Fuller <i>et al</i> . 2004  |
| United Kingdom                                   | UK      | 1990-1992             | occurrence<br>probability                                                                                                                                                             | TD use of woodland positively influenced by habitat diversity (associations with shrubby vegetation) and negatively influenced by density of canopy                                                                                                                       | peer-reviewed<br>paper         | Hinsley <i>et al</i> . 1995 |
| NE Essex                                         | UK      | 1994-1996             | territory density                                                                                                                                                                     | Strong preferences for residential areas, scrub and woodland. Hedgerows used less often than expected.                                                                                                                                                                    | peer-reviewed<br>paper         | Mason & Macdonald<br>2000   |
| East Anglia                                      | UK      | 1996                  | nest density                                                                                                                                                                          | Nest density in a study area dominated by woodland higher than in another dominated by farmland                                                                                                                                                                           | peer-reviewed<br>paper         | Calladine et al. 1997       |
| SE England                                       | υк      | 2008-2010             | retained/lost<br>territories and<br>local abundance                                                                                                                                   | TD more likely to be retained in sites with larger areas of established scrub<br>and greater volumes of hedgerows, less likely in areas with grazed land.<br>Abundance positively related to established area of scrub, volume of<br>hedgerows and area of standing water | peer-reviewed<br>paper         | Dunn & Morris 2012          |
| Essex, Suffolk,<br>Cambridgeshire<br>and Norfolk | UK      | 2011-2014             | Territory density                                                                                                                                                                     | Abundance of territorial TD declined more slowly on sites with accessible seed-rich intervention plots. Importance of non-farmed habitats (lightly grazed and semi-natural grassland, amenity land, fallows) for breeding TDs                                             | peer-reviewed<br>paper         | Dunn et al. 2021            |
| Knepp, W Sussex                                  | UK      | 2012-2018             | territory density                                                                                                                                                                     | Number of territories increased from 0 to 16 following rewilding of former<br>intensive farmland by allowing vegetation to grow freely and introducing<br>herbivores and pigs; rootling effect of pigs shown to favour ruderal plants<br>but effect on TD unproven        | popular science;<br>MSc thesis | Tree 2018; de Klee 2019     |

| Zuidwest-Veluwe              | NL | 1977-1981                      | territory density       | Highest densities found in conifer and mixed woodland and residential areas; intermediate densities in city gardens and low-scale farmland; lowest densities in floodplains, heaths and large-scale farmland | peer-reviewed<br>paper | Biljsma 1985                    |
|------------------------------|----|--------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|
| Seewinkel                    | AT | 1987-1989                      | nest density            | In a context of farmland, nest density higher in thick shrub, dense or open forests with understorey, riparian forest and windbreaks than in open younger forests or forests without understorey.            | peer-reviewed<br>paper | Gaitzenauer 1990                |
| Central-southern<br>Bulgaria | BG | 2016-2019                      | abundance               | Higher density in riparian and oak forests, lower densities on farmland.<br>Coniferous plantations and strips of trees on farmland used less often than<br>expected from availability.                       | peer-reviewed<br>paper | Gruychev 2020                   |
| Germany                      | DE | 1998-1999<br>and 2013-<br>2016 | used/unused sites       | Presence retained in areas with dense deciduous forest and middle age                                                                                                                                        |                        | Kleemann & Quillfeldt<br>2014   |
| Spain                        | ES | 1989                           | nest density            | nest density Highest nest densities on two farmland areas including abundant almond or olive groves, and one farmland area with abundant shrub                                                               |                        | Fernandez & Camacho<br>1989     |
| Extremadura                  | ES | 1996-1997                      | nest density            | Nest density in wooded pastureland (dehesas) higher than in other<br>habitats. Within dehesas, nest density increased with higher percentage of<br>cultivated cereal, and where no herbicides applied.       | book                   | Rocha & Hidalgo 2002            |
| Andalucía                    | ES | 1997-1998                      | abundance               | Highest densities found in poplar plantations, followed by Mediterranean forest, olive groves and pine forest. Marginal farmland, upland heaths and Eucaliptus plantations had lowest densities.             | popular science        | Gutiérrez 2001                  |
| Catalonia                    | ES | 1999-2002                      | abundance               | Wildfire prevention works in Holm oak forest led to colonisation by TD when undergrowth cleared, and forest thinned out.                                                                                     | peer-reviewed<br>paper | Camprodon & Brotons<br>2006     |
| Alicante                     | ES | 2001-2004                      | Presence/<br>abundance  | TD presence favoured by shrub-pine mixed habitats in semi-arid, tree crops<br>and pine forests, and extension of unpaved roads. Abundance only<br>predicted by number of water bodies nearby.                | PhD thesis             | Bermúdez 2020                   |
| Basque Country               | ES | 2006                           | abundance               | Density higher in riparian forests and in woodland than on farmland, but abundance in forest tended to decrease when tree cover >40%.                                                                        | peer-reviewed<br>paper | Sáenz de Buruaga et al.<br>2012 |
| Catalonia                    | ES | 2002-2011                      | abundance trends        | TD abundance trends negatively related to farmland abandonment (shrub encroachment within farmland) but positively to % forest                                                                               | peer-reviewed<br>paper | Herrando et al. 2014            |
| Catalonia                    | ES | 2002-2013                      | abundance               | TD abundance positively associated to % of forest.                                                                                                                                                           | peer-reviewed<br>paper | Herrando et al. 2016            |
| Jaén                         | ES | 2014-2015                      | abundance               | Local abundance in agroforest area higher in points closer to crops and with higher availability of wild seed cover.                                                                                         | peer-reviewed<br>paper | Gutiérrez-Galán et al.<br>2018  |
| Spain                        | ES | 1996-2016                      | abundance and<br>trends |                                                                                                                                                                                                              |                        | Carricondo 2016                 |

| Spain                     | ES | 1996-2017                   | abundance trends           | More negative trends in areas dominated by forest, 'dehesas', transitional woodland or sclerophyllous vegetation. Trends stable in areas dominated by olive orchards and positive in areas dominated by complex cultivation.                                               | peer-reviewed<br>paper    | Moreno-Zarate et al.<br>2020 |
|---------------------------|----|-----------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|
| Vendée and<br>Deux Sèvres | FR | 1995-1997                   | territory density          | Density of singing males correlated with length of hedges                                                                                                                                                                                                                  | conference<br>proceedings | Aubineau & Boutin 1998       |
| Hungary                   | HU | 1999-2002                   | abundance and<br>occupancy | Higher density in forest habitats, but habitat occupancy higher in mixed habitats (farmland and forest)                                                                                                                                                                    | peer-reviewed<br>paper    | Szep et al. 2012             |
| NE Greece                 | GR | 2001-2002                   | used/unused sites          | Used sites had higher canopy cover and higher density of medium size pine trees. Unused sites had higher density of mature pine trees.                                                                                                                                     | peer-reviewed<br>paper    | Bakaloudis et al. 2009       |
| Po Plain                  | IT | 2015                        | occurrence                 | Occurrence probability higher in areas with high tree cover (semi-natural forests, poplar plantations) and areas with many shrubs and hedgerows. Areas with high proportion of crops were avoided                                                                          | peer-reviewed<br>paper    | Chiatante et al. 2020        |
| Portugal                  | РТ | 2002-2003                   | frequency of occurrence    | Abundance positively related to broadleaved forests and pine stands<br>without woody understorey. Also positive effect of the density of woody<br>linear habitats and permanent crops (including olives/orchards)                                                          | peer-reviewed<br>paper    | Dias et al. 2013             |
| Portugal                  | РТ | 2003-2004 territory density |                            | In woodland areas, highest densities in pine forests or mixed stands,<br>avoiding broadleaved stands, agroforestry areas or eucalyptus forests. In<br>areas dominated by mosaic landscapes, highest densities in orchards and<br>vineyards, riparian galleries and shrubs. | PhD thesis                | Dias 2016                    |

K

- 734 **Table 1b.** Summary of main findings of the 32 studies reviewed that assessed the relationship
- between European Turtle Dove abundance (in the broad sense, including density, variation in
- numbers, etc.) and occurrence with habitat. Results of direct comparison between habitats, and
- 737 favourable elements in each major habitat type.

| Reference                       | Country | Preferred habitat                 | Favourable elements<br>(woodland)                                                | Favourable elements<br>(farmland)                                         |
|---------------------------------|---------|-----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Murton 1968                     | UK      | Forest-Farmland ecotone           | Broadleaved > coniferous                                                         |                                                                           |
| Browne & Aebischer 2005         | UK      | Woodland > Farmland               | Scrub                                                                            |                                                                           |
| Browne et al. 2004              | UK      | Woodland > Farmland               |                                                                                  | Hedge and woodland edge                                                   |
| Fuller & Moreton 1997           | UK      |                                   | Closed canopy, but<br>intermediate age ><br>mature forest                        | $\mathcal{A}$                                                             |
| Fuller 2004                     |         | Farmland > Woodland               |                                                                                  |                                                                           |
| Hinsley et al. 1995             | UK      |                                   | Structure diversity and open canopy                                              |                                                                           |
| Mason & Macdonald 2000          | UK      | Residential areas > Farmland      |                                                                                  |                                                                           |
| Calladine et al. 1997           | UK      | Woodland > Farmland               |                                                                                  |                                                                           |
| Dunn & Morris 2012              | UK      |                                   | 81.                                                                              | Scrub and hedgerows 4<br>m tall, bare ground and<br>fallow > grazed lands |
| Dunn et al. 2021                | UK      |                                   |                                                                                  | Fallows, semi-natural grassland, amenity lands                            |
| Tree 2018; de Klee 2019         | UK      |                                   |                                                                                  | Patches of natural<br>woodland and scrub                                  |
| Biljsma 1985                    | NL      | Woodland > Farmland               |                                                                                  |                                                                           |
| Gaitzenauer 1990                | AT      | X<br>V                            | Dense > Open                                                                     | Patches of natural woodland and scrub                                     |
| Gruychev 2020                   | BG      | Riparian > Woodland ><br>Farmland |                                                                                  |                                                                           |
| Kleemann & Quillfeldt<br>2014   | DE      | Woodland > Farmland               | Grasslands and clearings.<br>Dense deciduous and<br>middle-aged mixed<br>forests |                                                                           |
| Fernandez & Camacho<br>1989     | ES      | Farmland > Woodland and shrub     |                                                                                  | Tree crops, shrub                                                         |
| Rocha & Hidalgo 2002            | ES      | Wooded pastureland ><br>Farmland  | Proximity to cereal crops                                                        | No herbicides                                                             |
| Gutierrez 2001                  | ES      | Woodland > Farmland               |                                                                                  | Olive groves                                                              |
| Camprodon & Brotons<br>2006     | ES      |                                   | Open (clearing and thinning) > Dense                                             |                                                                           |
| Bermudez 2020                   | ES      |                                   | Water bodies                                                                     | Tree crops, water bodies                                                  |
| Saenz de Buruaga et al.<br>2012 | ES      | Riparian > Woodland ><br>Farmland | Lower tree cover                                                                 | Hedgerows                                                                 |
| Herrando et al. 2014            | ES      |                                   |                                                                                  | Rediced shrub<br>encroachment                                             |
| Herrando et al. 2016            | ES      | Woodland > Farmland               |                                                                                  |                                                                           |
| Gutierrez-Galan et al.<br>2018  | ES      |                                   | Proximity to cereal crops<br>and open areas with<br>weeds                        |                                                                           |

| Carricondo 2016           | ES | Farmland > Woodland                                   |                                                            |                               |
|---------------------------|----|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|
| Moreno-Zarate et al. 2020 | ES |                                                       |                                                            | Tree crops and mixed<br>crops |
| Aubineau & Boutin 1998    | FR |                                                       |                                                            | Hedge density                 |
| Szep et al. 2012          | HU | Woodland > Farmland                                   | Farmland in vicinity                                       |                               |
| Bakaloudis et al. 2009    | GR |                                                       | Higher canopy cover.<br>Medium size > mature<br>pine trees |                               |
| Chiatante et al. 2020     | IT | Riparian, tree plantations<br>and Woodland > Farmland |                                                            | Hedgerow density              |
| Dias et al. 2013          | РТ | Woodland > Riparian ><br>Farmland                     | Open > Dense.<br>No woody understory                       | Tree crops                    |
| Dias 2016                 | РТ | Woodland > Farmland                                   | Conifer> Broadleaved                                       | Orchards, shrubs              |

739 **Table 2**. Summary of main findings of studies assessing the habitat structure of areas where turtle doves occur, ranked up, where possible, following the

order of preference shown by the species (i.e. habitat 1 was where the highest abundance or preference was recorded). 'Landscape' is the dominant cover of

surrounding land, as shown by CORINE land cover map available for the year nearest to study period (FA = farmland; ML = mixed landscape; FO = forest).

742 'Canopy' cover follows the FAO Land Cover Classification System http://www.fao.org/3/x0596e/X0596e01n.htm (C = closed (more than 60-70 percent); O =

open (60-70 percent to 10-20 percent); S = sparse (10-20 percent to 1 percent); L = linear woody structure (riparian forest, windbreak, hedgerow, bocage).

744 'Understorey' describes the structure of the underlying layer of vegetation (H = herbaceous; W = woody; B = bare soil; FF = forest floor (leaves, detritus, etc.)).

- 745 'Herbivory' describes whether grazing/browsing occurs, and which animals are involved (• = wild animals; = livestock). For each category, a grey cell
- indicates inferred information (e.g., from pictures of the area, etc.) rather than provided in the publication.

| HABITAT 1                                 | Landscape                                                                                                                                   | canopy | understorey | herbivory | HABITAT 2                           | Landscape | canopy | understorey | herbivory | HABITAT 3                      | Landscape | canopy | understorey | herbivory | HABITAT 4                  | Landscape | cnopy | understorey | herbivory | COUNTRY | REFERENCE                                                      |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----------|-------------------------------------|-----------|--------|-------------|-----------|--------------------------------|-----------|--------|-------------|-----------|----------------------------|-----------|-------|-------------|-----------|---------|----------------------------------------------------------------|
| SEMI-NATURAL LAI                          | MI-NATURAL LANDSCAPES (where non-farmland component of the landscape predominant, or the unmanaged area within the farmland landscape is la |        |             |           |                                     |           |        |             |           |                                |           |        |             |           |                            |           |       |             |           |         |                                                                |
| Mediterranean<br>mixed forest             | FO                                                                                                                                          | 0      | Н           | •         |                                     |           |        |             |           |                                | X         |        |             |           |                            |           |       |             |           | ES      | Camprodon & Brotons<br>2006                                    |
| Conifer                                   | ML                                                                                                                                          | 0      | Н           | ٠         | Mixed forest                        | ML        | 0      | Н           | •         |                                |           |        |             |           |                            |           |       |             |           | GR      | Bakaloudis et al. 2009                                         |
| Broadleaved                               | ML                                                                                                                                          | 0      | Н           | 0•        |                                     |           |        |             |           | $\left( \right) $              |           |        |             |           |                            |           |       |             |           | UK      | Tree 2018, Klee 2019                                           |
| Woody linear<br>(riparian)                | ML                                                                                                                                          | L      | n/a         |           | Broadleaved                         | ML        | 0      | Н           | •         | Conifer                        | ML        | n/a    | Н           | •         | Shrubland                  | ML        | n/a   | n/a         | •         | BG      | Gruychev 2020                                                  |
| Mediterranean<br>mixed forest             | ML                                                                                                                                          | 0      | Н           | •         | Mediterranean<br>mixed forest       | FO        | 0      | н           | •         | 0                              |           |        |             |           |                            |           |       |             |           | ES      | Gutiérrez-Galán et al.<br>2018                                 |
| SEMI-TRANSFORM                            | ed lani                                                                                                                                     | DSCAF  | ES (ar      | eas w     | here farmland is mi                 | xed wi    | ith un | mana        | ged f     | forested areas at t            | the la    | ndscap | oe leve     | el)       |                            |           |       |             |           |         |                                                                |
| Agroforestry<br>(dehesa)                  | ML                                                                                                                                          | 0      | Н           | 0         | Permanent crops<br>(olive)          | ML        | 0      | Н           |           | Mediterranea<br>n mixed forest | ML        | n/a    | n/a         | •         | Woody linear<br>(riparian) | ML        | S     | n/a         |           | ES      | Rocha & Hidalgo 2002                                           |
| Semi-arid mixed<br>shrub-pine<br>woodland | ML                                                                                                                                          | 0      | В           | ٠         | Permanent crops<br>(almond, citrus) | ML        | 0      | Н           |           | Conifer forest                 | FO        | 0      | n/a         | •         |                            |           |       |             |           | ES      | Bermúdez 2020                                                  |
| Woody linear<br>(riparian)                | ML                                                                                                                                          | L      | n/a         |           | Evergreen oak<br>forest w crops     | ML        | 0      | Н           |           | Shrubland                      | ML        | 0      | W           |           | Farmland /<br>pasture      | ML        | S     | Н           | 0         | ES      | Sáenz de Buruaga et al.<br>2012                                |
| Broadleaved                               | ML                                                                                                                                          | n/a    | n/a         |           | Miscellaneous                       | ML        | n/a    | n/a         |           | Pasture                        | ML        | n/a    | n/a         | 0         | Arable land                | ML        | 0     | Н           |           | UK      | Browne 2002, Browne &<br>Aebischer 2003, Browne<br>et al. 2004 |

| Broadleaved<br>(schlerophyll)    | ML     | 0    | Н      | •     | Conifer                    | ML     | С      | Н      | •      | Permanent M<br>crops | LO       | Н     |       | Woody linear<br>(riparian,<br>hedgerows)  | ML       | L    | n/a |   | PT | Dias et al. 2013, Dias<br>2016                                 |
|----------------------------------|--------|------|--------|-------|----------------------------|--------|--------|--------|--------|----------------------|----------|-------|-------|-------------------------------------------|----------|------|-----|---|----|----------------------------------------------------------------|
| HIGHLY TRANSFORM isolated)       | ied la | NDSC | APES ( | where | e farmland compon          | ent of | the la | andsca | ipe is | clearly predominant  | ;, and w | oodeo | l/unm | hanaged elements                          | s are si | mall | or  |   |    |                                                                |
| Mixed forests                    | ML     | С    | n/a    | 0•    | Conifer                    | ML     | С      | n/a    | 0•     | Residential area M   | 0        | Н     |       | Built-up area                             | ML       | 0    | Н   |   | NL | Bijlsma 1985                                                   |
| Shrubland                        | FA     | С    | W      | 0     | Broadleaved                | FA     | С      | W      | 0      | Broadleaved FA       | 0        | W     | 0     | Woody linear<br>(windbreaks,<br>riparian) | FA       | С    | W   | 0 | AT | Gaitzenauer 1990                                               |
| Broadleaved                      | ML     | С    | FF     | ٠     |                            |        |        |        |        |                      |          |       |       |                                           |          |      |     |   | UK | Fuller & Moreton 1987                                          |
| Residential area                 | FA     | 0    | Н      |       | Woody linear<br>(hedgerow) | FA     | L      | W      |        | Broadleaved FA       | n/a      | n/a   |       | Shrubland                                 | FA       | С    | W   |   | UK | Mason & Macdonald<br>2000                                      |
| Miscellaneous                    | FA     | n/a  | n/a    |       | Pasture                    | FA     | 0      | Η      | 0      | Broadleaved FA       | n/a      | n/a   |       | Arable land                               | FA       | 0    | Н   |   | UK | Browne 2002, Browne &<br>Aebischer 2003, Browne<br>et al. 2004 |
| Woodland                         | FA     | 0    | W      |       |                            |        |        |        |        |                      |          |       |       |                                           |          |      |     |   | UK | Hinsley et al. 1995                                            |
| Mixed forest                     | FA     | Т    | W      | •     | Broadleaved                | FA     | С      | Н      | •      | Pasture F4           | 0        | W     | 0     | Shrubland                                 | FA       | С    | W   |   | DE | Kleemann & Quillfeldt<br>2014                                  |
| Agroforestry<br>("bocage")       | FA     | L    | Н      | 0     |                            |        |        |        |        | 10.                  |          |       |       |                                           |          |      |     |   | FR | Lormée 2015                                                    |
| Conifer (plantation)             | ML     | С    | FF     |       | Woody linear<br>(hedgerow) | ML     | С      | W      |        | 5                    |          |       |       |                                           |          |      |     |   | UK | Baines 2019                                                    |
| Broadleaved (poplar plantations) | FA     | С    | н      |       | Riparian forests           | FA     | L      | n/a    |        | Shrubland FA         | C C      | W     |       | Woody linear<br>(hedgerow)                | FA       | L    | W   |   | IT | Chiatante et al. 2020                                          |

747 N.B: The study by Browne (2002), Browne & Aebischer (2003) and Browne et al. (2004) appears twice because it compared habitat use in two study areas

748 within different landscapes.

| Country / region | Study year | Nests | Substrates used                                                                                                                                                                                                                                                    | Study type                | Reference                |
|------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|
| UK               | 1962-1966  | 511   | 43% Crataegus monogyna, 17% Sambucus nigra, 6% Prunus spinosa, 6% wild rose or bramble, 5%<br>Salix, 12% other deciduous trees, 5% conifers, 3% orchards or ornamental trees, 1% Ilex<br>aquifolium, 1% Hedera helix and lonicera periclymenum, 1% Ulex europaeus. | peer-reviewed<br>paper    | Murton 1968              |
| East Anglia (UK) | 1996       | 31    | 65% Crataegus monogyna, 16% Sambucus nigra, 6% Prunus spinosa, 3% Acer pseudoplatanus,<br>Picea albies, Malus silvestris, Ulmus glabra                                                                                                                             | report                    | Calladine et al. 1997    |
| East Anglia (UK) | 1998-2000  | 143   | 64% thorny bushes, 13% coniferous trees, 10% Elder, 6% broadleaved trees, 6% fruit trees                                                                                                                                                                           | peer-reviewed<br>paper    | Browne & Aebischer 2004  |
| Poitou (FR)      | 1990´s     | 59    | 35% Crataegus monogyna, 30% Coryllus avellana, 10% Prunus spinosa, 5% Acer campestre, 5%<br>Euonymus europaeus, 5% Pyrus communis, 5% Salix caprea, 5% Sambucus nigra                                                                                              | conference<br>proceedings | Aubineau & Boutin 1998   |
| France           | 2000´s     |       | 108 species used, but <i>Crataegus monogyna, Prunus spinosa</i> and <i>Sambucus nigra</i> particularly favoured                                                                                                                                                    | popular<br>science        | Lormée 2015              |
| Bulgaria         | 2014-2016  | 37    | 24% Pinus nigra, 16% Quercus cerris, 16% Quercus pubescens, 8% Ulmus minor, 8% Acer negundo,<br>3% Paliurus spina-christi, 8% Salix sp.; 6% Pyrus, 5% Robinia pseudocacacia                                                                                        |                           | Gruychev 2017            |
| Pontevedra (ES)  | 1989       | 5     | 40% Rubus ulmifoluis, 20% Betula celtiberica, 20% Crataegus monogyna, 20% Salix                                                                                                                                                                                    | report                    | Fernandez & Camacho 1989 |
| Palencia (ES)    | 1989       | 11    | 54% Rosa canina, 18% Rubus ulmifolius, 9% Crataegus monogyna, 9% Salix, 9% Ulmus                                                                                                                                                                                   | report                    | Fernandez & Camacho 1989 |
| Barcelona(ES)    | 1989       | 3     | 33.3% Juniperus oxycedrus,33.3% Quercus faginea, 33.3% Rubus ulmifolius                                                                                                                                                                                            | report                    | Fernandez & Camacho 1989 |
| Madrid (ES)      | 1989       | 21    | 33% Rubus ulmifolius, 19% Crataegus monogyna, 19% Salix, 15% Ulmus minor, 9% Quercus<br>rotundifolia, 5% Populus nigra                                                                                                                                             | report                    | Fernandez & Camacho 1989 |
| Ciudad Real (ES) | 1989       | 51    | 82% Olea europaea, 14% Pinus halepensis, 4% Ceratonia siliqua                                                                                                                                                                                                      | report                    | Fernandez & Camacho 1989 |
| Caceres (ES)     | 1989       | 48    | 100% Quercus rotundifolia                                                                                                                                                                                                                                          | report                    | Fernandez & Camacho 1989 |
| Cordoba (ES)     | 1989       | 68    | 98% Olea europaea, 2% Quercus rotundifolia                                                                                                                                                                                                                         | report                    | Fernandez & Camacho 1989 |
| Murcia (ES)      | 1989       | 52    | 87% Olea europaea, 11% Pinus halepensis, 2% Ceratonia siliqua                                                                                                                                                                                                      | report                    | Fernandez & Camacho 1989 |
| Extremadura (ES) |            |       | 76% Quercus ilex rotundifolia; 7% Olea europaea, 6% Pinus sp., 3% Quercus suber, 2% Eucaliptus<br>sp., <2% Fraxinus excelsior, Ficus carica, Quercus faginea, Populus nigra, Alnus glutinosa, Salix,<br>Quercus pyrenaica, Populus alba, Arbutus unedo             | book                      | Rocha & Hidalgo 2002     |

**Table 3**. Summary of studies providing quantitative information on the use of nest substrates by Turtle Doves in Europe.

| Spain                                   | 2012-2013 |    | 25% Pinus sp., 18% Olea europaea, 18% Quercus ilex, 14% Quercus pyrenaica, 12% Fraxinus<br>angustifolia, <5% Prunus dulcis, Quercus coccifera, Juniperus sp., Quercus faginea, Quercus<br>coccifera | report               | Sáenz de Buruaga et al. 2013 |
|-----------------------------------------|-----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|
| Castilla la Mancha<br>and Cataluña (ES) | 2018-2019 | 64 | 56% Quercus sp., 36% Pinus sp., 4% Olea europaea and Prunus dulcis, 1% Arbutus unedo, 1%<br>Juniperus oxycedrus                                                                                     | conference<br>poster | Arroyo et al. 2019           |
| Algarve (PT)                            | 2003-2004 | 84 | 41% Quercus sp., 19% Olea europaea and Prunus dulcis, 12% coniferous trees, 4% broad-leaved trees, 6% thorny bushes, 18% other bushes                                                               | conference<br>poster | Dias & Rego 2017             |

**Table 4.** Plant species whose seeds have been reported as ingested by Turtle Dove.

| Taxonomic unit         | Family        | Grown    | Annual | Bien-<br>nial      | Peren-<br>nial | References                                                                                         |
|------------------------|---------------|----------|--------|--------------------|----------------|----------------------------------------------------------------------------------------------------|
| Abies alba             | Pinaceaea     | Wild     |        |                    | •              | Bijlsma (1985)                                                                                     |
| Acer campestre         | Sapindaceaea  | Wild     |        |                    | •              | Dunn et al. (2018)                                                                                 |
| Achillea millefolium   | Asteraceae    | Wild     |        |                    | •              | Dunn et al. (2018)                                                                                 |
| Agropyron sp.          | Poaceae       | Wild     |        |                    | •              | Murton et al. (1964)                                                                               |
| Agrostis sp.           | Poaceae       | Wild     | •      |                    | •              | Dunn et al. (2018)                                                                                 |
| Agrostis stolonifera   | Poaceae       | Wild     |        |                    | •              | Dunn et al. (2018)                                                                                 |
| Alopecurus myosuroides | Poaceae       | Wild     | •      |                    |                | Dunn et al. (2018)                                                                                 |
| Alopecurus sp.         | Poaceae       | Wild     | •      |                    | •              | Dunn et al. (2018)                                                                                 |
| Amaranthus blitoides   | Amaranthaceae | Wild     | •      |                    |                | Kiss et al. (1978)                                                                                 |
| Amaranthus deflexus    | Amaranthaceae | Wild     | •      | •                  | •              | Gutiérrez-Galán & Alonso (2016)                                                                    |
| Amaranthus retroflexus | Amaranthaceae | Wild     | •      |                    |                | Kiss et al. (1978)                                                                                 |
| Amaranthus sp.         | Amaranthaceae | Wild     | •      | $\mathbf{\hat{c}}$ | X              | Jiménez et al. (1992), Dias &<br>Fontoura (1996), Dunn et al.<br>(2018)                            |
| Anagallis arvensis     | Primulaceae   | Wild     |        | •                  |                | Murton et al. (1964), Dunn et al.<br>(2018)                                                        |
| Anagallis sp.          | Primulaceae   | Wild     | •      | •                  | •              | Dunn et al. (2018)                                                                                 |
| Anthemis cotula        | Asteraceae    | Wild     |        |                    |                | Murton et al. (1964), Dunn et al.<br>(2018)                                                        |
| Anthriscus sp.         | Apiaceae      | Wild     |        | •                  | •              | Dunn et al. (2018)                                                                                 |
| Apiaceae               | Apiaceae      | Wild     | •      |                    | •              | Dunn et al. (2018)                                                                                 |
| Arrhenatherum elatius  | Poaceae       | Wild     |        |                    | •              | Dunn et al. (2018)                                                                                 |
| Artemisia vulgaris     | Asteraceae    | Wild     |        |                    | •              | Dunn et al. (2018)                                                                                 |
| Asperula sp.           | Rubiaceae     | Wild     | •      |                    | •              | Gutiérrez-Galán & Alonso (2016)                                                                    |
| Asteraceae             | Asteraceae    | Wild     | •      | •                  | •              | Dunn et al. (2018)                                                                                 |
| Atriplex sp.           | Amaranthaceae | Wild     | •      |                    | •              | Dunn et al. (2018)                                                                                 |
| Atriplex patula        | Amaranthaceae | Wild     | •      |                    |                | Murton et al. (1964), Browne &<br>Aebischer (2003)                                                 |
| Avena fatua            | Poaceae       | Wild     | •      |                    |                | Calladine et al. (1997)                                                                            |
| Avena sp.              | Poaceae       | Wild     | •      |                    |                | Dunn et al. (2018)                                                                                 |
| Bellis perennis        | Asteraceae    | Wild     | •      |                    | •              | Dunn et al. (2018)                                                                                 |
| Boraginaceae           | Boraginaceae  | Wild     | •      | •                  | •              | Dunn et al. (2018)                                                                                 |
| Borago officinalis     | Boraginaceae  | Wild     | •      |                    |                | Dunn et al. (2018)                                                                                 |
| Brassica carinata      | Brassicaceae  | Brassica | •      |                    |                | Dunn et al. (2018)                                                                                 |
| Brassica juncea        | Brassicaceae  | Brassica | •      |                    |                | Dunn et al. (2018)                                                                                 |
| Brassica napus         | Brassicaceae  | Brassica | •      | •                  |                | Murton et al. (1964), Calladine et<br>al. (1997), Browne & Aebischer<br>(2003), Dunn et al. (2018) |
| Brassica oleracea      | Brassicaceae  | Brassica |        | •                  | •              | Dunn et al. (2018)                                                                                 |
| Brassica rapa          | Brassicaceae  | Brassica | •      | •                  |                | Dunn et al. (2018)                                                                                 |

| Brassica sp.                             | Brassicaceae    | Brassica   | • | • | • | Jiménez et al. (1992), Dias &<br>Fontoura (1996), Dunn et al.<br>(2018) |
|------------------------------------------|-----------------|------------|---|---|---|-------------------------------------------------------------------------|
| Brassicaceae                             | Brassicaceae    | Brassica   | • | • | • | Bijlsma (1985), Dunn et al. (2018)                                      |
| Calendula arvensis                       | Asteraceae      | Wild       | • | • |   | Gutiérrez-Galán & Alonso (2016)                                         |
| Calystegia sepium                        | Convolvulaceae  | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Cannabis sativa                          | Cannabaceae     | Fed        | • |   |   | Dunn et al. (2018)                                                      |
| Capsella bursa-pastoris                  | Brassicaceae    | Brassica   | • | • |   | Dunn et al. (2018)                                                      |
| Carthamus glaucus                        | Asteraceae      | Wild       | • |   |   | Dunn et al. (2018)                                                      |
| Carthamus sp.                            | Asteraceae      | Wild       | • |   |   | Dunn et al. (2018)                                                      |
| Carthamus tinctorius                     | Asteraceae      | Fed        | • |   |   | Dunn et al. (2018)                                                      |
| Caryophyllaceae                          | Caryophyllaceae | Wild       | • |   | • | Dunn et al. (2018)                                                      |
| Cenchrus americanus                      | Роасеае         | Fed        | • |   |   | Dunn et al. (2018)                                                      |
| Centaurea sp.                            | Asteraceae      | Wild       | • |   | • | Dunn et al. (2018)                                                      |
| Cerastium fontanum                       | Caryophyllaceae | Wild       |   | • | • | Dunn et al. (2015)                                                      |
| Cerastium glomeratum                     | Caryophyllaceae | Wild       | • |   |   | Dunn et al. (2018)                                                      |
| Cerastium holosteoides                   | Caryophyllaceae | Wild       |   |   | • | Murton et al. (1964)                                                    |
| Chamaecyparis lawsoniana                 | Cupressaceaea   | Cultivated |   |   | • | Dunn et al. (2018)                                                      |
| Chenopodium album                        | Amaranthaceae   | Wild       | • |   |   | Murton et al. (1964), Dunn et al.<br>(2018)                             |
| Chenopodium<br>polyspermum               | Amaranthaceae   | Wild       |   |   |   | Dunn et al. (2018)                                                      |
| Chenopodium sp.                          | Amaranthaceae   | Wild       | • |   | • | Jiménez et al. (1992), Dias &<br>Fontoura (1996), Dunn et al.<br>(2018) |
| Chromolaena odorata                      | Asteraceae      | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Chrozophora tinctoria                    | Euphorbiaceae   | Wild       | • |   |   | Jiménez et al. (1992), Gutiérrez-<br>Galán & Alonso (2016)              |
| Cirsium arvense                          | Asteraceae      | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Cirsium velatum                          | Asteraceae      | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Cirsium vulgare                          | Asteraceae      | Wild       |   | • |   | Dunn et al. (2018)                                                      |
| Citrus sp.                               | Rutaceaea       | Cultivated |   |   | • | Dunn et al. (2018)                                                      |
| Clematis vitalba                         | Ranunculaceae   | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Convolvulus arvensis                     | Convolvulaceae  | Wild       |   |   | • | Gutiérrez-Galán & Alonso (2016)                                         |
| Convolvulus sp.                          | Convolvulaceae  | Wild       | • |   | • | Jiménez et al. (1992), Dias &<br>Fontoura (1996)                        |
| Corydalis (=Ceratocapnos)<br>claviculata | Papaveraceae    | Wild       | • |   |   | Bijlsma (1985)                                                          |
| Crassulaceae                             | Crassulaceaea   | Wild       | • | • | • | Dunn et al. (2018)                                                      |
| Cucumis sp.                              | Cucurbitaceae   | Cultivated | • |   | • | Dunn et al. (2018)                                                      |
| Cucurbitaceae                            | Cucurbitaceae   | Cultivated | • |   | • | Dunn et al. (2018)                                                      |
| Cynara humilis                           | Carduoideae     | Wild       |   |   | • | Gutiérrez-Galán & Alonso (2016)                                         |
| Dactylis glomerata                       | Роасеае         | Wild       |   |   | • | Dunn et al. (2018)                                                      |
| Dactyloctenium aegyptium                 | Poaceae         | Wild       | • |   |   | Dunn et al. (2018)                                                      |
| Deschampsia flexuosa                     | Poaceae         | Wild       | • |   |   | Bijlsma (1985)                                                          |

|                          |                |            |   |                       |   | Murton et al. (1964), Gutiérrez-                                                                                                |
|--------------------------|----------------|------------|---|-----------------------|---|---------------------------------------------------------------------------------------------------------------------------------|
| Echium plantagineum      | Boraginaceae   | Wild       | • | •                     |   | Galán & Alonso (2016)                                                                                                           |
| Elymus repens            | Poaceae        | Wild       |   |                       | • | Dunn et al. (2018)                                                                                                              |
| Epilobium sp.            | Onagraceaea    | Wild       | • |                       | • | Dunn et al. (2018)                                                                                                              |
| Euphorbiaceae            | Euphorbiaceae  | Wild       | • | •                     | • | Dunn et al. (2018)                                                                                                              |
| Euphorbia sp.            | Euphorbiaceae  | Wild       | • | •                     | • | Murton et al. (1964)                                                                                                            |
| Festuca sp.              | Poaceae        | Wild       |   |                       | • | Murton et al. (1964), Dunn et al.<br>(2018)                                                                                     |
| Fumaria officinalis      | Papaveraceae   | Wild       | • |                       |   | Browne & Aebischer (2003),<br>Dunn et al. (2015)                                                                                |
| Fumaria sp.              | Papaveraceae   | Wild       | • |                       |   | Murton et al. (1964), Dias &<br>Fontoura (1996)                                                                                 |
| Galium aparine           | Rubiaceaea     | Wild       | • |                       |   | Murton et al. (1964), Dunn et al.<br>(2018)                                                                                     |
| Geraniaceae              | Geraniaceae    | Wild       | • |                       | • | Dunn et al. (2018)                                                                                                              |
| Geranium dissectum       | Geraniaceae    | Wild       | • |                       |   | Dunn et al. (2018)                                                                                                              |
| Geranium lucidum         | Geraniaceae    | Wild       |   | ·                     |   | Dunn et al. (2018)                                                                                                              |
| Geranium molle           | Geraniaceae    | Wild       | • | $\boldsymbol{\Sigma}$ |   | Gutiérrez-Galán & Alonso (2016),<br>Dunn et al. (2018)                                                                          |
| Geranium pusillum        | Geraniaceae    | Wild       |   |                       |   | Dunn et al. (2018)                                                                                                              |
| Geum urbanum             | Rosaceae       | Wild       |   |                       | • | Dunn et al. (2018)                                                                                                              |
| Guizotia abyssinica      | Asteraceae     | Fed        | · |                       |   | Dunn et al. (2018)                                                                                                              |
| Helianthemum sp.         | Cistaceae      | Wild       | • |                       | • | Jiménez et al. (1992)                                                                                                           |
| Helianthus annuus        | Asteraceae     | Fed        | • |                       |   | Kiss et al. (1978), Jiménez et al.<br>(1992), Dias & Fontoura (1996),<br>Gutiérrez-Galán & Alonso (2016),<br>Dunn et al. (2018) |
| Helianthus argophyllus   | Asteraceae     | Fed        | • |                       |   | Dunn et al. (2018)                                                                                                              |
| Helminthotheca echioides | Asteraceae     | Wild       | • |                       | • | Dunn et al. (2018)                                                                                                              |
| Holcus lanatus           | Poaceae        | Wild       |   |                       | • | Dunn et al. (2018)                                                                                                              |
| Holcus sp.               | Poaceae        | Wild       | • |                       | • | Dunn et al. (2018)                                                                                                              |
| Hordeum sp.              | Poaceae        | Cultivated | • |                       | • | Dunn et al. (2018)                                                                                                              |
| Hordeum vulgare          | Poaceae        | Cultivated | • |                       |   | Jiménez et al. (1992), Dias &<br>Fontoura (1996), Gutiérrez-Galán<br>& Alonso (2016), Dunn et al.<br>(2018)                     |
| Hypecoum sp.             | Papaveraceae   | Wild       | • |                       |   | Dias & Fontoura (1996)                                                                                                          |
| Jacobaea vulgaris        | Asteraceae     | Wild       |   | •                     |   | Dunn et al. (2018)                                                                                                              |
| Kickxia spuria           | Plantaginaceae | Wild       | • |                       |   | Murton et al. (1964)                                                                                                            |
| Larix decidua            | Pinaceaea      | Wild       |   |                       | • | Bijlsma (1985)                                                                                                                  |
| Lathyrus sp.             | Fabaceae       | Wild       | • |                       | • | Dias & Fontoura (1996)                                                                                                          |
| Linum usitatissimum      | Linaceaea      | Cultivated | • |                       |   | Calladine et al. (1997)                                                                                                         |
| Linum sp.                | Linaceaea      | Cultivated | • | •                     | • | Dunn et al. (2018)                                                                                                              |
| Lolium sp.               | Poaceae        | Wild       | • | İ                     | • | Dunn et al. (2018)                                                                                                              |
| Malva sp.                | Malvaceae      | Wild       | • |                       | • | Gutiérrez-Galán & Alonso (2016)                                                                                                 |
| Medicago lupulina        | Fabaceae       | Wild       | • |                       | • | Dunn et al. (2015)                                                                                                              |

| Medicago sp.            | Fabaceae       | Wild       | • |   | • | Murton et al. (1964), Dias &<br>Fontoura (1996)    |  |
|-------------------------|----------------|------------|---|---|---|----------------------------------------------------|--|
| Melilotus sp.           | Fabaceae       | Wild       | • | • |   | Dias & Fontoura (1996)                             |  |
| Ornithopus compressus   | Fabaceae       | Wild       | • |   |   | Gutiérrez-Galán & Alonso (2016)                    |  |
| Panicum miliaceum       | Роасеае        | Fed        | • |   |   | Dunn et al. (2018)                                 |  |
| Papaver rhoeas          | Papaveraceae   | Wild       | • |   |   | Dunn et al. (2018)                                 |  |
| Papaver sp.             | Papaveraceae   | Wild       | • | • | • | Dias & Fontoura (1996)                             |  |
| Pastinaca sativa        | Apiaceae       | Cultivated |   | • | • | Dunn et al. (2018)                                 |  |
| Pennisetum glaucum      | Роасеае        | Cultivated | • |   |   | Kiss et al. (1978)                                 |  |
| Persicaria lapathifolia | Polygonaceaea  | Wild       | • |   |   | Dunn et al. (2018)                                 |  |
| Persicaria maculosa     | Polygonaceae   | Wild       | • |   |   | Browne & Aebischer (2003)                          |  |
| Phalaris sp.            | Poaceae        | Wild       | • |   | • | Dunn et al. (2018)                                 |  |
| Picea abies             | Pinaceaea      | Wild       |   |   | • | Bijlsma (1985)                                     |  |
| Pinus sp.               | Pinaceaea      | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Pinus sylvestris        | Pinaceaea      | Wild       |   |   | • | Bijlsma (1985)                                     |  |
| Pisum sativum           | Fabaceae       | Cultivated | • |   | X | Dunn et al. (2018)                                 |  |
| Plantago lanceolata     | Plantaginaceae | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Poa annua               | Poaceae        | Wild       |   |   |   | Dunn et al. (2018)                                 |  |
| Poa infirma             | Poaceae        | Wild       | • |   |   | Dunn et al. (2018)                                 |  |
| Poa sp.                 | Poaceae        | Wild       | • |   | • | Dunn et al. (2018)                                 |  |
| Poa trivialis           | Poaceae        | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Poaceae                 | Poaceae        | Wild       | • |   | • | Dunn et al. (2018)                                 |  |
| Polygonum aviculare     | Polygonaceae   | Wild       | • |   |   | Browne & Aebischer (2003)                          |  |
| Polygonum lapathifolium | Polygonaceae   | Wild       | • |   |   | Gutiérrez-Galán & Alonso (2016)                    |  |
| Polygonum sp.           | Polygonaceae   | Wild       | • |   | • | Murton et al. (1964), Kiss et al.<br>(1978)        |  |
| Potentilla sp.          | Rosaceae       | Wild       | • | • | • | Dunn et al. (2018)                                 |  |
| Primulaceae             | Primulaceae    | Wild       | • |   | • | Dunn et al. (2018)                                 |  |
| Prunus sp.              | Rosaceae       | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Ranunculus repens       | Ranunculaceae  | Wild       |   |   | • | Murton et al. (1964), Calladine et<br>al. (1997)   |  |
| Ranunculus sp.          | Ranunculaceae  | Wild       | • |   | • | Gutiérrez-Galán & Alonso (2016)                    |  |
| Raphanus raphanistrum   | Brassicaceae   | Wild       | • |   |   | Gutiérrez-Galán & Alonso (2016)                    |  |
| Raphanus sativus        | Brassicaceae   | Cultivated | • | • |   | Dunn et al. (2018)                                 |  |
| Reseda lutea            | Resedaceae     | Wild       | • | • | • | Murton et al. (1964), Browne &<br>Aebischer (2003) |  |
| Retama sphaerocarpa     | Fabaceae       | Wild       |   |   | • | Jiménez et al. (1992)                              |  |
| Rorippa sylvestris      | Brassicaceae   | Brassica   |   |   | • | Dunn et al. (2018)                                 |  |
| Rosa sp.                | Rosaceae       | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Rosaceae                | Rosaceae       | Wild       | • |   | • | Dunn et al. (2018)                                 |  |
| Rubus sp.               | Rosaceae       | Wild       |   |   | • | Dunn et al. (2018)                                 |  |
| Rumex acetosella        | Polygonaceae   | Wild       |   | 1 | • | Bijlsma (1985)                                     |  |
| Rumex crispus           | Polygonaceae   | Wild       |   |   | • | Dias & Fontoura (1996)                             |  |

| Rumex sp.                     | Polygonaceae    | Wild       | • |   | • | Murton et al. (1964), Dias &<br>Fontoura (1996), Gutiérrez-Galán<br>& Alonso (2016)                                                                      |  |
|-------------------------------|-----------------|------------|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Salicornia sp.                | Amaranthaceae   | Wild       | • |   |   | Dunn et al. (2018)                                                                                                                                       |  |
| Salsola kali                  | Amaranthaceae   | Wild       | • |   |   | Gutiérrez-Galán & Alonso (2016)                                                                                                                          |  |
| Sambucus nigra                | Adoxaceaea      | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Senecio vulgaris              | Asteraceae      | Wild       | • |   |   | Dunn et al. (2018)                                                                                                                                       |  |
| Setaria viridis               | Poaceae         | Wild       | • |   |   | Kiss et al. (1978)                                                                                                                                       |  |
| Silene alba                   | Caryophyllaceae | Wild       | • | • | • | Murton et al. (1964)                                                                                                                                     |  |
| Silene vulgaris               | Caryophyllaceae | Wild       |   |   | • | Murton et al. (1964)                                                                                                                                     |  |
| Silene sp.                    | Caryophyllaceae | Wild       | • | • | • | Gutiérrez-Galán & Alonso (2016)                                                                                                                          |  |
| Sinapis sp.                   | Brassicaceae    | Brassica   | • |   |   | Murton et al. (1964)                                                                                                                                     |  |
| Sonchus arvensis              | Asteraceae      | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Sorghum sp.                   | Poaceae         | Fed        | • |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Spergula arvensis             | Caryophyllaceae | Wild       | • |   |   | Murton et al. (1964)                                                                                                                                     |  |
| Spergula vernalis             | Caryophyllaceae | Wild       | • |   |   | Bijlsma (1985)                                                                                                                                           |  |
| Stellaria media               | Caryophyllaceae | Wild       |   |   | • | Murton et al (1964), Bijlsma<br>(1985), Calladine et al. (1997),<br>Browne & Aebsicher (2003),<br>Gutiérrez-Galán & Alonso (2016),<br>Dunn et al. (2018) |  |
| Stellaria neglecta            | Caryophyllaceae | Wild       | · | • |   | Dunn et al. (2018)                                                                                                                                       |  |
| Stellaria pallida             | Caryophyllaceae | Wild       | • | • |   | Dunn et al. (2018)                                                                                                                                       |  |
| Stellaria sp.                 | Caryophyllaceae | Wild       | • | • | • | Murton et al. (1964)                                                                                                                                     |  |
| Suaeda maritima               | Amaranthaceae   | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Suaeda sp.                    | Amaranthaceae   | Wild       | • |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Silybum marianum              | Asteraceae      | Wild       | • | • |   | Gutiérrez-Galán & Alonso (2016)                                                                                                                          |  |
| Symphytum sp.                 | Boraginaceae    | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                       |  |
| Thlaspi arvense               | Brassicaceae    | Brassica   | • |   |   | Dunn et al. (2018)                                                                                                                                       |  |
| Trifolium pratense            | Fabaceae        | Wild       | • |   | • | Dunn et al. (2015)                                                                                                                                       |  |
| Trifolium repens              | Fabaceae        | Wild       |   |   | • | Dunn et al. (2015)                                                                                                                                       |  |
| Trifolium sp.                 | Fabaceae        | Wild       | • |   | • | Murton et al. (1964)                                                                                                                                     |  |
| Trifolium stellatum           | Fabaceae        | Wild       | • |   |   | Gutiérrez-Galán & Alonso (2016)                                                                                                                          |  |
| Tripleurospermum<br>maritimum | Asteraceae      | Wild       | • |   |   | Dunn et al. (2018)                                                                                                                                       |  |
| Triticeae                     | Poaceae         | Cultivated | • |   |   | Dunn et al. (2018)                                                                                                                                       |  |
| Triticum aestivum             | Poaceae         | Cultivated | • |   |   | Murton et al. (1964), Kiss et al.<br>(1978), Jiménez et al. (1992),<br>Calladine et al. (1997), Browne &<br>Aebischer (2003), Dunn et al.<br>(2018)      |  |
| Triticum sp.                  | Poaceae         | Cultivated | • |   |   | Dias & Fontoura (1996),<br>Gutiérrez-Galán & Alonso (2016),<br>Dunn et al. (2018)                                                                        |  |
| Tussilago farfara             | Asteraceae      | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                       |  |

| Urtica dioica          | Urticaceae     | Wild       |   |   | • | Browne & Aebischer (2003),<br>Dunn et al. (2018)                                                                                                           |
|------------------------|----------------|------------|---|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Urtica urens           | Urticaceae     | Wild       | ٠ |   |   | Calladine et al. (1997)                                                                                                                                    |
| Valerianella sp.       | Caprifoliaceae | Wild       | • | • |   | Dias & Fontoura (1996)                                                                                                                                     |
| Vicia hirsuta          | Fabaceae       | Cultivated | ٠ |   |   | Dunn et al. (2018)                                                                                                                                         |
| Vicia sp.              | Fabaceae       | Wild       | • |   | • | Kiss et al. (1978), Dias & Fontoura<br>(1996), Gutiérrez-Galán & Alonso<br>(2016)                                                                          |
| Vicia sativa           | Fabaceae       | Cultivated | • |   |   | Murton et al (1964), Jiménez et<br>al. (1992), Browne & Aebsicher<br>(2003), Dunn et al. (2015),<br>Gutiérrez-Galán & Alonso (2016),<br>Dunn et al. (2018) |
| Viola arvensis         | Violaceae      | Wild       | • | • |   | Browne & Aebischer (2003),<br>Dunn et al. (2018)                                                                                                           |
| Viola tricolor         | Violaceae      | Wild       | ٠ | • | • | Murton et al. (1964)                                                                                                                                       |
| Violaceae              | Violaceae      | Wild       | ٠ |   | • | Dunn et al. (2018)                                                                                                                                         |
| Zea mays               | Poaceae        | Fed        | ٠ |   | X | Gutiérrez-Galán & Alonso (2016)                                                                                                                            |
| Ziziphus spina-christi | Rhamnaceaea    | Wild       |   |   | • | Dunn et al. (2018)                                                                                                                                         |

#### 755 SUPPLEMENTARY MATERIAL

756 Table SI. Relative importance of the 40 environmental predictors of the eight Species Distribution

757 Models for *Streptopelia turtur* in the second European Breeding Bird Atlas, EBBA2 (Keller *et al.* 2020)

- and their weighted Ensemble Prediction. Variable importance ranges between 0 (no importance) to
- 759 100 %.

| Name of variable                           | Variable     | Type of  |  |
|--------------------------------------------|--------------|----------|--|
| (weighted ensemble prediction of 8 SDMs)   | importance % | variable |  |
| atitude                                    | 32.5         | abiotic  |  |
| Aean temperature in the breeding period    | 24           | abiotic  |  |
| Rainfed cropland                           | 5.9          | biotic   |  |
| Aean annual temperature                    | 5.5          | abiotic  |  |
| vapotranspiration in the breeding period   | 5.1          | abiotic  |  |
| Ainimum temperature of the coldest month   | 4.7          | abiotic  |  |
| Maximum temperature of the warmest month   | 2.6          | abiotic  |  |
| ongitude                                   | 2.4          | abiotic  |  |
| Vell developed soils                       | 1.9          | biotic   |  |
| Mean elevation                             | 1.8          | abiotic  |  |
| Fotal annual precipitation                 | 1.6          | abiotic  |  |
| Nood biomass                               | 1.6          | biotic   |  |
| Total precipitation in the breeding period | 1.1          | abiotic  |  |
| vlean slope                                | 1.1          | abiotic  |  |
| Broadleaved forests                        | 1.1          | biotic   |  |
| luman population density                   | 1            | abiotic  |  |
| Jrban areas                                | 0.8          | abiotic  |  |
| Rainfed tree crops                         | 0.6          | biotic   |  |
| Accumulated NDVI in the breeding period    | 0.5          | biotic   |  |
| Distance to the coastline                  | 0.5          | abiotic  |  |
| Grassland                                  | 0.5          | biotic   |  |
| Mosaic natural vegetation                  | 0.5          | biotic   |  |
| Shannon habitat diversity Index            | 0.5          | biotic   |  |
| rrigated crops                             | 0.3          | biotic   |  |
| Average forest canopy height               | 0.3          | biotic   |  |
| Young soils – weakly developed             | 0.3          | abiotic  |  |
| Coniferous forests                         | 0.2          | biotic   |  |
| Bare areas                                 | 0.2          | biotic   |  |
| Vixed broadleaved and coniferous forests   | 0.2          | biotic   |  |
| Mosaic cropland – natural vegetation       | 0.2          | biotic   |  |
| Well developed and acid soils              | 0.2          | abiotic  |  |
| Net soils                                  | 0.2          | abiotic  |  |
| Soils rich in clay                         | 0.2          | abiotic  |  |
| Shannon soil diversity Index               | 0.2          | biotic   |  |
|                                            | 0            | biotic   |  |
| Wetlands                                   | 0            |          |  |
| Netlands<br>Permanent ice                  | 0            | abiotic  |  |

| Sparse vegetation        | 0 | biotic  |
|--------------------------|---|---------|
| Continental water bodies | 0 | abiotic |
| Saline soils             | 0 | abiotic |