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Abstract

A long standing problem in Environmental DNA has been the inability to compute
across large number of datasets. Here we introduce an Open Source software framework
that can store a large number of Environmental DNA datasets, as well as provide a
platform for analysis, in an easily customizable way. We show the utility of such an
approach by analyzing over 1400 arthropod datasets.

Author summary

This article introduces a new software framework, met, which utilizes large numbers of
metabarcode datasets to draw conclusions about patterns of diversity at large spatial
scales. Given more accurate estimations on the distribution of variance in metabarcode
datasets, this software framework could facilitate novel analyses that are outside the
scope of currently available similar platforms. The capabilities of met allow the
researcher to think about what could be achieved in data reuse and data utility, while
the coding of met is especially a practice in solving the research problems that hold
back that kind of analysis.

1 met 1

We are approaching the ten-year anniversary of Conservation in a Cup of Water [1], 2

something of a landmark in Environmental DNA (eDNA, a subtype of metabarcode 3

data, for further explanation see Text Box 1: What is eDNA?) ) describing the use of a 4

fairly new technology at the time, eDNA, which the paper showed could be used to 5

determine biodiversity at a relatively low cost. It is now a cliche to say that we have 6

seen explosive growth in the number of available environmental DNA datasets. Now, 7

computational and methodological technology has been trying to compare samples 8

across large swaths of area and environment [2–4] and the field is approaching that 9

target. However, the goal of true meta-analysis, loosely defined as combining data from 10
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different experiments, has as yet been out of reach, or at the very least extremely 11

time-consuming [5]. This work attempts to make a first pass at achieving numerous 12

eDNA sample computation as well as showing the ecological benefit of doing so. In 13

order to achieve this target, we introduce ”met,” an acronym for 14 metabarcode, 14

metagenomic, metagenetic enrichment toolkit. The ”met” in met stands in for three 15

words starting in “met”, with the e and t standing for enrichment and toolkit, 16

respectively. met is a software framework, utilizing databasing, web frameworks, and 17

just in time compiling, which starts to make a large number of sample comparisons 18

possible. Principally, met stores eDNA data (DOI: 10.17605/OSF.IO/SPB8V). 19

Text Box One: What is eDNA?
eDNA relies on metabacoding. Like gene barcoding, metabarcoding selects for
a gene, but instead the selection is across species [6]. The metabarcode gene
in question should be conserved enough to be in an entire taxonomic group
of interest, but different enough in all relevant taxa to tell them apart [6]. In
effect, this means that a “single cup of water” can determine the diversity of
species in an area. Being a relatively low cost method of sampling diversity, a
not unexpected use of the technology has been to determine the total amount of
diversity of organisms on our planet (examples of large sampling projects: [7–9]).
More often, eDNA is used to determine the representative diversity of a given
sample of an environment (examples of such projects: [10,11]). There have been
a few efforts to do this, and perhaps most notably has been Knight et al. 2012’s
sampling of the English channel, which claimed sixty percent representative
diversity of the Atlantic Ocean in a single sampling of the channel [12].

20

Meta-analysis in eDNA is difficult due to the lack of standardization across 21

experiments. Differences in preparation of samples and in sequencing can cause slight 22

changes in comparisons of data between different experiments. There are a few ways to 23

tackle this problem: either the field or application of eDNA could enforce more 24

stringent controls on data production [13,14], the field could change acceptable 25

reporting standards for metadata [15], or as met does, strike a balance between the two. 26

Met allows for a data framework that could enforce some standards and allow for user 27

designed data correction, assuming expert users will have specific data correction 28

analysis methods in mind. This is why met is a software framework and not a 29

traditional web application—it allows for customization by the end user specific to their 30

requirements. 31

To address the challenges of cross-dataset comparison (for more information on 32

eDNA comparison challenges, see Text box 2: “Computational Problems with the 33

Analysis of eDNA”) and to increase the speed of analysis, we created met, designed as a 34

framework around which to build analysis solutions. Consisting of three main software 35

repositories, all published Open Source under the Mozilla Public License Version 2.0, 36

met-db (https://github.com/molikd/met-db/), met-api 37

(https://github.com/molikd/met-api), and met-analysis 38

(https://github.com/molikd/met-analysis), the framework is designed to be portable to 39

different compute scenarios. All three components are scalable and continuously 40

integrated as docker containers [16], and scalable (for more information on containers 41

see Text Box 3: ”Why Containers?”) As a result of met’s design, it can effectively and 42

simultaneously compare numerous metabarcoded datasets. met achieves this capability 43

through database compression, reorganized database schema, scaling, and a 44

multithreaded web API layer. met can compare thousands of samples from different 45

experiments in a single analysis. 46
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Text Box Three: Why Containers?
Containers for met are stored in the container registry, meaning that while only
one version of the met code is “live” or public to the general user base, multiple
versions of the code can be stored. This enables a process that when buggy code
is accidentally released, the code can be “rolled-back” to earlier versions [17].
Containers have a secondary effect of increasing accessibility of code by making
the code base easier to install. In met, there are three major components: a
centralized database, a centralized api, and a de-centralized analysis pack. It
is easy to see how a user may want to run all three components on their own
machine for testing or workstations setups. Through containerization, that can
be achieved by installing all three components via containers.

47

To demonstrate some of the notable features of met, we explore Cytochrome C 48

Oxidase I (COX1) arthropod eDNA samples accessible through the National Center for 49

Biotechnology Information’s (NCBI) Sequence Read Archive (SRA)(see [18] for common 50

eDNA metabarcode genes). The SRA is part of the International Nucleotide Sequence 51

Database Collaboration (INSDC) that includes data from the European Bioinformatics 52

Institute (EBI) and DNA Data Bank of Japan (DDBJ). We downloaded relevant data 53

sets en masse to determine global arthropod Amplicon Sequence Variant (ASV) 54

diversity. Using the query: 55

"ecological metagenomes"[Organism] AND (CO1 OR COI OR COX1) AND 56

(cluster\_public[prop] AND "biomol dna"[Properties]) AND 57

("filetype fastq"[Properties]) 58

We loaded 1405 datasets into met to calculate world-wide aquatic COX1 diversity. 59

ASVs are composed of each unique barcode variant found in a sample. This set was 60

pared down manually from an initial 5900 COX1 samples by filtering for only aquatic 61

arthropod samples. To demonstrate the utility of met, we compared all samples by 62

calculating the total diversity of ASVs (see: Fig. 2) and the cumulative increase of 63

ASVs across samples (see: Fig. 3). We also mapped the 515 samples that had latitude 64

and longitude information (see: Fig. 1). Using met, the data retrieval and functions to 65

generate these plots took only a matter of seconds. CSV.jl [19] and DataFrames.jl [20] 66

were used to munge (import and conform) the data. 67

2 Design Philosophy 68

met is written in Perl, Julia, and PostgreSQL PL/pgSQL (PostgreSQL Procedure 69

Language SQL [Structured Query Language]). met-db is written as an optimized 64 70

PostgreSQL schema restoring external datasets. A decreased emphasis on database 71

views and an increased emphasis on efficient database functions written in PL/pgSQL 72

means that the data storage backend is compressed due to the benefits of a database. 73

Writing in this layered approach ensures that met components (e.g., Data Storage in 74

PostgreSQL, API as a pass-through layer, and analysis in the API client) are organized 75

as separate entities. This organization method ensures not only the sequestration of 76

code, but that 70 computational resources are easily partitioned and allocated. The 77

upshot of this structure is that an organization could host a met-db and met-api install, 78

and utilize grid computing for met-analysis. The implementation of met for this project 79

was deployed on Amazon Web Services (AWS) Relational Database Service (RDS) on a 80

db.r4.2xlarge instance. The component met-api, written in Perl using the Dancer 81

framework, was deployed via docker containers to a t3.large instance The component 82

met-analysis, written in Julia, was run on the Notre Dame Center for Research 83

Computing (CRC) servers using minimal memory. 84
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Fig 1. Map of the 515 samples with latitude and longitude data. Samples tended to
tightly cluster around locations, correlating with particular biodiversity assay
experiments. Plotted with PlotlyJS.jl.

Fig 2. Number of sequences found per ASV, sorted by the number of ASVs found. If
each ASV was counted across all datasets, it would necessitate a n2 operation of all
sequences compared to all other sequences. Most analysis software have some solution
to this all-on-all problem. met overcomes this difficulty by storing ASVs in a separate
table so that this operation becomes a ‘n’ operation of grouping and counting the ASV’s
associated datasets. The inferred ASV diversity followed an exponential function, with
a substantially long tail. ASV diversity plots were constructed with PlotlyJS.jl and
curve fits were done with CurveFit.jl
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Fig 3. Cumulative plot of any particular ASV found across samples. The plot is
reverse sorted by count of samples in which the ASV is found. Although it may not look
like it to the eye, no single sequence was found in over 20 datasets. Plotted with
plotlyJS.jl, Curve fits done with curveFit.jl

met is designed to allow for comprehensive analysis of metabarcoded datasets, either 85

79 in pair-wise comparison of datasets or for the search of specific taxa. This 86

functionality allows for the location of any unique sequence in all previously published 87

metabarcode data. met is adaptable for commonly used microbiome barcodes (i.e.: 16S, 88

18S) and eDNA barcodes (i.e.: ITS, COX1, ND2). met’s scaling ability is achieved 89

through a scaling web server pool, as well as possible database sharding. Met works via 90

met-analysis interacting with met-api and in turn, met-api interacts with met-db (see: 91

Fig. 4). 92

3 Comparisons 93

Other technologies have started to touch on cross-dataset capabilities, the closest of 94

which is Qiita [14], an open source project which stores sample data from microbiome 95

assays. Qiita uses a plugin system designed to integrate with a compute environment. 96

While Qiita is open source design, it mostly operates within its main web service at 97

qiita.ucsd.edu. What is particularly interesting about the design of Qiita is the 91 98

availability of cross-study analysis. Within this software framework, datasets of different 99

studies can be combined in new analysis, however, this feature would be difficult and 100

slow if the entirety of a sample type were to be studied (e.g., all 16S V3 samples 101

available through Qiita). While not providing the simplified analysis approach of Qiita, 102

met’s main design philosophy is large scale comparison of samples, and easy deployment 103

as a framework for different use-cases. 104
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Fig 4. A diagram of met’s different pieces: met-api is composed of three major
components: met-analysis, met-api, and met-db. met-analysis is the main point of entry
for the framework. Data gathered by crawlers would be inserted via met-analysis, and
data for further downstream computation would come out of met-analysis. met-api is
the only entry point for met-db, and met-db contains all information an analysis project
may be interested in.
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4 Final Thoughts 105

This new software package, met, is a tool that allows the massive comparison of 106

different metabarcode experiments. While the specific results from our example 107

generating AVS abundance curves from geographically disparate locations are largely 108

confirmatory, met itself has proven to be an efficient tool for analysis. When the 109

“Conservation in a Cup of Water” paper was first published, the authors were thinking 110

about how biodiversity could be determined in a particular spot, at a relatively low cost. 111

The next logical extension is to take advantage of the power gained by combining data 112

from multiple experiments in this rapidly expanding field in new and interesting ways to 113

increase data utility. This analysis is a way to increase data utility and combine 114

metabarcode experiments. In met we have a way to computationally process large 115

number of samples and we can compare them quickly and come back with useful output, 116

demonstrating that met is a powerful tool for metabarcoding researchers going forward. 117
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