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Abstract 10 

While the positive relationship between plant biodiversity and ecosystem functioning (BEF) is relatively 11 

well-established, far less in known about the extent to which this relationship is mediated via below-12 

ground microbial responses to plant diversity. Limited evidence suggests that the diversity of soil 13 

microbial communities is sensitive to plant community structure, and that diverse soil microbial 14 

communities promote functions desired of sustainable food production systems such as enhanced carbon 15 

sequestration and nutrient cycling.  Here, we discuss available evidence on how plant diversity could be 16 

utilized to purposefully guide soil biodiversity in agricultural systems that are typically depleted of 17 

biodiversity, and are notoriously sensitive to both biotic and abiotic stressors. We outline the direct and 18 

soil microbe-mediated mechanisms expected to promote a positive BEF relationship both above- and 19 

below-ground. Finally, we identify management schemes based on ecological theory and vast empirical 20 

support that can be utilized to maximize ecosystem functioning in agroecosystems via biodiversity 21 

implementation schemes.   22 
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Main 26 

Biodiversity stabilizes ecosystem productivity, and productivity-dependent ecosystem services1.  27 

Increasing evidence confirms that biodiversity stabilizes ecosystem functioning by increasing resistance 28 

to climate events2, and by diluting disease risks3. In contrast, agricultural systems are depleted of 29 

biodiversity, and are notoriously sensitive to pathogens and pests4, as well as environmental stress such 30 

as drought5–7. To guarantee food security to a growing global population and food habit changes8, 31 

increases in yields must not further erode the natural capital upon which agriculture relies. Hence, 32 

ecological intensification that supports and regulates ecosystem services is increasingly seen as one way 33 

of achieving food security in an environmentally sustainable and climate-smart way9,10. This would 34 

allow transitioning away from increasing use of synthetic inputs that has characterized global 35 

agricultural intensification, causing degradation of agroecosystems and its functions both within 36 

agricultural environments11 as well as beyond its boundaries. Currently the mechanisms underpinning 37 

the biodiversity-ecosystem functioning relationships are under active discussion. While most research 38 

has focused on above-ground mechanisms, current limited evidence suggests that plant diversity 39 

interacts with below-ground microbial communities that in turn sustain and promote ecosystem 40 

functioning both below- and above-ground12–15. Toward this end, here, we present a framework for 41 

understanding how plant diversity could be utilized to guide environmentally-friendly agriculture both 42 

directly via mechanisms operating above-ground, as well as those mediated by responses in below-43 

ground microbial communities (Figure 1). 44 

A variety of mechanisms have been suggested to lead to positive diversity-ecosystem 45 

functioning relationships31,32. Primary productivity is the most intensively studied dimension of 46 

ecosystem functioning, and biodiversity experiments have shown that with increasing plant diversity 47 

productivity also increases33. While diverse communities produce consistently high amounts of biomass, 48 

species-poor communities show much more variability. There are certain species that produce 49 

comparable amounts of biomass when grown alone or in diverse communities17. Including few such 50 

productive species in diverse mixtures may promote the productivity through selection effects. In 51 
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addition, complementary interactions between species can enhance the productivity of most of the 52 

species within the community34,35. There is a wide variety of complementary interactions, but they can 53 

be broadly classified into resource partitioning (e.g. through different root morphology and depth), 54 

biotic feedbacks (e.g. the hosting of pollinators or N-fixation by legumes) and abiotic facilitation (e.g. 55 

through the microclimate)32,36. Similar mechanisms are likely to influence other ecosystem functions as 56 

well37–39. Biodiversity may also promote ecosystem stability and productivity by increasing resistance 57 

and resilience to biotic and abiotic stressors (the insurance hypothesis)40. An analysis of 46 experiments 58 

that manipulated grassland plant diversity found that biodiversity increased ecosystem resistance for a 59 

broad range of climate events2. Increasing biodiversity is often associated with a reduction in the risk of 60 

an individual’s disease risk, a phenomenon known as the dilution effect41. The dilution effect is most 61 

commonly observed for biodiversity gradients generated by disturbances resulting in biodiversity loss3. 62 

Growing evidence suggests that changes in the structure of host communities and in the composition of 63 

functional traits following biodiversity loss rather than species richness per se, can explain when a 64 

dilution effect should be observed42–48.  65 

The relevance of biodiversity in provisioning ecosystem functions grows when larger spatial and 66 

temporal scales are considered49050. As environmental conditions vary with time, stress intensity changes 67 

as well. High levels of stress have been shown to have a greater negative effect on low-diversity than 68 

high-diversity communities35,51–53. The relevance of the above-mentioned insurance dimension of 69 

diversity also increases when considering the ability of ecosystems to maintain their functions over 70 

years or decades40,54. Moreover, complementary interactions between species become increasingly 71 

important at longer time scales35,50. More studies and long-term experimental sites are needed not only 72 

to further evaluate how complementarity and selection effects change over time but also how other 73 

ecosystem functions other than productivity may be impacted by diversity through time.    74 
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Plant diversity is crucial for a stable 
provisioning of various ecosystem functions. 

2 Different microbial communities are associated 
with different plant species. The diversity and 
composition of the plant community should 
thus shape the diversity and composition of the 
soil microbial communities. 

3 Soil microbial diversity can directly promote 
ecosystem functions such as decomposition, 
nutrient cycling or mitigation of greenhouse 
gas emissions. 

4-5 The effects of soil microbial diversity on 
ecosystem function can be indirect via changes 
in soil properties such as soil aggregation.  

Figure 1. The pathways by which plant biodiversity links to ecosystem, functioning via both 75 
above- and below-ground. Plant biodiversity is known to contribute to and stabilize the provisioning of 76 
ecosystem functions, such as biomass production, decomposition, soil carbon storage, dilution of fungal 77 
pathogens and insect herbivores or pollinator abundance16,17. Many of these functions are crucial for 78 
agricultural production. It is becoming increasingly clear that plant community diversity and 79 
composition determines the composition of the soil microbial community. Plant traits such as 80 
productivity, physiology, root architecture, and the composition of root exudates are predictors of how 81 
plant species affect the soil microbial community18–20. The diversity and composition of the plant 82 
community is expected to affect how soil microbial communities are structured. Plant diversity is 83 
associated with increased microbial biomass21 and respiration, and plant community functional 84 
composition is a strong predictor of mycorrhizal community composition22. Soil microbial communities 85 
in turn can directly promote ecosystem functions such as decomposition23, nutrient cycling24 or mitigate 86 
green-house gas emissions from the soil25–27. The influence of the soil microbial community on 87 
ecosystem functioning might occur through direct interactions with the plant community or via 88 
alterations in the soil properties, such as soil aggregation, which can impact, for example, water and 89 
oxygen percolation in soil with consequences for plant growth. Soil microbial diversity has been found 90 
to positively affect soil aggregation28, community growth efficiency29 and formation of new soil organic 91 
matter30 that is more persistent to decomposition. 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
Figure 2. Agricultural diversification in space and time. Modern agriculture often relies on large 100 
fields of uniform crops and thus has large potential for diversification. Diversification can occur at 101 
varying spatial and temporal scales: At a large spatial scale, 1. agroforestry systems incorporating trees 102 
and shrubs on and between the agricultural fields and 2. the spatial arrangement of fields or rows of a) 103 
different main crops or b) main crops and service crops can create diverse landscapes. Within fields, the 104 
mixture of 3) different cultivars of the same crop or 4) multiple different species – be it a) multiple main 105 
crops or b) main crops with service crops – can contribute to local diversification. When different crops 106 
grow on the same field, but temporally separated, diversification occurs in time: 5) in relay cropping 107 
systems a subsequent crop is planted before the prior crop is harvested. Thus, there is a time period 108 
when both crops grow together, but not throughout their entire life cycles, so diversification occurs both 109 
in space and time. 6) In crop rotation, different crops are sown after the harvest of the prior crop and 110 
diversification occurs solely in time.  111 
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Can sustainability of agroecosystems be improved by increasing plant diversity? 113 

Many of the ecosystem functions which diverse ecosystems provide, such as pollination, nutrient 114 

retention, weed control or disease suppression are important for agricultural crop production55,56. 115 

Modern agriculture has been developed to maximize yield per hectare, and current crops produce high 116 

yields in monocultures when supplemented with nutrients and controlled by pesticides. In such a 117 

scenario, the addition of species will likely provide limited benefits in terms of productivity55. Indeed, in 118 

many agricultural systems diversification does not increase yield of the main crop57. However, diversity 119 

has the potential to improve other ecosystem functions in agricultural monocultures, potentially by 120 

reducing the need for external inputs such as pesticides, irrigation or fertilization55. To date, it is well-121 

established that increasing the diversity of crops - even from a monoculture to a mixture of two cultivars 122 

- reduces disease levels significantly58–60. A recent synthesis demonstrated that indices of functional 123 

diversity, particularly the distribution of trait abundances, were strong predictors of agricultural 124 

ecosystem multifunctionality that included weed suppression, nitrogen (N) retention, inorganic N 125 

supply, increase in above‐ground biomass, and sometimes even yield61. In Figure 2 we outline current 126 

management options that increase plant diversity in space and time in agricultural cropping systems.  127 

While there is more or less evidence that any of these diversification measures are beneficial for 128 

the provisioning of one or the other ecosystem function, we lack a general framework to maximize 129 

multiple ecosystem functions without compromising crop yields. There is evidence that biodiversity is 130 

especially important when multiple ecosystem functions should be provided simultaneously62,63. 131 

Often the provisioning of a given ecosystem function depends at least to some degree on the 132 

capacity of each species in the community to provide this function and on the relative abundance of 133 

these species64. Since different species are good at supporting different functions37,65,66 and 134 

abundance of each species is limited by the presence of multiple other species, “Jack-of-all-trades” 135 

effects are likely: diverse communities are good at providing multiple functions at intermediate 136 

levels, while low diversity communities are better at maximizing single or few functions64. 137 

However, complementarity mechanisms between species, such as for example facilitation can help 138 
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to provide ecosystem functions above simple additive effects in polycultures32. This implies that in 139 

agricultural systems, where crop production usually is the main ecosystem function to be 140 

maximized, the identity and abundance of the additional species added (thereafter service species) 141 

in diversification schemes is essential to enhance functions other than crop production, without 142 

simultaneously compromising crop yield. This requires a fundamental ecological understanding, a 143 

clear definition of target ecosystem functions for a given agroecosystem and the choice of service 144 

species accordingly. A good diversification scheme thus includes a combination of species to 145 

enhance target functions and species, which support the crop species to continuously provide 146 

relatively high levels of yield (complementarity effects). For example, (local) diversification has 147 

been shown to enhance pest control, but this often leads to a trade-off with crop yield. This trade-off 148 

can be alleviated by including legume species in the polyculture and pest control can be enhanced 149 

while less compromising crop yields. Also, other trade-offs between different ecosystem functions 150 

are possible, but can be alleviated by strategic choice of species and management practices67. 151 

Similar principles likely apply also for the use of different varieties in monoculture crops68. 152 

Plant diversity effects on below-ground microbial communities  153 

Processes leading to positive BEF relationships can happen above ground, for example habitat 154 

provisioning for natural enemies and pollinators or alterations in the microclimate, but there is also a 155 

multitude of mechanisms that occur below ground, for example processes involved in resource 156 

partitioning and decomposition or dilution of (below-ground) pathogens. Soil microbial communities 157 

are involved in many of these below-ground processes and plant-soil feedbacks likely play a crucial role 158 

in shaping BEF relationships as recently discussed by Thakur et al. (2021)12.  159 

Understanding the potential of plant diversity to promote below-ground microbial diversity and 160 

ecosystem functions is highly relevant in food production systems where configuration of plant diversity 161 

is under strict human control. Currently, there is a pressing need to identify how plant diversity could be 162 

utilized to steer soil microbiomes to improve the growth, yield and resistance of crops, as well as 163 
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ecosystem functioning69-71 (Figure 3). Beneficial soil microbes - namely fungi and bacteria - can 164 

improve plant nutrient acquisition, defense, and stress tolerance72–74, as well as community level nutrient 165 

capture71 and productivity75. The targeted use of beneficial soil microbes in agricultural systems would 166 

not concur the environmental and socioeconomic costs associated with agrichemical inputs used with 167 

the same aims76. However, agricultural soils typically host low densities of microbial symbionts due to 168 

the disruptive impacts of tillage, chemical inputs, crop rotation patterns77–80, as well as potentially due to 169 

the lack of plant diversity81,82. While it is generally accepted that below-ground diversity, particularly of 170 

fungal symbionts, has the potential to regulate plant assemblages and their diversity75,83, far less is 171 

known about how plant diversity in turn regulates below-ground microbial diversity71.  172 

A few pioneering studies have demonstrated the extent to which plant species differ in how they 173 

influence their soil microbiome18,71. Numerous host plant traits have been found to associate with root 174 

microbial diversity. Among these, root exudates that differ among plant species play a dominant role in 175 

shaping the rhizosphere and eventually the soil microbiome19, 20. Plant functional type (e.g. for nodule 176 

forming bacteria for legumes) can also explain variation in the soil microbiome, even to the extent that it 177 

overrides the effects of plant species84. In addition, plant productivity, physiology, and root architecture 178 

are among traits that are found to associate with diversity of root microbial communities, generating 179 

variation in microbial communities associated with different plant species18. Plant species may also 180 

differ considerably in their affinity to form associations with beneficial microbes. Importantly, modern 181 

crops are found to be less responsive to symbionts and exerting less robust partner choice than their 182 

ancestors and wild relatives85.  183 

The variation detected among plant species in their associated below-ground microbial 184 

communities suggests that above-ground diversity at the community level has the potential to drive 185 

below-ground microbial diversity71. Indeed, the limited evidence to date has demonstrated that the 186 

effects of plant diversity on the diversity of soil micro-organisms were most pronounced in the most 187 

diverse plant communities, although differences could only be detected after a time lag. Plant species 188 

functional grouping at the community level has also been found to be a strong predictor of arbuscular 189 
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mycorrhizal (AM) community composition22. The effects of plant diversity are not only evident at the 190 

contemporary community level; AM fungal community assembly on focal plant species was influenced 191 

by a legacy effect of neighboring plant species from the past86. This is promising for management 192 

schemes that implement diversity through rotations (see Figure 2, point 6). 193 

There is a growing consensus that the key to understand the effects of plants on the below-194 

ground communities and their functions lies where the world of plants and soil microbes meet: the 195 

rhizosphere71,87,88. Considered one of the most dynamic interfaces of Earth, rhizosphere is the thin zone 196 

of soil that encircles and is impacted by plant roots. Rhizodeposits - the rhizosphere products imparted 197 

to the surrounding soil - contain a multitude of compounds including sugars, amino acids, organic acids, 198 

as well as mucilage (i. e. polymerized sugar) and root dead cells that may strongly impact the activity 199 

and composition of the microbial community in the rhizosphere71. The rhizodeposits signature is 200 

species-specific89, and chemical temporal succession in the rhizosphere of oat plants (Avena barbata) 201 

was shown to interact with microbial substrate preference and ultimately drive microbial community 202 

assembly90. Cropping schemes are predominantly developed under highly-fertile conditions and via 203 

suppression of soil pathogens, thus minimizing the potential contribution of interactions in the 204 

rhizosphere to plant health and growth. When aiming to develop a more sustainable agriculture that 205 

relies less on external inputs of pesticides and fertilizers, it is crucial to capitalize on multitrophic 206 

rhizosphere-mediated interactions. The challenge ahead lies on re-establishing these interactions that are 207 

weakened or lost due to consequences of breeding85 and intensive agricultural practices91.  208 
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 209 

Figure 3. Cropping system diversity and its ecosystem functions. Diverse cropping systems are more 210 
resistant to climate perturbations of temperature and precipitation, being able to maintain higher crop 211 
yields even under these disturbances compared to low diverse systems. Plant-microbial interactions 212 
explain in part the capacity of plants to cope with the adverse abiotic conditions (A). High levels of 213 
biodiversity decrease disease risk also known as the dilution effect and ensure pollination services 214 
compared to low diverse systems (B).  215 
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The effects of soil microbial diversity on ecosystem functioning 216 

In addition to the effects on microbial diversity, plant diversity is associated with increased microbial 217 

activity enhancing biomass, respiration92 and carbon storage in soils14,93,94. Biodiversity of soil microbes 218 

may interact directly with plants or via their effects on soil properties (Fig. 1). Previously, it was argued 219 

that a positive relationship would be observed between soil microbial diversity and soil functions if 220 

those were controlled by a phylogenetically restricted group or microorganisms95. However, more recent 221 

studies are challenging this idea as some general processes of carbon cycling have been shown to be 222 

dependent on microbial community composition29,96,13. Thus, growing evidence suggests that soil 223 

microbial diversity is associated with crucial functional aspects of soils for sustainable agriculture, 224 

including suppression of pathogenic microbes97,23, decomposition of plant matter23, nutrient cycling98, 225 

mitigation of greenhouse gases25-27 and carbon sequestration (Box 1)99. Diversity of soil microorganisms 226 

may impact both nutrient cycling crucial for plants as well as soil physical structure100 that is typically 227 

measured as soil aggregation. Soil aggregation reduces erosion and is considered an important 228 

component of soil fertility and water retention capacity. There is increasing evidence that beneficial 229 

microbes are a crucial component ensuring plant wealth and growth, by recycling nutrients, N fixation, 230 

defense benefits, nutrient acquisition71).  231 

During the last decade we’ve gained understanding in how microbial community composition 232 

drive soil functioning, now more recent studies are evaluating the context-dependencies of this 233 

relationship. For example, microbial diversity was shown to have a positive impact on carbon use 234 

efficiency (CUE) but only in wet soils28, showing that abiotic factors can modulate the diversity – 235 

function relationship. The biotic context may also mediate these outcomes - changes in multitrophic 236 

interactions between microorganisms and plants was shown to explain temporal variation of diversity 237 

effects101. Considering that only 0.3% of soil ecological studies have quantified both diversity and 238 

function29, it is important to highlight that more holistic research is needed to increase our understanding 239 

of the dependencies between biodiversity and function in soils. However, it is becoming increasingly 240 

clear that soil microbial biodiversity is a promising – yet underutilized - component of sustainable 241 
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agriculture. A recent expert consensus statement concluded that understanding how climate change and 242 

other human activities affect microorganisms as well as deciphering how microorganisms affect climate 243 

change (including production and consumption of greenhouse gases) is essential for achieving an 244 

environmentally sustainable future102.  245 

Box 1: What is the role of soil microbial communities for the global carbon cycle in 

agroecosystems? 

Soils are the largest and most dynamic terrestrial carbon (C) pool, storing 2000 Pg of C – more than 

the atmosphere and biosphere combined103,104. While the net C input into soils is due to net primary 

productivity dominated by higher plants, soil microorganisms greatly contribute to the net C exchange 

between soil and atmosphere through the processes of decomposition and heterotrophic respiration. 

Natural CO2  fluxes from soils are almost seven times higher than emissions due to the combustion of 

fossil fuels. This suggests that any small changes on these natural fluxes could have major implications 

for CO2 concentration in the atmosphere and for the climate. Increases in soil organic matter 

decomposition and CO2 emissions can be driven by agricultural practices. For example, deep ploughing 

enhances decomposition by increasing the oxygen level of soils and making previously inaccessible 

carbon accessible for microorganisms. Globally, soils could have lost between 40 and 90 Pg of C 

already due to agriculture113. As 40% of earth surface is utilized for agriculture103, strategies to reduce 

CO2 levels in the atmosphere must include management practices aiming to sequester some of this C 

back into soils. 

Empirical evidence is slowly accumulating to demonstrate that high plant diversity results in 

higher levels of C stocks in soils in both long-term experimental sites93,112 and observations in natural 

ecosystems105–111. While soils with high diversity of plants show high C stocks, it is the microorganisms 

living in soil that play a central role for this C sequestration115. Previous theories focused on the 

recalcitrance of less-reactive compounds and physical protection as controls of soil carbon stocks, while 

more recently the focus has shifted to highlight the importance of microbial-derived soil organic matter 

(SOM)113. When microbes metabolize soil C inputs (i.e., leaf litter, root exudates, organic amendments, 

or pre-existing C compounds), a proportion of C is allocated to growth, and the resulting biomass can 

contributes to further building the SOC pool once exuded by microbes or upon cell death (Figure 4). In 

a recent study, Domeignoz-Horta et al. (2020) showed that a higher fraction of carbon is allocated to 

growth in relation to respiration when microbial diversity is high94,114. Thus, if above ground plant 

diversity or other management practices can be applied to enhance belowground microbial diversity, it 

is likely that more C will be sequestered due to higher microbial community growth efficiency (Figure 
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4). With respect to microbial control of SOM formation, emerging theories focus on molecular 

functional diversity of SOM, spatial heterogeneity and temporal variability14,33.  Lehman et al., 2020 

recently proposed that greater diversity of C compounds could increase the metabolic costs necessary 

for its decomposition, resulting in remaining C in soil that could be potentially degraded but is not due 

to low energetic gains. A recent study corroborates this new theory demonstrating that bacterial 

community composition explained the signature of newly-formed SOM during microbial growth and 

that more diverse communities generated more persistent SOM14,93. This same study highlights the 

importance of fungal x bacterial interactions for the decomposition and generation of new stable SOM. 

These findings provide insight on how to manage soils for maximum biological diversity as a means of 

building persistent SOM stocks in agriculture.  

 

Figure 4. Plant diversity impact on soil carbon cycling. Plant diversity impact multitrophic 

interactions and microbial community assembly and growth. A more diverse signature of rhizodeposits 

will result in a more active microbial nutrient cycling, impacting positively microbial community 

growth efficiency and the formation of more complex necromass, which will form SOM that is more 

persistent to degradation. Red arrows represent negative impact of plant diversity loss on plant-driven 

processes (green arrows). A high diverse plant community result in more positive soil multitrophic 

interactions (blue arrows) which will impact soil carbon cycling (brown arrows). 

  246 
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How to implement diversity into agroecosystems? 247 

Biodiversity-ecosystem functioning relationships often display a positive asymptotic relationship. This 248 

means that the biggest benefits of additional species occur in species-poor communities65,17. Large 249 

agricultural fields consisting of monoculture have thus large potential for improved ecosystem 250 

functioning through diversification55. Diversification in agriculture can be achieved through various 251 

measures at different spatial and temporal scales (Figure 2). Here, our intent is to highlight the potential 252 

of plant diversity for a more sustainable agriculture via both above- and below-ground mechanisms. 253 

However, we acknowledge that benefits of diversification will depend on how it is combined with other 254 

management practices, including conservation tillage, re-use of crop residues, and integrated pest 255 

management116.  256 

Agroforestry (Figure 2, point 1), where trees or shrubs are incorporated into crop production, 257 

can provide erosion control, enhance soil fertility and promote biodiversity of other organismal groups 258 

in agriculture117. Row cropping of different main crops (Figure 2 point 2a) can increase yield, reduce the 259 

need for fertilizer118 and promote diversity of mycorrhizal fungi119. Sometimes species other than main 260 

crops are needed for the provision of ecosystem services aside from crop production (Figure 2, point 261 

2b), for example the use of flower strips to promote pollination or pest control120. Within a field, 262 

mixtures of different varieties of a crop species (Figure 2, point 3) have been shown to increase crop 263 

yield and stress resistance121, reduce disease pressure58 and improve human nutrition122. Combinations 264 

of functionally distinct varieties have proven especially good at providing stable high yield68,121. 265 

Similarly, mixtures of different crop species (Figure 2, point 4) can increase yield123, reduce pest 266 

pressure124, fertilizer need and nutrient leaching125. Sometimes, species other than the main crop, so-267 

called service crops, can help to promote ecosystem functions. For example, undersown Italian ryegrass 268 

has been shown to prevent nutrient leaching in cereal fields126. It is likely that the mixture of crops with 269 

complementary traits provide most benefits66.  270 

Diversification in time includes relay cropping (Figure 2, point 5) and crop rotation (Figure 2, 271 

point 6), which can include the use of cover crops between main crops. Relay cropping can help to gain 272 
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benefits of row cropping or mixed cropping, while reducing negative effects such as competition 273 

between the crops, by growing multiple crops together for only a part of the growing period118,127. Crop 274 

rotation can prevent large pest populations from establishing over time, optimize resource use and avoid 275 

self-toxicity128. Ground-covering crops between intervals of successive cash main crops sustain soil 276 

quality and productivity by reducing erosion and nutrient loss and by enhancing soil C and N contents, 277 

and microbial biomass129,80. Crop rotations are thus a cornerstone of sustainable agroecosystems80,130 278 

with a long-standing history, but developments such as the availability of chemical inputs and 279 

specialized machinery together with economic market trends have led to shorter and simpler rotation 280 

cycles with often negative consequences for crop yield128.  281 

Different diversification measures can also be successfully combined. For example, push-pull 282 

methods to reduce natural enemy damage combine diversification at two spatial scales: they mix crop 283 

species with service species that repel insect pest and have strips of another species, which lures the 284 

pests away from the crops surrounding the crop field131. Another example is the use of diverse cover 285 

crop mixtures within crop rotations to provide more ecosystem functions than the use of simpler cover 286 

crop mixtures66. It seems that there are many cases where diversification at different spatial and 287 

temporal scales jointly yield the best outcomes56. 288 

Future directions 289 

It is becoming increasingly clear that promoting plant diversity in agricultural systems has the potential 290 

to drive soil microbial diversity, and jointly the above- and below-ground diversity are expected to 291 

enhance ecosystems functions desired of sustainable cropping systems and their stable provisioning over 292 

time– e.g. productivity, disease resistance and nutrient cycling. However, there are still two major 293 

knowledge gaps that we discuss below. 294 

Context dependencies of the soil microbial diversity – soil ecosystem functioning relationships 295 

Growing evidence shows that soil microbial diversity promotes single soil ecosystem functions, and 296 

overall multifunctionality132. It is also known that plant species differ in how they influence the soil 297 
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microbiome depending on their functional traits18, plant functional type84 and their root exudates19. It 298 

should thus be possible to use plants to modulate the soil microbiome and with this promote ecosystem 299 

functioning. However, it is difficult to predict the outcome of these plant-soil feedbacks, which may be 300 

highly context dependent71). For example, bacterial diversity promoted carbon use efficiency only in 301 

wet soils, and diverse AMF communities can switch from beneficial to antagonistic under drought 302 

conditions for their crop host133. Consequently, further research is needed to (1) delineate the 303 

mechanisms responsible for the relationship between diversity and specific soil functions, and to (2) 304 

determine the context-dependencies of such relationship for the multiple soil functions. Global change, 305 

especially climate change might disrupt the associations between soil microbes and the plants134. 306 

Understanding the mechanisms behind diversity effects is crucial in order to predict how global changes 307 

influence plant-soil feedbacks and to design agroecosystems which are robust to global change.  308 

Application of ecological knowledge to agricultural practices 309 

Despite the reliance of agriculture on ecosystem functions and the large potential for enhanced 310 

functioning in agroecosystems, thus far knowledge regarding biodiversity-ecosystem functioning 311 

relationships has had little impact on agricultural practices. The reason for this is likely a mismatch 312 

between the focus of ecological research and farmers’ interests76. In order to be implemented, 313 

diversification schemes must prove direct economic benefit for crop farming in terms of enhanced yield 314 

or reduced need for chemical inputs, without causing implementation costs that exceed the benefits76. 315 

There is a clear need to bridge that gap between ecological and agricultural research. 316 

A factor that might reduce the benefits provided by diversification is that many agricultural 317 

species have to some degree lost the ability to cooperate with microbial symbionts, likely because the 318 

services provided by these services have been replaced by external inputs. Thus, it remains unclear to 319 

what extent agricultural species are responsive to these microbial associations, and can benefit from 320 

diversification85. Plant breeding research should focus on traits that promote beneficial plant-microbe 321 

interactions, as well as plant-plant interactions that are critical for biodiversity-ecosystem functioning 322 

relationships.  323 
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Further, farming practices such as fertilization or tillage on their own affect the diversity and 324 

composition of soil microbial communities135 and might decouple plant-plant and plant-microbial 325 

interactions. For example, overfertilization can inhibit mycorrhizal colonization and the formation of 326 

nodules in legumes136 and promote greenhouse gas emissions137. Such agricultural practices thus add 327 

a layer of complexity to the soil-mediated diversity effects on ecosystem functioning that need to be 328 

considered when studying and designing diverse agroecosystems. 329 

Finally, we see a great need for integrating the knowledge of different disciplines in order to 330 

understand how changes in the plant community composition in agroecosystems cascade through soil 331 

microbial food webs and ultimately affect the provision of ecosystem functions. 332 

Conclusions 333 

The motivation behind this Perspective was to bring together insights from biodiversity-ecosystem 334 

functioning research spanning both plant and microbial ecology to gain understanding of how plant 335 

diversity could be used to guide ecosystem functioning not only above- but also below-ground in 336 

agricultural settings. The effects of plant diversity on ecosystem functioning above-ground have been 337 

previously reviewed31, and current theory and empirical support provide a framework for developing 338 

sustainable agricultural strategies. However, there are major gaps in current knowledge in how below-339 

ground effects contribute to – and could be managed – to promote sustainable agriculture. These need to 340 

be addressed to reliably predict conditions under which we can reach the desired outcomes. 341 

Uncertainties include the efficacy related to the different management practises described in Figure 2 342 

with respect to below-ground processes, and as well as the context dependency – including abiotic, 343 

biotic and cultural – that needs to be accounted for to develop general strategies to guide sustainable 344 

agriculture. Nevertheless, limited data emerging from different fields highlight that plant diversity could 345 

be purposefully used to guide soil biodiversity, and it would be short-sighted not to take advantage of 346 

this potentially highly effective yet environmentally friendly and cost-effective management strategy at 347 

a time when the need for sustainable agriculture is in greater demand than ever before. 348 
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