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Abstract: 

1. Human population expansion into nonhuman animals’ habitats has increased interest in 

the behavioral ecology of human-wildlife interactions. To date, however, whether and 

how wild animals and their conspecifics form non-random associations in terms of when 

or where they interact with humans still remains unclear.  

2. Here we adopt a comparative approach to address this gap, using social network 

analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife 

spatial and social ecology, can be a powerful tool to understand how animal 

socioecology influences the spatiotemporal distribution of human-wildlife interactions.  

3. For 10 groups of rhesus, long-tailed, and bonnet macaques (Macaca spp.) living in 

anthropogenically-impacted environments in Asia, we collected data on human-

macaque interactions, animal demographics, and macaque-macaque agonistic and 

affiliative social interactions. We constructed ‘human-interaction networks’ based on 

associations between macaques that interacted with humans within the same time and 

spatial locations, and social networks based on macaque-macaque allogrooming 

behavior, affiliative behaviors of short duration (agonistic support, lip-smacking, silent 

bare-teeth displays, and non-sexual mounting), and proximity.  

4. Pre-network permutation tests revealed that, for all macaque groups, human-

interaction networks showed non-random structures. GLMMs revealed that individuals’ 

connectedness within human-interaction networks were positively associated their 

connectedness within affiliation social networks, and social proximity networks although 
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this effect varied across species (bonnets > rhesus > long-tailed). Male macaques were 

more well-connected in human-interaction networks than females. Neither macaques’ 

connectedness within grooming social networks nor their dominance ranks had an 

impact on human-interaction networks.  

5. Our findings suggest that, in challenging, time-constraining anthropogenic 

environments, less time-consuming affiliative behaviors and additionally greater social 

tolerance (especially in less ecologically flexible species with a shorter history of 

exposure to human activity) may be key to animals’ maintaining strong social 

connections. Subsets of these animals may also utilize greater exploratory tendencies 

and life-histories that are less energetically demanding in the long-term. Both of these 

strategies may contribute to animals’ propensities to engage in joint risk-taking by being 

near and engaging with humans. From conservation and public health perspectives, 

human-interaction networks may inform interventions to mitigate zoonotic disease 

transmission and move human-wildlife interactions from conflict towards co-existence.  
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Introduction: 

An expanding human population has increased overlap and contact rates between humans 

and wildlife (Nyhus, 2016). The resulting human-wildlife interactions have visible, readily 

discernible outcomes on wildlife populations, but also subtler effects on animal ecology and 

behavior that remain less well-documented (Balasubramaniam et al., 2021). The sub-field of 

conservation behavior addresses this gap, and largely deals with how anthropogenic factors 

impact animal movement and (consequential) access to natural resources, interspecies ecosystem 

interactions with predators and competitors, and intraspecies spatial overlap and social 

interactions with their conspecifics (reviewed in Berger-Tal et al., 2016; Snijders et al., 2017). 

However, there exists comparatively less research on the inverse effect – that is, on how animal 

attributes that influence their life-history, or their interactions with socioecological components 

of their natural environment, might impact their behavior in anthropogenic environments 

(Balasubramaniam et al., 2021; Morrow et al., 2019). This is despite growing consensus that 

human-wildlife interactions generate coupled, bi-directional effects whereby they both affect, 

and are reciprocally affected by, wildlife ecology and behavior (Balasubramaniam et al., 2021; 

Carter et al., 2014; Lischka et al., 2018).   

More recently, however, a handful of empirical studies have focused on how the 

socioecology of group-living wild animals can influence human-wildlife interactions. 

Specifically, these have revealed how wild animals’ tendencies to engage in risk-taking 

behaviors within human-impacted environments are associated with a number of life-history and 

socioecological traits, such as animals’ sex, dominance rank, spatial position within their groups, 

and connectedness within social networks (e.g. elephants, Elephas maximus: Chiyo et al., 2012; 
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black bears, Ursus americanus: Lischka et al., 2018; multiple species of macaques, Macaca spp.: 

Balasubramaniam et al., 2020a; Morrow et al., 2019). A common aspect of all these studies is 

that they have focused on the overall frequencies of human-wildlife interactions, or the overall 

degrees of exposure of individual wild animals to humans and anthropogenic factors. In 

comparison, less well-studied is whether and how animals form non-random associations in 

terms of when, where or how they interact with humans.  

Understanding such patterns of associations in human-wildlife interactions is important 

for many reasons. First, capturing the dynamic, spatiotemporally variant socioecology of human-

wildlife interactions could offer opportunities to study contemporary evolution, and animals’ 

propensities to adaptively respond to rapidly changing environments (Wong & Candolin, 2015). 

Second, from a public health perspective, they could provide valuable information regarding 

whether or how some animals, by virtue of overlapping with humans and anthropogenic areas 

across time and space, may be the targets of interventions to mitigate the spread of zoonotic and 

emerging infectious diseases at human-wildlife interfaces (Cunningham et al., 2017; Townsend 

et al., 2020). Third, such animals may also be the targets of conservation efforts, interventions 

and policy making aimed at decreasing human-wildlife conflict while increasing mutual welfare 

and co-existence (Nyhus, 2016).     

Network approaches offer exciting quantitative tools that may uniquely be able to address 

this gap in the literature. Beyond just rates or durations of interaction, networks allow for 

modeling the heterogeneity in relationships between entities (i.e. individual animals or humans; 

assigned as nodes) based on shared or interactive patterns of their association (assigned as edges) 

(Farine & Whitehead, 2015; Wey et al., 2008). In particular, social networks, which link animals 

based on their shared patterns of space-use associations or contact and non-contact social 
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interactions (Farine & Whitehead, 2015), have found wide-ranging applications in animal 

behavioral ecology (Croft et al., 2008; Krause et al., 2014), including of late in conservation 

behavior (Snijders et al., 2017). For instance, epidemiological studies have used animal social 

networks to assess the vulnerability of wildlife populations to infectious disease outbreaks (Craft, 

2015; Drewe & Perkins, 2015). More pertinently, an increasing number of studies have revealed 

how interactions with humans may decrease the connectedness of animal social networks (e.g. 

spotted hyenas, Crocuta crocuta: Belton et al., 2018; giraffes, Giraffa camelopardalis: Bond et 

al., 2020; bottlenose dolphins, Tursiops aduncus: Chilvers & Corkeron, 2001; moor macaques, 

M. maura: Morrow et al., 2019), and in extreme cases that involve the removal or relocation of 

individual animals, to the fragmentation of social networks (e.g. Killer whales, Orcinus orca: 

Williams & Lusseau, 2006). Such findings are of profound importance since decreased social 

network connectedness or fragmentation can strongly impact animal health and reproductive 

success (Nunn et al., 2015). Yet while most social network analysis has focused on space-use 

overlap or social interaction networks, little research has implemented network approaches to 

model human-wildlife interactions themselves, or even associations between wild animals that 

co-inhabit anthropogenic environments at the same time and space (Sosa et al., 2021a). 

One reason for this may be that researchers may face logistical and ethical challenges 

while attempting to construct human-wildlife interaction networks. For instance, the inclusion of 

humans or anthropogenic features as node(s) in human-wildlife ‘bimodal’ or ‘multimodal’ 

networks would require that researchers identify and track the behavior of individual people, 

specific human sociodemographic communities, and/or other features of anthropogenic 

landscapes that come into contact with wildlife (e.g. livestock, feral mammals: Bhattacharjee & 

Bhadra, 2020). Collecting such data is not always feasible, in light of the considerable geospatial 
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and sociocultural variation that researchers face while sampling human demographics, 

experiences, and behavior (Barua et al., 2013; Dickman, 2010; Karanth et al., 2018). A more 

feasible approach may be to record interactions between humans and pre-identified wild animals 

across time and overlapping space, and ‘project’ these interspecies interactions into what are 

effectively unimodal ‘social’ networks in which wild animals are linked based on their 

interactions with shared features of their ecology (here, humans). Such projections have been 

constructed before for other ecological networks, for instance the conversion of a primate-

parasite bimodal network into a unimodal ‘social’ network that linked nonhuman primate species 

(nodes) based on the parasites they shared (edges) (Gomez et al., 2013). In the context of human-

wildlife interactions, such constructions would provide useful opportunities to determine whether 

animals interact with humans in non-random ways across time and space, and the 

socioecological determinants of such associations.  

In this study, we implement a network approach to capture heterogeneity in associations 

between humans and group-living wild nonhuman primates across time and space, for multiple 

human-primate interfaces in Asia. We address the above gaps in our current understanding of the 

ecology of human-wildlife interactions, by asking whether wild macaques (Macaca spp.) living 

in human-impacted environments (1) associate in non-random ways based on when or where 

they interact with humans, that are also (2) influenced by their demographic and behavioral 

characteristics linked to their life-history and socioecology. Aside from sharing close 

evolutionary histories with humans (Hasegawa et al., 1985; Roos & Zinner, 2018), wild primates 

are also increasingly sharing ecological space and resource-use overlap with humans (Fuentes, 

2012; Mckinney, 2015). Anthropogenic factors may present (in evolutionary time-scales) 

relatively novel, socioecological constraints on wild primates, with individuals having to 
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continuously adjust their behavior to adapt to human activities and behavior (Mckinney, 2015). 

Among the most ecologically and behaviorally flexible of all nonhuman primates, many species 

of macaque, particularly rhesus macaques (M. mulatta), long-tailed macaques (M. fascicularis), 

and bonnet macaques (M. radiata), are considered ‘edge’ wildlife species that overlap and 

experience spatiotemporally variant contact-rates and interactions with humans (Gumert, 2011; 

Priston & McLennan, 2013; Radhakrishna & Sinha, 2011). At the same time, they also show 

marked inter- and intra-specific variation in social interactions and (consequently) social network 

connectedness with their conspecifics, which has been strongly linked to differences in their 

evolutionary or phylogenetic relationships (Balasubramaniam et al., 2012; Thierry, 2007), 

exposure to socioecological factors (Sterck et al, 1997), and exposure to anthropogenic impact 

(Balasubramaniam et al., 2020b; Kaburu et al., 2019b; Marty et al., 2019). For these reasons, 

they are well-suited model systems for implementing network approaches to understand 

associations of human-wildlife interactions and their links to animal socioecology and behavior.  

‘Human-interaction networks’ were constructed for ten groups of three macaque species 

living in anthropogenic environments. These networks linked individual, pre-identified 

macaques based on their tendencies to interact with humans within the same time and space. To 

determine whether macaques were associated in terms of their tendencies to interact with 

humans in non-random ways across time and space, we first tested whether (p1) the patterning 

and distribution of individuals’ connectedness within their human-interaction networks would be 

significantly different from random. Second, we examined whether macaques’ human-

interaction networks were associated with their social networks. For this, we tested whether (p2) 

the node centrality of individuals within their human-interaction networks was positively 

associated with their centrality within their social grooming, proximity, and/or short-duration 



9 

Balasubramaniam et al. 

affiliation networks. We also explored the effects of individuals’ sociodemographic factors, i.e. 

their sex, dominance rank, and species, on their connectedness/centrality within their human-

interaction networks. As a cross-species comparison, we also determined whether the above-

predicted associations between human-interaction network centrality and social network 

centrality varied across different macaque species. 

 

Materials and Methods: 

Study sites and subjects: Demographic and behavioral data were collected on ten groups 

of macaques living in urban and peri-urban environments ranging from temperate areas in 

Northern India, to tropical environments in Southern India and Malaysia. The groups were as 

follows: four groups of rhesus macaques at a Hindu temple and the surrounding forested area 

(three groups) and a town mall area (one group) in the city of Shimla in Northern India (31.05 N, 

77.1 E); four groups of long-tailed macaques at a Hindu temple (two groups) and a recreational 

park (two groups) in the outskirts of Kuala Lumpur in Malaysia (3.3 N, 101 E); and two groups 

of bonnet macaques at a recreational area in the outskirts of the rural town of Thenmala within 

the state of Kerala in Southern India (8.90 N, 77.10 E) (Balasubramaniam et al., 2020b; Marty et 

al., 2020). Subjects were pre-identified, adult male and female macaques. At all three locations, 

macaque home ranges overlapped with humans and anthropogenic landscape features. However, 

there were systematic inter- and intraspecific differences in macaques’ degrees of exposure to 

humans, and indeed the frequency and types of interactions that they engaged/experienced with 

humans, which informed our expectation of detecting both within- and between-site differences 

or heterogeneity in human-interaction patterns. Supplementary Table 1 provides details on the 

study groups and subjects of the study. More details regarding the similarities and differences 
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between the study sites may be found in our previous publications (Balasubramaniam et al., 

2020b; Marty et al., 2020).  

Data collection: Data were collected following a standardized protocol that was 

implemented across all three field-sites, with inter-observer reliability being reached both within 

and across sites (details in Kaburu et al., 2019a). All data were collected for five days a week, 

between 9:00 am and 5:00 pm. Given the susceptibility of social network analysis to sampling 

methods and sampling bias (Farine, 2017; Farine & Whitehead, 2015), particularly to the inter-

dependencies of data used to construct multiple types of networks, we used different sampling 

approaches to collect data on human-macaque interactions and macaque-macaque social 

behavior.  

To record human-macaque interactions, we used an ‘event sampling’ approach (Altmann, 

1974; Beisner & McCowan, 2013; Kaburu et al., 2019a). For each macaque group and site, we 

divided their home-range that overlapped with anthropogenic settlements into a series of spatial 

blocks of roughly equal sizes, within which human-macaque interactions were most likely to 

occur (see Kaburu et al., 2019a for details). Choices of block numbers and locations differed 

across groups, and were assigned during a preliminary ‘training’ phase (of ~2 months) during the 

groups’ home-ranges were determined. However, block numbers and locations changed during 

the course of data collection in accordance with any shifts we saw in macaques’ home ranges 

that resulted in our adding or dropping event sampling at some blocks. Critically, block sizes 

were uniformly similar within and across study sites, and were set such that observers could 

potentially view and record all macaques and humans that were present within the block at a 

given time. To record human-macaque interactions, observers visited these blocks in a pre-

determined, randomized order on each day. From a pre-assigned, fixed location within each 
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block that maximized their visual field, observers recorded all human-macaque interactions that 

involved pre-identified macaques that were present within the block for a ten-minute duration, 

before moving on to the next block. We followed such a randomized block sampling approach to 

avoid over-sampling of human-macaque interactions in more (versus less) densely populated 

areas of macaques’ home-ranges, which can result in sampling bias (Farine, 2017; Farine & 

Whitehead, 2015). 

A ‘human-macaque interaction’ was defined as any contact or non-contact behavior that 

was initiated by a macaque towards a human (e.g. approach, aggression, begging for food), or by 

a human towards a macaque (e.g. approach, aggression, provisioning with food), that elicited a 

reaction behavior (e.g. submissive avoidance, fleeing, or screaming, counter-aggression, 

acquiring and feeding on human foods) from the initial recipient. We defined an “event” as either 

a single such interaction, or a series of such sequentially occurring interactions that were linked 

to each other temporally and/or through common/multiple participants (more details and 

definitions in Kaburu et al., 2019a). 

‘Focal animal sampling’ (Altmann, 1974) was used to record macaque-macaque social 

interactions and social proximity with conspecifics. On each day, and in each location, individual 

macaques were followed in a pre-determined, randomized sequence for ten-minute durations. In 

each session, we recorded events of dyadic agonistic interactions (aggressive and submissive 

behaviors), social or allogrooming, and other forms of dyadic affiliation that were of shorter 

durations than grooming (i.e. coalitionary support during social conflicts, lip-smacking, non-

sexual mounting, or silent bare-teeth displays in non-agonistic or peaceful contexts), that 

involved the focal animal as either the initiator or the recipient. Once every two minutes within a 

focal session, we temporarily ceased recording data in a continuous manner to conduct a point-
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time scan of the focal, to record the identities of all group conspecifics that were within body-

length proximity of the focal. More details on the definitions of behaviors may be found in 

Kaburu et al., 2019a.  

Construction of human-interaction networks and social networks: For each macaque 

group, undirected ‘human-interaction networks’ based on the spatiotemporal similarity of 

monkeys’ interactions with humans (Fig. 1a) were constructed. That is, links between all 

macaque subjects in a given group that engaged in human-macaque interactions within the same 

ten-minute event sampling session and within the same block were assigned. Such 

reconstructions enable determining whether macaques associated in non-random ways in terms 

of their tendencies to interact with humans across time and anthropogenic space, and if so what 

socioecological factors influence such associations. Edge-weights were calculated and assigned 

to these human-interaction networks, as the ratio between the total number of such occasions in 

which pairs of macaques spatiotemporally ‘co-interacted’ with humans, to the total duration of 

event sampling sessions conducted during the course of their overlapping tenure within their 

group, thereby accounting for their observability. 

For each macaque group, we also constructed three types of weighted, undirected ‘social 

contact networks’ based on our recordings of social macaque-macaque interactions of grooming, 

short-duration affiliative behaviors, and social proximity (Fig. 1b). In grooming and short-

duration affiliation networks, nodes were individual macaques, and edge-weights were calculated 

as the frequency of behaviors (given or received) between each pair of animals divided by the 

total focal observation time of each member of that pair during the course of their overlapping 

tenure within their group (details in Balasubramaniam et al., 2020a). In proximity networks, 

edge-weights were calculated as the number of point-time samples in which a pair of individuals 
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was seen within body-length of each other, divided by the total number of point-time samples 

collected for each member of the pair during the course of their overlapping tenure within their 

group. 

 

Figure 1: Macaque (a) human-interaction networks and (b) social networks 

 

Calculations of dominance rank and social network centrality measures: Using data on 

male-male and female-female dyadic aggressive interactions that elicited a submissive response 

from the recipient, we constructed dominance hierarchies separately for males and females for 

each group. Using these, we calculated the dominance rank of each macaque in each group, 

using the ‘Perc’ package in R (Fujii et al., 2015). To account for cross-group variation in group 

size, we standardized ordinal ranks to create a rank index ranging between zero (lowest-ranking 

macaque) and one (highest-ranking macaque) (Kaburu et al., 2019b). For each individual 

macaque within each type of network, we calculated weighted, undirected measures of their 

connectedness or centrality, both based on just their direct connections and by considering their 

secondary connections. First, we calculated weighted degree or (hereafter) strength as the sum of 

all the edge-weights of edges directly connected to an individual, i.e. the number and strength of 

an individuals’ direct connections (Croft et al., 2008; Newman, 2003). Second, we calculated 
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eigenvector as the number and strength of an individuals’ direct and secondary connections, i.e. 

the reach of an individuals’ connectedness or social ties (Bonacich, 2007; Brent, 2015).  

There is broad consensus among behavioral ecologists that these centrality measures are 

among the most biologically relevant (Sosa et al., 2021b). In the context of our human-

interaction networks, these measures would indicate the extent to which individual macaques 

engaged with humans at the same time and space as others (strength). By taking into account 

secondary connections, eigenvector, on the other hand, represents the extent to which individuals 

interacted more with humans alongside group members who themselves interacted more with 

humans while alongside other monkeys within the same time and space. In other words, we 

anticipate that these measures of their connectedness would be relevant to understanding (i) the 

socioecological underpinnings of macaques’ risk-taking behaviors in anthropogenic 

environments, and (ii) whether some individuals, due to their greater connectedness in one or 

both types of networks, may serve as targets for interventions to manage human-wildlife 

interactions and the risk of zoonotic transmission. To account for differences in group size (and 

hence the number of nodes or available partners within a network), we re-scaled the values 

calculated for each network measure within each group to sum up to one. Centrality measures 

were calculated using the ‘Igraph’ package in R (Csardi & Nepusz, 2006).  

Data analysis: To determine whether human-interaction networks showed non-random 

structures (p1), we implemented a ‘null’ model pre-network randomization procedure (Farine, 

2017; Farine & Carter, 2020). For each human-interaction network, we calculated the mean 

strength centrality of all individuals, and compared this ‘observed’ mean to a distribution of 

mean strength centrality scores calculated from each of 1000 permutations of the network 

generated by randomly swapping its edges. This approach has been shown to be more reliable 
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than other, post-network permutation-based null model approaches, i.e. node-swapping, to test 

the ‘null’ hypothesis of random network structure (Puga-Gonzalez et al., 2020).  

To test whether the structure of macaques’ connectedness within their human-interaction 

networks were associated with their connectedness within social networks (p2), we ran General 

Linear Mixed-effects Models (GLMMs) implementing a corrected Akaike Information Criterion 

(AICc) based model-selection and interpretation approach, using the ‘Lme4’ R package 

(Burnham & Anderson, 2002; Burnham et al., 2011).  

For a sample size of 339 macaques across ten groups, we ran two sets of negative-

binomial models, one for each of two outcome variables of macaques’ human-interaction 

network centrality measures, i.e. strength and eigenvector (Supplementary Tables 2 and 3). Each 

model-set consisted of seven models. In each model set, the first model included only 

sociodemographic attributes (i.e. sex, dominance rank, species) and was effectively the ‘null’ or 

‘control’ model. Models 2 and 3 included sociodemographic attributes plus a single measure of 

macaques’ corresponding centrality (e.g. strength centrality as a predictor of human-interaction 

strength centrality) in the grooming, short-duration affiliation, and proximity networks. 

Centrality measures from the grooming and proximity networks (but not short-duration 

affiliation networks) were strongly collinear and were not included in the same model.  Finally, 

models 4 to 7 included interaction terms between species and each social network centrality 

measure to explore cross-species differences in associations.  

From each model set, we shortlisted and interpreted model summary parameters from one 

or more ‘candidate’ models that had the lowest AICc scores that were within an AICc of 2 points 

from each other, and < 2 points from the next best-fit model. To account for inter-dependencies 

in human-interaction network measures examined as outcome variables, we re-calculated the p 
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values for the observed model coefficients for predictor variables that showed significant effects 

in each candidate model, using a post-network node-swapping randomization procedure (Farine, 

2017; Farine & Carter, 2020). In these, we compared observed model coefficients to a 

distribution of coefficients generated by re-running the candidate GLMM following the re-

assignment of human-interaction centrality scores through randomly swapping the nodes of each 

human-interaction network. Node-swapping is less susceptible (than pre-network randomizations 

or edge-swapping) to type-II errors while testing regression-based null hypotheses (Weiss et al., 

2020). 

We conducted various diagnostics of model validity and stability (Cook’s distance, 

dfBetas, and Variance Inflation Factors; distribution of residuals, residuals plotted against fitted 

values) for all candidate models. These revealed no influential cases, strong collinearity among 

our predictor variables, or obvious deviations from the assumptions of normality and 

homogeneity of residuals (Quinn & Keough, 2002). All statistical tests were two-tailed, and we 

set the p values to attain statistical significance to be < 0.05. 

 

Results: 

(P1) The structure of human-interaction networks: 

For all ten macaque groups, human-interaction networks were well-connected and 

exhibited significant structure (examples in Fig. 2a-c). Table 1 summarizes the attributes and 

characteristics of each network. The majority of human-interaction networks (7/10) were 

somewhat fragmented, insofar as they had one or up to a few individuals that remained 

disconnected from the main network fragment (a minimum of one individual in a bonnet 

macaque group: BM_G2; a maximum of 7 individuals in a rhesus macaque group: RM_G4). 
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There was also marked inter-network variation in the average human-interaction strength 

centrality of individuals (Table 1). Despite these features, pre-network randomization tests 

performed by randomly swapping network edges revealed that, for each network, the observed 

mean strength centrality of individuals was significantly greater than the distribution of strength 

centralities calculated following 1000 permuted ‘edge-swapped’ networks. That is, all networks 

deviated significantly from the null hypothesis of random network structure.    

 

Table 1: Summary of attributes of macaque human-interaction networks. For mean 

strength, p values are based on a pre-network randomization procedure (see Methods)   

Species 

(group) 

Network 

(group) Size 

Males Females Edges 

or links 

Unconnected 

individuals 

Strength  

(mean  sd) 

Bonnet 

(BM_G1) 

48 26 22 318 4 0.10  0.07** 

Bonnet 

(BM_G2) 

28 10 18 115 1 0.09  0.06** 

Long-tailed 

(LM_G1) 

35 11 24 144 5 0.10  0.08** 

Long-tailed 

(LM_G2) 

19 7 12 122 0 0.30  0.16** 

Long-tailed 

(LM_G3) 

34 15 19 91 6 0.20  0.24** 

Long-tailed 

(LM_G4) 

24 5 19 178 0 0.23  0.14** 

Rhesus 

(RM_G1) 

27 9 18 87 2 0.08  0.06** 

Rhesus 

(RM_G2) 

24 7 17 173 0 0.10  0.05** 

Rhesus 

(RM_G3) 

41 13 28 342 2 0.05  0.03** 

Rhesus 

(RM_G4) 

59 14 45 238 7 0.05  0.03** 

**p < 0.01 
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(a)                                             (b)                                              (c) 

Figure 2: Examples of weighted, undirected human-interaction networks constructed for 

groups of (a) bonnet macaques (BM_G1), (b) long-tailed macaques (LM_G1), and (c) 

rhesus macaques (RM_G1).  

 

(P2) Associations between macaques’ human-interaction networks and social networks: 

We found strong evidence to suggest that the connectedness/centrality of individual 

macaques within their social networks strongly influenced their connectedness/centrality within 

their human-interaction networks.  

For strength centrality, our AICc selection criterion led to the short-listing and 

interpretation of two candidate GLMMs. The first candidate model (Table 2A: model 3 of 

Supplementary Table 2) showed a significant positive effect of both short-duration affiliation 

strength centrality (Fig. 3a) and proximity strength centrality on human-interaction strength 

centrality. The second candidate model (Table 2B: model 6 of Supplementary Table 2) further 

showed a significant interaction between proximity strength centrality and species, which 

revealed that the effect of proximity was most pronounced among bonnet macaques, moderate 

among rhesus macaques, and least pronounced (did not reach significance) among long-tailed 
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macaques. Neither candidate model included grooming centrality measures: proximity and short-

duration affiliation strength centrality had a greater impact than grooming strength centrality on 

human-interaction network centrality. Macaque sex had a significant impact on human-

interaction network strength centrality, with males showing greater values than females (Table 

2A, B; Fig. 3b). However, dominance rank had no effect (Table 2A, B). Across species, we 

found that the average strength centrality of individuals was the highest among long-tailed 

macaques, and the lowest among rhesus macaques, with bonnet macaques falling in between 

(Table 2A). 

 

Table 2: Candidate GLMMs (models 3 and 6 of Supplementary Table 2) examining the 

effects of individuals’ sociodemographic attributes (sex, dominance rank, species), and 

social network strength centrality (grooming, proximity, and affiliation) by species, on their 

human-interaction network strength centrality. Pperm indicate p values from permuted 

networks that were estimated using the post-network randomizations or ‘node-swapping’ 

algorithm (see Methods). 

Model 3 

Predictor B SE Z P Pperm 

(Intercept) 1.74 0.19 9.21 <0.01**  

Sex (males vs females) 0.30 0.11 2.67 0.01* <0.01** 

Rank Index -0.10 0.17 -0.61 0.54  

Species (long-tailed vs bonnet) 0.57 0.19 2.98 <0.01** <0.01** 

Species (rhesus vs bonnet) -0.35 0.19 -1.88 0.06(*)  

Species (long-tailed vs rhesus) 0.92 0.16 5.78 <0.01** <0.01** 
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Proximity Strength 8.30 3.35 2.47 <0.01** 0.03* 

Affiliation Strength 7.34 2.81 2.61 <0.01** <0.01** 

 **p < 0.01; *p < 0.05; (*)0.05 < p < 0.10 

Model 6 

Predictor B SE Z P Pperm 

(Intercept) 1.20 0.33 3.61 <0.01**  

Sex (males vs females) 0.40 0.12 3.42 <0.01** <0.01** 

Rank Index -0.07 0.16 -0.43 0.67  

Species (long-tailed vs bonnet) 1.30 0.37 3.51 <0.01** <0.01** 

Species (rhesus vs bonnet) -0.01 0.37 -0.04 0.97  

Species (long-tailed vs rhesus) 1.32 0.27 4.92 <0.01** <0.01** 

Affiliation strength 4.59 2.94 1.57 0.12  

Proximity strength (bonnets) 27.71 9.74 2.85 <0.01** <0.01** 

Proximity strength (long-tailed) 4.14 3.64 1.14 0.25 0.18 

Proximity strength (rhesus) 16.48 5.85 2.82 <0.01** <0.01** 

Proximity strength (long-tailed vs bonnets) -23.56 9.97 -2.36 0.02* <0.01** 

Proximity strength (rhesus vs bonnets) -11.22 10.45 -1.07 0.28  

Proximity strength (long-tailed vs rhesus) -12.34 6.28 -1.96 0.04* 0.04* 

**p < 0.01; *p < 0.05 
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Figure 3: Effect of (a) sex and (b) affiliation strength centrality on the outcome of human-

interaction network strength centrality 

 

For eigenvector centrality, results were largely consistent. The first candidate model 

(Table 3A: model 3 of Supplementary Table 3) showed a significant positive effect of both short-

duration affiliation eigenvector centrality (Fig. 4a) and proximity eigenvector centrality on 

human-interaction eigenvector centrality. The second candidate model (Table 3B: model 6 of 

Supplementary Table 3) further showed a significant interaction between proximity eigenvector 

centrality and species, which revealed that the effect of proximity was the strongest among 

bonnet macaques, moderately strong among rhesus macaques, and least strong (did not reach 
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significance) among long-tailed macaques (Fig. 4b). Neither candidate model included grooming 

centrality measures, i.e. proximity and short-duration affiliation network centrality had a stronger 

(compared to grooming network centrality) impact on human-interaction network centrality. 

Macaque sex, but not dominance rank, had a significant impact on human-interaction network 

eigenvector centrality, with males showing greater values than females (Table 3A, B). However, 

unlike for strength centrality, there were no cross-species differences in mean human-interaction 

eigenvector centrality measures (Table 3A). 

 

Table 3: Candidate GLMMs (models 3 and 6 of Supplementary Table 3) examining the 

effects of individuals’ sociodemographic attributes (sex, dominance rank, species), and 

social network eigenvector centrality (grooming, proximity, and affiliation) by species, on 

their human-interaction network eigenvector centrality. Pperm indicate p values from 

permuted networks that were estimated using the post-network randomizations or ‘node-

swapping’ algorithm (see Methods). 

Model 3 

Predictor B SE Z P Pperm 

(Intercept) 2.12 0.14 14.77 <0.01**  

Sex (males vs females) 0.18 0.11 1.61 0.01* 0.02* 

Rank Index -0.06 0.18 -0.33 0.74  

Species (long-tailed vs bonnet) -0.07 0.13 -0.53 0.60  

Species (rhesus vs bonnet) 0.01 0.12 0.05 0.96  

Species (long-tailed vs rhesus) -0.07 0.11 -0.67 0.50  

Proximity eigenvector 7.81 2.87 2.72 0.01* 0.01* 
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Affiliation eigenvector 6.94 2.58 2.69 0.01* 0.03* 

 **p < 0.01; *p < 0.05 

Model 6 

Predictor B SE Z P Pperm 

(Intercept) 1.71 0.25 6.93 <0.01**  

Sex (males vs females) 0.27 0.12 2.24 0.03* <0.01** 

Rank Index -0.04 0.18 -0.20 0.84  

Species (long-tailed vs bonnet) 0.41 0.26 1.54 0.12  

Species (rhesus vs bonnet) 0.40 0.25 1.62 0.10  

Species (long-tailed vs rhesus) 0.00 0.18 0.02 0.98  

Affiliation eigenvector 5.52 2.69 2.05 0.04* 0.15 

Proximity eigenvector (bonnets) 22.09 7.66 2.88 <0.01** <0.01** 

Proximity eigenvector (long-tailed) 6.22 3.40 1.83 0.07(*) <0.01** 

Proximity eigenvector (rhesus) 8.39 4.00 2.10 0.04* <0.01** 

Proximity eigenvector (long-tailed vs 

bonnets) 

-15.87 7.80 -2.03 0.04* <0.01** 

Proximity eigenvector (rhesus vs bonnets) -13.70 7.80 -1.76 0.08(*) <0.01** 

Proximity eigenvector (long-tailed vs rhesus) -2.17 4.69 -0.46 0.64 0.15 

**p < 0.01; *p < 0.05 
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Figure 4: Effects of (a) affiliation eigenvector centrality and (b) proximity eigenvector 

centrality by species on human-interaction network eigenvector centrality. 

 

Discussion: 

For multiple groups of wild macaques living in anthropogenic environments, we used a 

network-approach to reveal non-random patterns of associations in human-wildlife interactions. 

Moreover, we revealed that macaques’ connectedness within their human-interaction networks 

were strongly influenced by aspects of their behavioral ecology. Below we discuss our findings, 

and their implications for understanding the behavioral ecology of human-wildlife interactions 

from both evolutionary and conservation perspectives. 

 For all macaque groups, human-interaction networks showed a non-random structure, 

confirming that macaques showed heterogeneous, non-random patterns of using anthropogenic 

features of their home range and engaging with humans across time and space. This finding 

provides an important pretext to conducting assessments of whether/how these non-random 

spatiotemporal associations of wild macaques and humans, are influenced by animal ecology and 

behavior (as we do in this study). This has important implications both for understanding 

animals’ adaptive responses to dynamic anthropogenic environments, and for conservation- and 

public health-related initiatives (discussed below). In constructing human-interaction networks, 

we advanced previous studies that have focused on specific types of human-wildlife interactions 

(e.g. encounter rates, avoidance, contact-behaviors like aggression and food provisioning), or 

their overall frequencies of occurrence (reviewed in Balasubramaniam et al. 2020a), to focusing 

on patterns of human-wildlife associations as revealed by network connectedness. Researchers 

have been increasingly implementing social network analysis to understand human impact on 
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animal-animal spatial and social behavior, but not necessarily to model human-wildlife 

interactions themselves (Snijders et al., 2017; Sosa et al., 2021a). Our construction of human-

interaction networks addressed this gap. Indeed, approaches similar to ours may be used to 

construct other human-wildlife interaction networks in which terrestrial, group-living wildlife 

populations that overlap with anthropogenic environments (e.g. wild ungulates, elephants, other 

nonhuman primates like baboons and chimpanzees) may be inter-linked based on their shared 

spatiotemporal overlap and/or interspecies interactions with humans, livestock, or feral 

mammals. 

 Macaques’ human contact networks were strongly associated with some aspects of their 

behavioral ecology, but not so with others. For instance, the connectedness of macaques within 

their human contact networks were strongly associated with their connectedness within networks 

of affiliative social interactions of short duration, but not so their grooming networks. In group-

living primates, affiliative interactions bring proximate benefits such as the reduction of stress 

levels (Aureli et al., 1999; Shutt et al., 2007), underlie strong alliances between kin and friends 

(van Hoof & van Schaik, 1992), and are key to the establishment and maintenance of strong 

long-term social bonds (Silk et al. 2003; Young et al., 2014). Our previous work on these 

populations revealed how monitoring human activity reduced the time available for macaques to 

engage in grooming (rhesus macaques: Kaburu et al., 2019b; longtailed macaques: Marty et al., 

2019; bonnet macaques: Balasubramaniam et al., 2020b), but not necessarily for other short-

duration affiliative interactions like coalitionary support, lip-smacking, and silent bare-teeth 

displays in non-aggressive contexts which remained unaffected (bonnet macaques: 

Balasubramaniam et al., 2020b).  
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One of the primary motivations for monkeys to interact with humans is to obtain 

anthropogenic foods (Marty et al., 2020). The benefits of within-group social cohesion and 

tolerance may, at least in part, help offset the potential physiological and health-related costs or 

risks involved in gaining access to these foods. Thus, we speculate that in anthropogenic 

environments in which wild primates may routinely face time-constraints, animals may rely 

more than usual on short-duration affiliative interactions, which may be especially key to 

maintaining group cohesion and strong ties of social support when animals have to compromise 

on their grooming time. Such ties of short-duration affiliative interactions may also encourage 

collective (and perhaps even cooperative) risk-taking as indicated by animals’ co-engagement 

with humans at the same time and space to procure anthropogenic foods. Our finding of strong, 

consistent (across multiple groups and three species) associations between macaques’ 

connectedness within their short-duration affiliative social networks and their human-interaction 

networks supports this argument. 

Human-interaction networks were also influenced by social proximity networks, with the 

effect sizes being different across species. They were the strongest for bonnet macaques and the 

weakest for long-tailed macaques, with rhesus macaques falling in-between. Species-typical 

differences in behavior that is also linked to differences in evolutionary history may at least 

partly explain these patterns. In comparison to rhesus macaques and long-tailed macaques, 

bonnet macaques are considered to be more socially tolerant (Balasubramaniam et al. 2012; 

Thierry, 2007), are less widely distributed and less ecologically flexible (Gumert, 2011; Priston 

& McLennan, 2013; Radhakrishna & Sinha, 2011), and have had a shorter (in evolutionary time-

scales) history of exposure to changing, anthropogenically impacted environments (Gumert, 

2011; Priston & McLennan, 2013; Radhakrishna & Sinha, 2011). More generally, these patterns 
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across macaques suggest that in group-living wildlife characterized by more tolerant social 

systems and/or less ecological flexibility (e.g. bonnet macaques compared to rhesus and long-

tails), being near familiar individuals such as close kin or conspecifics may encourage greater 

propensities among individual animals to take risks in anthropogenic environments.  

On the other hand, cross-site, or indeed even within-site differences in the distribution and 

density of anthropogenic factors and (consequently) human-macaque interactions, may also 

underlie these observed cross-species. For instance, bonnet macaques experienced the overall 

lowest densities of humans, and their interactions with humans were also more concentrated 

when the groups were within specific areas (blocks) of their home-range (McCowan, 

Unpublished Data). In comparison, rhesus and (especially) long-tailed macaques were exposed 

to higher densities of humans, and their interactions with humans were also more widely 

distributed across the groups’ home-ranges (McCowan, Unpublished Data). It is therefore likely 

that rhesus and long-tailed macaques, more so than bonnet macaques, engaged with humans both 

preferentially while being near their conspecifics, as well as opportunistically when they were 

not near their conspecifics. More comprehensive tests of these explanations await future research 

that quantitatively evaluates, rather than controls for (as was done in this study), intraspecific 

variation within and across groups of the same species. 

Macaques’ sex also had an effect on their connectedness within human-interaction 

networks: males were more well-connected than females. Sex-based differences may also reflect 

differences in life-history requirements and the socioecological roles of males and females. 

While philopatric females usually form the core of macaque social networks, dispersing males 

tend to be more exploratory, stay in the group periphery, and (consequently) experience more 

frequent interactions (Balasubramaniam et al., 2020a; Morrow et al., 2019). Moreover, across 
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group-living mammals, males face high long-term energetic demands pertaining to their life-

history requirements of maintaining large body sizes and other physical features (e.g. horns, 

antlers, canines) that render competitive and reproductive advantages (Clutton-Brock, 2017). 

Thus, a combination of their exploratory behavior, movement and dispersal, and life-history 

requirements that may entail greater risk-taking (Balasubramaniam et al., 2020a; Morrow et al., 

2019), may explain why males are more central or well-connected within human-interaction 

networks than females.  

One methodological limitation in our construction of human-interaction networks 

concerned the lack of more precise information on these interactions. Although we contained the 

assignment of links based on interactions within the same block and time-frame, the construction 

of more conservative, albeit more sparsely-connected, human-interaction networks may have 

been possible if we had restricted links to interactions that occurred between macaques and the 

same human(s), and at the same precise GPS location. Collecting more precise geospatial data on 

human-macaque interactions would be a vital next step. Moreover, implementing multi-level 

approaches (Finn et al., 2019) to capture potential heterogeneity in human-interaction patterns 

across different spatial (blocks) and temporal (observation windows) layers was also beyond the 

scope of this study, but another important next step. Finally, our results may have been impacted 

by spatiotemporal variation in human density, which, through affecting the overall frequencies of 

human-macaque interactions, may also impact the connectedness of macaques within their 

human-interaction networks. We will assess this possibility in a future assessment of 

intraspecific variation in these networks. 

Our study has important implications for the conservation and management of human-

wildlife interfaces. Macaques that are more well-connected within their human-interaction 
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networks, because of their coming into contact with more people across time and space, may be 

targets of interventions that move human-primate interactions from conflict towards coexistence 

(Nyhus, 2016). Human-wildlife interfaces, now more so than ever before, are also widely 

recognized as ‘hotspots’ for the transmission of zoonotic and emerging infectious disease, 

including SARS-CoV-2 (Cunningham et al., 2017; Townsend et al., 2020). From an 

epidemiological perspective, it is now well-established that animals that are central within their 

contact social networks may function as within-group ‘superspreaders’ of infectious agents 

(Craft, 2015; Drewe & Perkins, 2015). Similarly, it is likely that macaques that are central within 

human-interaction networks may be disease ‘superspreaders’ both within wildlife systems and 

across human-wildlife interfaces, making these animals particularly important targets of disease 

intervention strategies like vaccination and antibiotic treatment (Rushmore et al., 2014). Indeed, 

our finding of a lack of association between macaques’ human-interaction networks and contact 

social grooming networks suggests that human-interaction and social contact networks may offer 

somewhat independent socioecological pathways for disease spread. Assessing the vulnerability 

versus resistance of both types of networks to zoonotic transmission and disease outbreaks would 

therefore be vital from conservation and public health perspectives. 
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