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 43 

Abstract: 44 

1. Human population expansion into nonhuman animals’ habitats has increased interest in 
45 

the behavioral ecology of human-wildlife interactions. To date, however, whether and 
46 

how wild animals and their conspecifics form non-random associations in terms of when 
47 

or where they interact with humans still remains unclear.  
48 

2. Here we adopt a comparative approach to address this gap, using social network 
49 

analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife 
50 

spatial and social ecology, can be a powerful tool to understand how animal 
51 

socioecology influences the spatiotemporal distribution of human-wildlife interactions.  
52 

3. For 10 groups of rhesus, long-tailed, and bonnet macaques (Macaca spp.) living in 
53 

anthropogenically-impacted environments in Asia, we collected data on human-
54 

macaque interactions, animal demographics, and macaque-macaque agonistic and 
55 

affiliative social interactions. We constructed ‘human-interaction networks’ based on 
56 

associations between macaques that interacted with humans within the same time and 
57 

spatial locations, and social networks based on macaque-macaque allogrooming 
58 

behavior, affiliative behaviors of short duration (agonistic support, lip-smacking, silent 
59 

bare-teeth displays, and non-sexual mounting), and proximity.  
60 

4. Pre-network permutation tests revealed that, for all macaque groups, human-
61 

interaction networks showed non-random structures. GLMMs revealed that individuals’ 
62 

connectedness within human-interaction networks were positively associated their 
63 

connectedness within affiliation social networks, and social proximity networks although 
64 
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this effect varied across species (bonnets > rhesus > long-tailed). Male macaques were 
65 

more well-connected in human-interaction networks than females. Neither macaques’ 
66 

connectedness within grooming social networks nor their dominance ranks had an 
67 

impact on human-interaction networks.  
68 

5. Our findings suggest that, in challenging, time-constraining anthropogenic 
69 

environments, less time-consuming affiliative behaviors and additionally greater social 
70 

tolerance (especially in less ecologically flexible species with a shorter history of 
71 

exposure to human activity) may be key to animals’ maintaining strong social 
72 

connections. Subsets of these animals may also utilize greater exploratory tendencies 
73 

and life-histories that are less energetically demanding in the long-term. Both of these 
74 

strategies may contribute to animals’ propensities to engage in joint risk-taking by being 
75 

near and engaging with humans. From conservation and public health perspectives, 
76 

human-interaction networks may inform interventions to mitigate zoonotic disease 
77 

transmission and move human-wildlife interactions from conflict towards co-existence.  
78 
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 87 

Introduction: 88 

An expanding human population has increased overlap and contact rates between humans 89 

and wildlife (Nyhus, 2016). The resulting human-wildlife interactions have visible, readily 90 

discernible outcomes on wildlife populations, but also subtler effects on animal ecology and 91 

behavior that remain less well-documented (Balasubramaniam et al., 2021). The sub-field of 92 

conservation behavior addresses this gap, and largely deals with how anthropogenic factors 93 

impact animal movement and (consequential) access to natural resources, interspecies ecosystem 94 

interactions with predators and competitors, and intraspecies spatial overlap and social 95 

interactions with their conspecifics (reviewed in Berger-Tal et al., 2016; Snijders et al., 2017). 96 

However, there exists comparatively less research on the inverse effect – that is, on how animal 97 

attributes that influence their life-history, or their interactions with socioecological components 98 

of their natural environment, might impact their behavior in anthropogenic environments 99 

(Balasubramaniam et al., 2021; Morrow et al., 2019). This is despite growing consensus that 100 

human-wildlife interactions generate coupled, bi-directional effects whereby they both affect, 101 

and are reciprocally affected by, wildlife ecology and behavior (Balasubramaniam et al., 2021; 102 

Carter et al., 2014; Lischka et al., 2018).   103 

More recently, however, a handful of empirical studies have focused on how the 104 

socioecology of group-living wild animals can influence human-wildlife interactions. 105 

Specifically, these have revealed how wild animals’ tendencies to engage in risk-taking 106 

behaviors within human-impacted environments are associated with a number of life-history and 107 

socioecological traits, such as animals’ sex, dominance rank, spatial position within their groups, 108 

and connectedness within social networks (e.g. elephants, Elephas maximus: Chiyo et al., 2012; 109 
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black bears, Ursus americanus: Lischka et al., 2018; multiple species of macaques, Macaca spp.: 110 

Balasubramaniam et al., 2020a; Morrow et al., 2019). A common aspect of all these studies is 111 

that they have focused on the overall frequencies of human-wildlife interactions, or the overall 112 

degrees of exposure of individual wild animals to humans and anthropogenic factors. In 113 

comparison, less well-studied is whether and how animals form non-random associations in 114 

terms of when, where or how they interact with humans.  115 

Understanding such patterns of associations in human-wildlife interactions is important 116 

for many reasons. First, capturing the dynamic, spatiotemporally variant socioecology of human-117 

wildlife interactions could offer opportunities to study contemporary evolution, and animals’ 118 

propensities to adaptively respond to rapidly changing environments (Wong & Candolin, 2015). 119 

Second, from a public health perspective, they could provide valuable information regarding 120 

whether or how some animals, by virtue of overlapping with humans and anthropogenic areas 121 

across time and space, may be the targets of interventions to mitigate the spread of zoonotic and 122 

emerging infectious diseases at human-wildlife interfaces (Cunningham et al., 2017; Townsend 123 

et al., 2020). Third, such animals may also be the targets of conservation efforts, interventions 124 

and policy making aimed at decreasing human-wildlife conflict while increasing mutual welfare 125 

and co-existence (Nyhus, 2016).     126 

Network approaches offer exciting quantitative tools that may uniquely be able to address 127 

this gap in the literature. Beyond just rates or durations of interaction, networks allow for 128 

modeling the heterogeneity in relationships between entities (i.e. individual animals or humans; 129 

assigned as nodes) based on shared or interactive patterns of their association (assigned as edges) 130 

(Farine & Whitehead, 2015; Wey et al., 2008). In particular, social networks, which link animals 131 

based on their shared patterns of space-use associations or contact and non-contact social 132 
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interactions (Farine & Whitehead, 2015), have found wide-ranging applications in animal 133 

behavioral ecology (Croft et al., 2008; Krause et al., 2014), including of late in conservation 134 

behavior (Snijders et al., 2017). For instance, epidemiological studies have used animal social 135 

networks to assess the vulnerability of wildlife populations to infectious disease outbreaks (Craft, 136 

2015; Drewe & Perkins, 2015). More pertinently, an increasing number of studies have revealed 137 

how interactions with humans may decrease the connectedness of animal social networks (e.g. 138 

spotted hyenas, Crocuta crocuta: Belton et al., 2018; giraffes, Giraffa camelopardalis: Bond et 139 

al., 2020; bottlenose dolphins, Tursiops aduncus: Chilvers & Corkeron, 2001; moor macaques, 140 

M. maura: Morrow et al., 2019), and in extreme cases that involve the removal or relocation of 141 

individual animals, to the fragmentation of social networks (e.g. Killer whales, Orcinus orca: 142 

Williams & Lusseau, 2006). Such findings are of profound importance since decreased social 143 

network connectedness or fragmentation can strongly impact animal health and reproductive 144 

success (Nunn et al., 2015). Yet while most social network analysis has focused on space-use 145 

overlap or social interaction networks, little research has implemented network approaches to 146 

model human-wildlife interactions themselves, or even associations between wild animals that 147 

co-inhabit anthropogenic environments at the same time and space (Sosa et al., 2021a). 148 

One reason for this may be that researchers may face logistical and ethical challenges 149 

while attempting to construct human-wildlife interaction networks. For instance, the inclusion of 150 

humans or anthropogenic features as node(s) in human-wildlife ‘bimodal’ or ‘multimodal’ 151 

networks would require that researchers identify and track the behavior of individual people, 152 

specific human sociodemographic communities, and/or other features of anthropogenic 153 

landscapes that come into contact with wildlife (e.g. livestock, feral mammals: Bhattacharjee & 154 

Bhadra, 2020). Collecting such data is not always feasible, in light of the considerable geospatial 155 
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and sociocultural variation that researchers face while sampling human demographics, 156 

experiences, and behavior (Barua et al., 2013; Dickman, 2010; Karanth et al., 2018). A more 157 

feasible approach may be to record interactions between humans and pre-identified wild animals 158 

across time and overlapping space, and ‘project’ these interspecies interactions into what are 159 

effectively unimodal ‘social’ networks in which wild animals are linked based on their 160 

interactions with shared features of their ecology (here, humans). Such projections have been 161 

constructed before for other ecological networks, for instance the conversion of a primate-162 

parasite bimodal network into a unimodal ‘social’ network that linked nonhuman primate species 163 

(nodes) based on the parasites they shared (edges) (Gomez et al., 2013). In the context of human-164 

wildlife interactions, such constructions would provide useful opportunities to determine whether 165 

animals interact with humans in non-random ways across time and space, and the 166 

socioecological determinants of such associations.  167 

In this study, we implement a network approach to capture heterogeneity in associations 168 

between humans and group-living wild nonhuman primates across time and space, for multiple 169 

human-primate interfaces in Asia. We address the above gaps in our current understanding of the 170 

ecology of human-wildlife interactions, by asking whether wild macaques (Macaca spp.) living 171 

in human-impacted environments (1) associate in non-random ways based on when or where 172 

they interact with humans, that are also (2) influenced by their demographic and behavioral 173 

characteristics linked to their life-history and socioecology. Aside from sharing close 174 

evolutionary histories with humans (Hasegawa et al., 1985; Roos & Zinner, 2018), wild primates 175 

are also increasingly sharing ecological space and resource-use overlap with humans (Fuentes, 176 

2012; Mckinney, 2015). Anthropogenic factors may present (in evolutionary time-scales) 177 

relatively novel, socioecological constraints on wild primates, with individuals having to 178 
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continuously adjust their behavior to adapt to human activities and behavior (Mckinney, 2015). 179 

Among the most ecologically and behaviorally flexible of all nonhuman primates, many species 180 

of macaque, particularly rhesus macaques (M. mulatta), long-tailed macaques (M. fascicularis), 181 

and bonnet macaques (M. radiata), are considered ‘edge’ wildlife species that overlap and 182 

experience spatiotemporally variant contact-rates and interactions with humans (Gumert, 2011; 183 

Priston & McLennan, 2013; Radhakrishna & Sinha, 2011). At the same time, they also show 184 

marked inter- and intra-specific variation in social interactions and (consequently) social network 185 

connectedness with their conspecifics, which has been strongly linked to differences in their 186 

evolutionary or phylogenetic relationships (Balasubramaniam et al., 2012; Thierry, 2007), 187 

exposure to socioecological factors (Sterck et al, 1997), and exposure to anthropogenic impact 188 

(Balasubramaniam et al., 2020b; Kaburu et al., 2019b; Marty et al., 2019). For these reasons, 189 

they are well-suited model systems for implementing network approaches to understand 190 

associations of human-wildlife interactions and their links to animal socioecology and behavior.  191 

‘Human-interaction networks’ were constructed for ten groups of three macaque species 192 

living in anthropogenic environments. These networks linked individual, pre-identified 193 

macaques based on their tendencies to interact with humans within the same time and space. To 194 

determine whether macaques were associated in terms of their tendencies to interact with 195 

humans in non-random ways across time and space, we first tested whether (p1) the patterning 196 

and distribution of individuals’ connectedness within their human-interaction networks would be 197 

significantly different from random. Second, we examined whether macaques’ human-198 

interaction networks were associated with their social networks. For this, we tested whether (p2) 199 

the node centrality of individuals within their human-interaction networks was positively 200 

associated with their centrality within their social grooming, proximity, and/or short-duration 201 
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affiliation networks. We also explored the effects of individuals’ sociodemographic factors, i.e. 202 

their sex, dominance rank, and species, on their connectedness/centrality within their human-203 

interaction networks. As a cross-species comparison, we also determined whether the above-204 

predicted associations between human-interaction network centrality and social network 205 

centrality varied across different macaque species. 206 

 207 

Materials and Methods: 208 

Study sites and subjects: Demographic and behavioral data were collected on ten groups 209 

of macaques living in urban and peri-urban environments ranging from temperate areas in 210 

Northern India, to tropical environments in Southern India and Malaysia. The groups were as 211 

follows: four groups of rhesus macaques at a Hindu temple and the surrounding forested area 212 

(three groups) and a town mall area (one group) in the city of Shimla in Northern India (31.05 N, 213 

77.1 E); four groups of long-tailed macaques at a Hindu temple (two groups) and a recreational 214 

park (two groups) in the outskirts of Kuala Lumpur in Malaysia (3.3 N, 101 E); and two groups 215 

of bonnet macaques at a recreational area in the outskirts of the rural town of Thenmala within 216 

the state of Kerala in Southern India (8.90 N, 77.10 E) (Balasubramaniam et al., 2020b; Marty et 217 

al., 2020). Subjects were pre-identified, adult male and female macaques. At all three locations, 218 

macaque home ranges overlapped with humans and anthropogenic landscape features. However, 219 

there were systematic inter- and intraspecific differences in macaques’ degrees of exposure to 220 

humans, and indeed the frequency and types of interactions that they engaged/experienced with 221 

humans, which informed our expectation of detecting both within- and between-site differences 222 

or heterogeneity in human-interaction patterns. Supplementary Table 1 provides details on the 223 

study groups and subjects of the study. More details regarding the similarities and differences 224 
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between the study sites may be found in our previous publications (Balasubramaniam et al., 225 

2020b; Marty et al., 2020).  226 

Data collection: Data were collected following a standardized protocol that was 227 

implemented across all three field-sites, with inter-observer reliability being reached both within 228 

and across sites (details in Kaburu et al., 2019a). All data were collected for five days a week, 229 

between 9:00 am and 5:00 pm. Given the susceptibility of social network analysis to sampling 230 

methods and sampling bias (Farine, 2017; Farine & Whitehead, 2015), particularly to the inter-231 

dependencies of data used to construct multiple types of networks, we used different sampling 232 

approaches to collect data on human-macaque interactions and macaque-macaque social 233 

behavior.  234 

To record human-macaque interactions, we used an ‘event sampling’ approach (Altmann, 235 

1974; Beisner & McCowan, 2013; Kaburu et al., 2019a). For each macaque group and site, we 236 

divided their home-range that overlapped with anthropogenic settlements into a series of spatial 237 

blocks of roughly equal sizes, within which human-macaque interactions were most likely to 238 

occur (see Kaburu et al., 2019a for details). Choices of block numbers and locations differed 239 

across groups, and were assigned during a preliminary ‘training’ phase (of ~2 months) during the 240 

groups’ home-ranges were determined. However, block numbers and locations changed during 241 

the course of data collection in accordance with any shifts we saw in macaques’ home ranges 242 

that resulted in our adding or dropping event sampling at some blocks. Critically, block sizes 243 

were uniformly similar within and across study sites, and were set such that observers could 244 

potentially view and record all macaques and humans that were present within the block at a 245 

given time. To record human-macaque interactions, observers visited these blocks in a pre-246 

determined, randomized order on each day. From a pre-assigned, fixed location within each 247 
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block that maximized their visual field, observers recorded all human-macaque interactions that 248 

involved pre-identified macaques that were present within the block for a ten-minute duration, 249 

before moving on to the next block. We followed such a randomized block sampling approach to 250 

avoid over-sampling of human-macaque interactions in more (versus less) densely populated 251 

areas of macaques’ home-ranges, which can result in sampling bias (Farine, 2017; Farine & 252 

Whitehead, 2015). 253 

A ‘human-macaque interaction’ was defined as any contact or non-contact behavior that 254 

was initiated by a macaque towards a human (e.g. approach, aggression, begging for food), or by 255 

a human towards a macaque (e.g. approach, aggression, provisioning with food), that elicited a 256 

reaction behavior (e.g. submissive avoidance, fleeing, or screaming, counter-aggression, 257 

acquiring and feeding on human foods) from the initial recipient. We defined an “event” as either 258 

a single such interaction, or a series of such sequentially occurring interactions that were linked 259 

to each other temporally and/or through common/multiple participants (more details and 260 

definitions in Kaburu et al., 2019a). 261 

‘Focal animal sampling’ (Altmann, 1974) was used to record macaque-macaque social 262 

interactions and social proximity with conspecifics. On each day, and in each location, individual 263 

macaques were followed in a pre-determined, randomized sequence for ten-minute durations. In 264 

each session, we recorded events of dyadic agonistic interactions (aggressive and submissive 265 

behaviors), social or allogrooming, and other forms of dyadic affiliation that were of shorter 266 

durations than grooming (i.e. coalitionary support during social conflicts, lip-smacking, non-267 

sexual mounting, or silent bare-teeth displays in non-agonistic or peaceful contexts), that 268 

involved the focal animal as either the initiator or the recipient. Once every two minutes within a 269 

focal session, we temporarily ceased recording data in a continuous manner to conduct a point-270 
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time scan of the focal, to record the identities of all group conspecifics that were within body-271 

length proximity of the focal. More details on the definitions of behaviors may be found in 272 

Kaburu et al., 2019a.  273 

Construction of human-interaction networks and social networks: For each macaque 274 

group, undirected ‘human-interaction networks’ based on the spatiotemporal similarity of 275 

monkeys’ interactions with humans (Fig. 1a) were constructed. That is, links between all 276 

macaque subjects in a given group that engaged in human-macaque interactions within the same 277 

ten-minute event sampling session and within the same block were assigned. Such 278 

reconstructions enable determining whether macaques associated in non-random ways in terms 279 

of their tendencies to interact with humans across time and anthropogenic space, and if so what 280 

socioecological factors influence such associations. Edge-weights were calculated and assigned 281 

to these human-interaction networks, as the ratio between the total number of such occasions in 282 

which pairs of macaques spatiotemporally ‘co-interacted’ with humans, to the total duration of 283 

event sampling sessions conducted during the course of their overlapping tenure within their 284 

group, thereby accounting for their observability. 285 

For each macaque group, we also constructed three types of weighted, undirected ‘social 286 

contact networks’ based on our recordings of social macaque-macaque interactions of grooming, 287 

short-duration affiliative behaviors, and social proximity (Fig. 1b). In grooming and short-288 

duration affiliation networks, nodes were individual macaques, and edge-weights were calculated 289 

as the frequency of behaviors (given or received) between each pair of animals divided by the 290 

total focal observation time of each member of that pair during the course of their overlapping 291 

tenure within their group (details in Balasubramaniam et al., 2020a). In proximity networks, 292 

edge-weights were calculated as the number of point-time samples in which a pair of individuals 293 
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was seen within body-length of each other, divided by the total number of point-time samples 294 

collected for each member of the pair during the course of their overlapping tenure within their 295 

group. 296 

 297 

Figure 1: Macaque (a) human-interaction networks and (b) social networks 298 

 299 

Calculations of dominance rank and social network centrality measures: Using data on 300 

male-male and female-female dyadic aggressive interactions that elicited a submissive response 301 

from the recipient, we constructed dominance hierarchies separately for males and females for 302 

each group. Using these, we calculated the dominance rank of each macaque in each group, 303 

using the ‘Perc’ package in R (Fujii et al., 2015). To account for cross-group variation in group 304 

size, we standardized ordinal ranks to create a rank index ranging between zero (lowest-ranking 305 

macaque) and one (highest-ranking macaque) (Kaburu et al., 2019b). For each individual 306 

macaque within each type of network, we calculated weighted, undirected measures of their 307 

connectedness or centrality, both based on just their direct connections and by considering their 308 

secondary connections. First, we calculated weighted degree or (hereafter) strength as the sum of 309 

all the edge-weights of edges directly connected to an individual, i.e. the number and strength of 310 

an individuals’ direct connections (Croft et al., 2008; Newman, 2003). Second, we calculated 311 
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eigenvector as the number and strength of an individuals’ direct and secondary connections, i.e. 312 

the reach of an individuals’ connectedness or social ties (Bonacich, 2007; Brent, 2015).  313 

There is broad consensus among behavioral ecologists that these centrality measures are 314 

among the most biologically relevant (Sosa et al., 2021b). In the context of our human-315 

interaction networks, these measures would indicate the extent to which individual macaques 316 

engaged with humans at the same time and space as others (strength). By taking into account 317 

secondary connections, eigenvector, on the other hand, represents the extent to which individuals 318 

interacted more with humans alongside group members who themselves interacted more with 319 

humans while alongside other monkeys within the same time and space. In other words, we 320 

anticipate that these measures of their connectedness would be relevant to understanding (i) the 321 

socioecological underpinnings of macaques’ risk-taking behaviors in anthropogenic 322 

environments, and (ii) whether some individuals, due to their greater connectedness in one or 323 

both types of networks, may serve as targets for interventions to manage human-wildlife 324 

interactions and the risk of zoonotic transmission. To account for differences in group size (and 325 

hence the number of nodes or available partners within a network), we re-scaled the values 326 

calculated for each network measure within each group to sum up to one. Centrality measures 327 

were calculated using the ‘Igraph’ package in R (Csardi & Nepusz, 2006).  328 

Data analysis: To determine whether human-interaction networks showed non-random 329 

structures (p1), we implemented a ‘null’ model pre-network randomization procedure (Farine, 330 

2017; Farine & Carter, 2020). For each human-interaction network, we calculated the mean 331 

strength centrality of all individuals, and compared this ‘observed’ mean to a distribution of 332 

mean strength centrality scores calculated from each of 1000 permutations of the network 333 

generated by randomly swapping its edges. This approach has been shown to be more reliable 334 
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than other, post-network permutation-based null model approaches, i.e. node-swapping, to test 335 

the ‘null’ hypothesis of random network structure (Puga-Gonzalez et al., 2020).  336 

To test whether the structure of macaques’ connectedness within their human-interaction 337 

networks were associated with their connectedness within social networks (p2), we ran General 338 

Linear Mixed-effects Models (GLMMs) implementing a corrected Akaike Information Criterion 339 

(AICc) based model-selection and interpretation approach, using the ‘Lme4’ R package 340 

(Burnham & Anderson, 2002; Burnham et al., 2011).  341 

For a sample size of 339 macaques across ten groups, we ran two sets of negative-342 

binomial models, one for each of two outcome variables of macaques’ human-interaction 343 

network centrality measures, i.e. strength and eigenvector (Supplementary Tables 2 and 3). Each 344 

model-set consisted of seven models. In each model set, the first model included only 345 

sociodemographic attributes (i.e. sex, dominance rank, species) and was effectively the ‘null’ or 346 

‘control’ model. Models 2 and 3 included sociodemographic attributes plus a single measure of 347 

macaques’ corresponding centrality (e.g. strength centrality as a predictor of human-interaction 348 

strength centrality) in the grooming, short-duration affiliation, and proximity networks. 349 

Centrality measures from the grooming and proximity networks (but not short-duration 350 

affiliation networks) were strongly collinear and were not included in the same model.  Finally, 351 

models 4 to 7 included interaction terms between species and each social network centrality 352 

measure to explore cross-species differences in associations.  353 

From each model set, we shortlisted and interpreted model summary parameters from one 354 

or more ‘candidate’ models that had the lowest AICc scores that were within an AICc of 2 points 355 

from each other, and < 2 points from the next best-fit model. To account for inter-dependencies 356 

in human-interaction network measures examined as outcome variables, we re-calculated the p 357 
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values for the observed model coefficients for predictor variables that showed significant effects 358 

in each candidate model, using a post-network node-swapping randomization procedure (Farine, 359 

2017; Farine & Carter, 2020). In these, we compared observed model coefficients to a 360 

distribution of coefficients generated by re-running the candidate GLMM following the re-361 

assignment of human-interaction centrality scores through randomly swapping the nodes of each 362 

human-interaction network. Node-swapping is less susceptible (than pre-network randomizations 363 

or edge-swapping) to type-II errors while testing regression-based null hypotheses (Weiss et al., 364 

2020). 365 

We conducted various diagnostics of model validity and stability (Cook’s distance, 366 

dfBetas, and Variance Inflation Factors; distribution of residuals, residuals plotted against fitted 367 

values) for all candidate models. These revealed no influential cases, strong collinearity among 368 

our predictor variables, or obvious deviations from the assumptions of normality and 369 

homogeneity of residuals (Quinn & Keough, 2002). All statistical tests were two-tailed, and we 370 

set the p values to attain statistical significance to be < 0.05. 371 

 372 

Results: 373 

(P1) The structure of human-interaction networks: 374 

For all ten macaque groups, human-interaction networks were well-connected and 375 

exhibited significant structure (examples in Fig. 2a-c). Table 1 summarizes the attributes and 376 

characteristics of each network. The majority of human-interaction networks (7/10) were 377 

somewhat fragmented, insofar as they had one or up to a few individuals that remained 378 

disconnected from the main network fragment (a minimum of one individual in a bonnet 379 

macaque group: BM_G2; a maximum of 7 individuals in a rhesus macaque group: RM_G4). 380 
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There was also marked inter-network variation in the average human-interaction strength 381 

centrality of individuals (Table 1). Despite these features, pre-network randomization tests 382 

performed by randomly swapping network edges revealed that, for each network, the observed 383 

mean strength centrality of individuals was significantly greater than the distribution of strength 384 

centralities calculated following 1000 permuted ‘edge-swapped’ networks. That is, all networks 385 

deviated significantly from the null hypothesis of random network structure.    386 

 387 

Table 1: Summary of attributes of macaque human-interaction networks. For mean 388 

strength, p values are based on a pre-network randomization procedure (see Methods)   389 

Species 

(group) 

Network 

(group) Size 

Males Females Edges 

or links 

Unconnected 

individuals 

Strength  

(mean  sd) 

Bonnet 

(BM_G1) 

48 26 22 318 4 0.10  0.07** 

Bonnet 

(BM_G2) 

28 10 18 115 1 0.09  0.06** 

Long-tailed 

(LM_G1) 

35 11 24 144 5 0.10  0.08** 

Long-tailed 

(LM_G2) 

19 7 12 122 0 0.30  0.16** 

Long-tailed 

(LM_G3) 

34 15 19 91 6 0.20  0.24** 

Long-tailed 

(LM_G4) 

24 5 19 178 0 0.23  0.14** 

Rhesus 

(RM_G1) 

27 9 18 87 2 0.08  0.06** 

Rhesus 

(RM_G2) 

24 7 17 173 0 0.10  0.05** 

Rhesus 

(RM_G3) 

41 13 28 342 2 0.05  0.03** 

Rhesus 

(RM_G4) 

59 14 45 238 7 0.05  0.03** 

**p < 0.01 390 
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 391 

(a)                                             (b)                                              (c) 392 

Figure 2: Examples of weighted, undirected human-interaction networks constructed for 393 

groups of (a) bonnet macaques (BM_G1), (b) long-tailed macaques (LM_G1), and (c) 394 

rhesus macaques (RM_G1).  395 

 396 

(P2) Associations between macaques’ human-interaction networks and social networks: 397 

We found strong evidence to suggest that the connectedness/centrality of individual 398 

macaques within their social networks strongly influenced their connectedness/centrality within 399 

their human-interaction networks.  400 

For strength centrality, our AICc selection criterion led to the short-listing and 401 

interpretation of two candidate GLMMs. The first candidate model (Table 2A: model 3 of 402 

Supplementary Table 2) showed a significant positive effect of both short-duration affiliation 403 

strength centrality (Fig. 3a) and proximity strength centrality on human-interaction strength 404 

centrality. The second candidate model (Table 2B: model 6 of Supplementary Table 2) further 405 

showed a significant interaction between proximity strength centrality and species, which 406 

revealed that the effect of proximity was most pronounced among bonnet macaques, moderate 407 

among rhesus macaques, and least pronounced (did not reach significance) among long-tailed 408 
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macaques. Neither candidate model included grooming centrality measures: proximity and short-409 

duration affiliation strength centrality had a greater impact than grooming strength centrality on 410 

human-interaction network centrality. Macaque sex had a significant impact on human-411 

interaction network strength centrality, with males showing greater values than females (Table 412 

2A, B; Fig. 3b). However, dominance rank had no effect (Table 2A, B). Across species, we 413 

found that the average strength centrality of individuals was the highest among long-tailed 414 

macaques, and the lowest among rhesus macaques, with bonnet macaques falling in between 415 

(Table 2A). 416 

 417 

Table 2: Candidate GLMMs (models 3 and 6 of Supplementary Table 2) examining the 418 

effects of individuals’ sociodemographic attributes (sex, dominance rank, species), and 419 

social network strength centrality (grooming, proximity, and affiliation) by species, on their 420 

human-interaction network strength centrality. Pperm indicate p values from permuted 421 

networks that were estimated using the post-network randomizations or ‘node-swapping’ 422 

algorithm (see Methods). 423 

Model 3 424 

Predictor B SE Z P Pperm 

(Intercept) 1.74 0.19 9.21 <0.01**  

Sex (males vs females) 0.30 0.11 2.67 0.01* <0.01** 

Rank Index -0.10 0.17 -0.61 0.54  

Species (long-tailed vs bonnet) 0.57 0.19 2.98 <0.01** <0.01** 

Species (rhesus vs bonnet) -0.35 0.19 -1.88 0.06(*)  

Species (long-tailed vs rhesus) 0.92 0.16 5.78 <0.01** <0.01** 
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Proximity Strength 8.30 3.35 2.47 <0.01** 0.03* 

Affiliation Strength 7.34 2.81 2.61 <0.01** <0.01** 

 **p < 0.01; *p < 0.05; (*)0.05 < p < 0.10 425 

Model 6 426 

Predictor B SE Z P Pperm 

(Intercept) 1.20 0.33 3.61 <0.01**  

Sex (males vs females) 0.40 0.12 3.42 <0.01** <0.01** 

Rank Index -0.07 0.16 -0.43 0.67  

Species (long-tailed vs bonnet) 1.30 0.37 3.51 <0.01** <0.01** 

Species (rhesus vs bonnet) -0.01 0.37 -0.04 0.97  

Species (long-tailed vs rhesus) 1.32 0.27 4.92 <0.01** <0.01** 

Affiliation strength 4.59 2.94 1.57 0.12  

Proximity strength (bonnets) 27.71 9.74 2.85 <0.01** <0.01** 

Proximity strength (long-tailed) 4.14 3.64 1.14 0.25 0.18 

Proximity strength (rhesus) 16.48 5.85 2.82 <0.01** <0.01** 

Proximity strength (long-tailed vs bonnets) -23.56 9.97 -2.36 0.02* <0.01** 

Proximity strength (rhesus vs bonnets) -11.22 10.45 -1.07 0.28  

Proximity strength (long-tailed vs rhesus) -12.34 6.28 -1.96 0.04* 0.04* 

**p < 0.01; *p < 0.05 427 

 428 
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 430 

Figure 3: Effect of (a) sex and (b) affiliation strength centrality on the outcome of human-431 

interaction network strength centrality 432 

 433 

For eigenvector centrality, results were largely consistent. The first candidate model 434 

(Table 3A: model 3 of Supplementary Table 3) showed a significant positive effect of both short-435 

duration affiliation eigenvector centrality (Fig. 4a) and proximity eigenvector centrality on 436 

human-interaction eigenvector centrality. The second candidate model (Table 3B: model 6 of 437 

Supplementary Table 3) further showed a significant interaction between proximity eigenvector 438 

centrality and species, which revealed that the effect of proximity was the strongest among 439 

bonnet macaques, moderately strong among rhesus macaques, and least strong (did not reach 440 
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significance) among long-tailed macaques (Fig. 4b). Neither candidate model included grooming 441 

centrality measures, i.e. proximity and short-duration affiliation network centrality had a stronger 442 

(compared to grooming network centrality) impact on human-interaction network centrality. 443 

Macaque sex, but not dominance rank, had a significant impact on human-interaction network 444 

eigenvector centrality, with males showing greater values than females (Table 3A, B). However, 445 

unlike for strength centrality, there were no cross-species differences in mean human-interaction 446 

eigenvector centrality measures (Table 3A). 447 

 448 

Table 3: Candidate GLMMs (models 3 and 6 of Supplementary Table 3) examining the 449 

effects of individuals’ sociodemographic attributes (sex, dominance rank, species), and 450 

social network eigenvector centrality (grooming, proximity, and affiliation) by species, on 451 

their human-interaction network eigenvector centrality. Pperm indicate p values from 452 

permuted networks that were estimated using the post-network randomizations or ‘node-453 

swapping’ algorithm (see Methods). 454 

Model 3 455 

Predictor B SE Z P Pperm 

(Intercept) 2.12 0.14 14.77 <0.01**  

Sex (males vs females) 0.18 0.11 1.61 0.01* 0.02* 

Rank Index -0.06 0.18 -0.33 0.74  

Species (long-tailed vs bonnet) -0.07 0.13 -0.53 0.60  

Species (rhesus vs bonnet) 0.01 0.12 0.05 0.96  

Species (long-tailed vs rhesus) -0.07 0.11 -0.67 0.50  

Proximity eigenvector 7.81 2.87 2.72 0.01* 0.01* 
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Affiliation eigenvector 6.94 2.58 2.69 0.01* 0.03* 

 **p < 0.01; *p < 0.05 456 

Model 6 457 

Predictor B SE Z P Pperm 

(Intercept) 1.71 0.25 6.93 <0.01**  

Sex (males vs females) 0.27 0.12 2.24 0.03* <0.01** 

Rank Index -0.04 0.18 -0.20 0.84  

Species (long-tailed vs bonnet) 0.41 0.26 1.54 0.12  

Species (rhesus vs bonnet) 0.40 0.25 1.62 0.10  

Species (long-tailed vs rhesus) 0.00 0.18 0.02 0.98  

Affiliation eigenvector 5.52 2.69 2.05 0.04* 0.15 

Proximity eigenvector (bonnets) 22.09 7.66 2.88 <0.01** <0.01** 

Proximity eigenvector (long-tailed) 6.22 3.40 1.83 0.07(*) <0.01** 

Proximity eigenvector (rhesus) 8.39 4.00 2.10 0.04* <0.01** 

Proximity eigenvector (long-tailed vs 

bonnets) 

-15.87 7.80 -2.03 0.04* <0.01** 

Proximity eigenvector (rhesus vs bonnets) -13.70 7.80 -1.76 0.08(*) <0.01** 

Proximity eigenvector (long-tailed vs rhesus) -2.17 4.69 -0.46 0.64 0.15 

**p < 0.01; *p < 0.05 458 

 459 

 460 

 461 

 462 
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463 
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Figure 4: Effects of (a) affiliation eigenvector centrality and (b) proximity eigenvector 465 

centrality by species on human-interaction network eigenvector centrality. 466 

 467 

Discussion: 468 

For multiple groups of wild macaques living in anthropogenic environments, we used a 469 

network-approach to reveal non-random patterns of associations in human-wildlife interactions. 470 

Moreover, we revealed that macaques’ connectedness within their human-interaction networks 471 

were strongly influenced by aspects of their behavioral ecology. Below we discuss our findings, 472 

and their implications for understanding the behavioral ecology of human-wildlife interactions 473 

from both evolutionary and conservation perspectives. 474 

 For all macaque groups, human-interaction networks showed a non-random structure, 475 

confirming that macaques showed heterogeneous, non-random patterns of using anthropogenic 476 

features of their home range and engaging with humans across time and space. This finding 477 

provides an important pretext to conducting assessments of whether/how these non-random 478 

spatiotemporal associations of wild macaques and humans, are influenced by animal ecology and 479 

behavior (as we do in this study). This has important implications both for understanding 480 

animals’ adaptive responses to dynamic anthropogenic environments, and for conservation- and 481 

public health-related initiatives (discussed below). In constructing human-interaction networks, 482 

we advanced previous studies that have focused on specific types of human-wildlife interactions 483 

(e.g. encounter rates, avoidance, contact-behaviors like aggression and food provisioning), or 484 

their overall frequencies of occurrence (reviewed in Balasubramaniam et al. 2020a), to focusing 485 

on patterns of human-wildlife associations as revealed by network connectedness. Researchers 486 

have been increasingly implementing social network analysis to understand human impact on 487 
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animal-animal spatial and social behavior, but not necessarily to model human-wildlife 488 

interactions themselves (Snijders et al., 2017; Sosa et al., 2021a). Our construction of human-489 

interaction networks addressed this gap. Indeed, approaches similar to ours may be used to 490 

construct other human-wildlife interaction networks in which terrestrial, group-living wildlife 491 

populations that overlap with anthropogenic environments (e.g. wild ungulates, elephants, other 492 

nonhuman primates like baboons and chimpanzees) may be inter-linked based on their shared 493 

spatiotemporal overlap and/or interspecies interactions with humans, livestock, or feral 494 

mammals. 495 

 Macaques’ human contact networks were strongly associated with some aspects of their 496 

behavioral ecology, but not so with others. For instance, the connectedness of macaques within 497 

their human contact networks were strongly associated with their connectedness within networks 498 

of affiliative social interactions of short duration, but not so their grooming networks. In group-499 

living primates, affiliative interactions bring proximate benefits such as the reduction of stress 500 

levels (Aureli et al., 1999; Shutt et al., 2007), underlie strong alliances between kin and friends 501 

(van Hoof & van Schaik, 1992), and are key to the establishment and maintenance of strong 502 

long-term social bonds (Silk et al. 2003; Young et al., 2014). Our previous work on these 503 

populations revealed how monitoring human activity reduced the time available for macaques to 504 

engage in grooming (rhesus macaques: Kaburu et al., 2019b; longtailed macaques: Marty et al., 505 

2019; bonnet macaques: Balasubramaniam et al., 2020b), but not necessarily for other short-506 

duration affiliative interactions like coalitionary support, lip-smacking, and silent bare-teeth 507 

displays in non-aggressive contexts which remained unaffected (bonnet macaques: 508 

Balasubramaniam et al., 2020b).  509 



28 

Balasubramaniam et al. 

One of the primary motivations for monkeys to interact with humans is to obtain 510 

anthropogenic foods (Marty et al., 2020). The benefits of within-group social cohesion and 511 

tolerance may, at least in part, help offset the potential physiological and health-related costs or 512 

risks involved in gaining access to these foods. Thus, we speculate that in anthropogenic 513 

environments in which wild primates may routinely face time-constraints, animals may rely 514 

more than usual on short-duration affiliative interactions, which may be especially key to 515 

maintaining group cohesion and strong ties of social support when animals have to compromise 516 

on their grooming time. Such ties of short-duration affiliative interactions may also encourage 517 

collective (and perhaps even cooperative) risk-taking as indicated by animals’ co-engagement 518 

with humans at the same time and space to procure anthropogenic foods. Our finding of strong, 519 

consistent (across multiple groups and three species) associations between macaques’ 520 

connectedness within their short-duration affiliative social networks and their human-interaction 521 

networks supports this argument. 522 

Human-interaction networks were also influenced by social proximity networks, with the 523 

effect sizes being different across species. They were the strongest for bonnet macaques and the 524 

weakest for long-tailed macaques, with rhesus macaques falling in-between. Species-typical 525 

differences in behavior that is also linked to differences in evolutionary history may at least 526 

partly explain these patterns. In comparison to rhesus macaques and long-tailed macaques, 527 

bonnet macaques are considered to be more socially tolerant (Balasubramaniam et al. 2012; 528 

Thierry, 2007), are less widely distributed and less ecologically flexible (Gumert, 2011; Priston 529 

& McLennan, 2013; Radhakrishna & Sinha, 2011), and have had a shorter (in evolutionary time-530 

scales) history of exposure to changing, anthropogenically impacted environments (Gumert, 531 

2011; Priston & McLennan, 2013; Radhakrishna & Sinha, 2011). More generally, these patterns 532 
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across macaques suggest that in group-living wildlife characterized by more tolerant social 533 

systems and/or less ecological flexibility (e.g. bonnet macaques compared to rhesus and long-534 

tails), being near familiar individuals such as close kin or conspecifics may encourage greater 535 

propensities among individual animals to take risks in anthropogenic environments.  536 

On the other hand, cross-site, or indeed even within-site differences in the distribution and 537 

density of anthropogenic factors and (consequently) human-macaque interactions, may also 538 

underlie these observed cross-species. For instance, bonnet macaques experienced the overall 539 

lowest densities of humans, and their interactions with humans were also more concentrated 540 

when the groups were within specific areas (blocks) of their home-range (McCowan, 541 

Unpublished Data). In comparison, rhesus and (especially) long-tailed macaques were exposed 542 

to higher densities of humans, and their interactions with humans were also more widely 543 

distributed across the groups’ home-ranges (McCowan, Unpublished Data). It is therefore likely 544 

that rhesus and long-tailed macaques, more so than bonnet macaques, engaged with humans both 545 

preferentially while being near their conspecifics, as well as opportunistically when they were 546 

not near their conspecifics. More comprehensive tests of these explanations await future research 547 

that quantitatively evaluates, rather than controls for (as was done in this study), intraspecific 548 

variation within and across groups of the same species. 549 

Macaques’ sex also had an effect on their connectedness within human-interaction 550 

networks: males were more well-connected than females. Sex-based differences may also reflect 551 

differences in life-history requirements and the socioecological roles of males and females. 552 

While philopatric females usually form the core of macaque social networks, dispersing males 553 

tend to be more exploratory, stay in the group periphery, and (consequently) experience more 554 

frequent interactions (Balasubramaniam et al., 2020a; Morrow et al., 2019). Moreover, across 555 
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group-living mammals, males face high long-term energetic demands pertaining to their life-556 

history requirements of maintaining large body sizes and other physical features (e.g. horns, 557 

antlers, canines) that render competitive and reproductive advantages (Clutton-Brock, 2017). 558 

Thus, a combination of their exploratory behavior, movement and dispersal, and life-history 559 

requirements that may entail greater risk-taking (Balasubramaniam et al., 2020a; Morrow et al., 560 

2019), may explain why males are more central or well-connected within human-interaction 561 

networks than females.  562 

One methodological limitation in our construction of human-interaction networks 563 

concerned the lack of more precise information on these interactions. Although we contained the 564 

assignment of links based on interactions within the same block and time-frame, the construction 565 

of more conservative, albeit more sparsely-connected, human-interaction networks may have 566 

been possible if we had restricted links to interactions that occurred between macaques and the 567 

same human(s), and at the same precise GPS location. Collecting more precise geospatial data on 568 

human-macaque interactions would be a vital next step. Moreover, implementing multi-level 569 

approaches (Finn et al., 2019) to capture potential heterogeneity in human-interaction patterns 570 

across different spatial (blocks) and temporal (observation windows) layers was also beyond the 571 

scope of this study, but another important next step. Finally, our results may have been impacted 572 

by spatiotemporal variation in human density, which, through affecting the overall frequencies of 573 

human-macaque interactions, may also impact the connectedness of macaques within their 574 

human-interaction networks. We will assess this possibility in a future assessment of 575 

intraspecific variation in these networks. 576 

Our study has important implications for the conservation and management of human-577 

wildlife interfaces. Macaques that are more well-connected within their human-interaction 578 
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networks, because of their coming into contact with more people across time and space, may be 579 

targets of interventions that move human-primate interactions from conflict towards coexistence 580 

(Nyhus, 2016). Human-wildlife interfaces, now more so than ever before, are also widely 581 

recognized as ‘hotspots’ for the transmission of zoonotic and emerging infectious disease, 582 

including SARS-CoV-2 (Cunningham et al., 2017; Townsend et al., 2020). From an 583 

epidemiological perspective, it is now well-established that animals that are central within their 584 

contact social networks may function as within-group ‘superspreaders’ of infectious agents 585 

(Craft, 2015; Drewe & Perkins, 2015). Similarly, it is likely that macaques that are central within 586 

human-interaction networks may be disease ‘superspreaders’ both within wildlife systems and 587 

across human-wildlife interfaces, making these animals particularly important targets of disease 588 

intervention strategies like vaccination and antibiotic treatment (Rushmore et al., 2014). Indeed, 589 

our finding of a lack of association between macaques’ human-interaction networks and contact 590 

social grooming networks suggests that human-interaction and social contact networks may offer 591 

somewhat independent socioecological pathways for disease spread. Assessing the vulnerability 592 

versus resistance of both types of networks to zoonotic transmission and disease outbreaks would 593 

therefore be vital from conservation and public health perspectives. 594 
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