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Abstract: 45 

1. Human population expansion into wildlife habitats has increased interest in the 
46 

behavioral ecology of human-wildlife interactions. To date, however, the socio-
47 

ecological factors that determine whether, when or where wild animals take risks by 
48 

interacting with humans and anthropogenic factors still remains unclear.  
49 

2. We adopt a comparative approach to address this gap, using social network analysis 
50 

(SNA). SNA, increasingly implemented to determine human impact on wildlife ecology, 
51 

can be a powerful tool to understand how animal socioecology influences the 
52 

spatiotemporal distribution of human-wildlife interactions.  
53 

3. For 10 groups of rhesus, long-tailed, and bonnet macaques (Macaca spp.) living in 
54 

anthropogenically-impacted environments in Asia, we collected data on human-macaque 
55 

interactions, animal demographics, and macaque-macaque agonistic and affiliative social 
56 

interactions. We constructed ‘human co-interaction networks’ based on associations 
57 

between macaques that interacted with humans within the same time and spatial 
58 

locations, and social networks based on macaque-macaque allogrooming behavior, 
59 

affiliative behaviors of short duration (agonistic support, lip-smacking, silent bare-teeth 
60 

displays, and non-sexual mounting), and proximity.  
61 

4. Pre-network permutation tests revealed that, within all macaque groups, specific 
62 

individuals jointly took risks by repeatedly, consistently co-interacting with humans 
63 

within and across time and space. GLMMs revealed that macaques’ tendencies to co-
64 

interact with humans was positively predicted by their tendencies to engage in short-
65 

duration affiliative interactions and tolerance of conspecifics, although the latter varied 
66 

across species (bonnets>rhesus>long-tailed). Male macaques were more likely to co-
67 
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interact with humans than females. Neither macaques’ grooming relationships nor their 
68 

dominance ranks predicted their tendencies to co-interact with humans.  
69 

5. Our findings suggest that, in challenging anthropogenic environments, less (compared to 
70 

more) time-consuming forms of affiliation, and additionally greater social tolerance in 
71 

less ecologically flexible species with a shorter history of exposure to humans, may be 
72 

key to animals’ joint propensities to take risks to gain access to resources. For males, 
73 

greater exploratory tendencies and less energetically demanding long-term life-history 
74 

strategies (compared to females), may also influence such joint risk-taking. From 
75 

conservation and public health perspectives, wildlife connectedness within such co-
76 

interaction networks may inform interventions to mitigate zoonosis, and move human-
77 

wildlife interactions from conflict towards co-existence.  
78 
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 87 

Introduction: 88 

An expanding human population has increased overlap and contact rates between humans 89 

and wildlife (Nyhus, 2016). The resulting human-wildlife interactions have visible, readily 90 
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discernible outcomes on wildlife populations, but also subtler effects on animal ecology and 91 

behavior that remain less well-documented (Balasubramaniam et al., 2021; Carter et al., 2014; 92 

Lischka et al., 2018). The sub-field of conservation behavior addresses this gap, and largely deals 93 

with the impact of anthropogenic factors and human-wildlife interactions on wildlife 94 

socioecology, i.e. animal movement and (consequential) access to natural resources, interspecies 95 

ecosystem interactions with predators and competitors, and intraspecies spatial overlap and 96 

social interactions with their conspecifics (reviewed in Berger-Tal et al., 2016; Snijders et al., 97 

2017). However, there exists comparatively less research on how wildlife socioecology, for 98 

instance animals’ life-history strategies and their interactions with their conspecifics, might in 99 

turn impact animals’ navigation of anthropogenic environments and tendencies to interact with 100 

humans (Balasubramaniam et al., 2021; Morrow et al., 2019). This is despite growing consensus 101 

that human-wildlife interactions generate coupled, bi-directional effects whereby they both 102 

affect, and are reciprocally affected by, wildlife ecology and behavior (Balasubramaniam et al., 103 

2021; Carter et al., 2014; Lischka et al., 2018).   104 

To-date, only a handful of empirical studies have focused on how the socioecology of 105 

group-living wild animals can influence human-wildlife interactions. Specifically, these have 106 

revealed how wild animals’ tendencies to engage in risk-taking behaviors within human-107 

impacted environments are associated with a number of life-history and socioecological traits, 108 

such as animals’ sex, dominance rank, spatial position within their groups, and connectedness 109 

within social networks (e.g. elephants, Elephas maximus: Chiyo et al., 2012; black bears, Ursus 110 

americanus: Lischka et al., 2018; multiple species of macaques, Macaca spp.: Balasubramaniam 111 

et al., 2020a; Morrow et al., 2019). A common aspect of all these studies is that they have 112 

focused on the overall frequencies of human-wildlife interactions, or the overall degrees of 113 
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exposure of individual wild animals to humans and anthropogenic factors. In comparison, less 114 

well-studied is whether and how animals form non-random associations with conspecifics in 115 

terms of when, where or how they interact with humans.  116 

Understanding such patterns of associations between conspecifics among free ranging 117 

animals in the context of human-wildlife interactions is important from both evolutionary and 118 

conservation perspectives. First, capturing the dynamic, spatiotemporally variable socioecology 119 

of human-wildlife interactions could offer opportunities to study contemporary evolution, and 120 

animals’ propensities to adaptively respond to rapidly changing environments (Wong & 121 

Candolin, 2015). For socioecologically flexible wildlife species, navigating anthropogenic 122 

environments entails taking risks to procure high-energy human foods, that may increase wild 123 

animals’ exposure to anthropogenic factors and their interactions with people (Balasubramaniam 124 

et al., 2020a; Chiyo et al., 2012; Lischka et al., 2018; Marty et al., 2020; Morrow et al., 2019). 125 

So, assessing patterns of spatiotemporal associations between conspecifics in human-wildlife 126 

interactions could offer insights into whether wild animals and their conspecifics attempt to 127 

navigate these environments through joint risk-taking behavior, for instance by consistently and 128 

repeatedly co-engaging with humans across time and space to procure anthropogenic foods. 129 

From a public health perspective, such research could provide valuable information regarding 130 

whether or how some animals, by virtue of overlapping with humans and anthropogenic areas 131 

across time and space, may be the targets of interventions to mitigate the spread of zoonotic and 132 

emerging infectious diseases at human-wildlife interfaces (Cunningham et al., 2017; Townsend 133 

et al., 2020). Such animals may also be the targets of other conservation efforts, interventions 134 

and policy making aimed at moving human-wildlife interactions from conflict towards co-135 

existence (Nyhus, 2016). 136 
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Network approaches offer exciting quantitative tools that may uniquely be able to address 137 

this gap in the literature. Beyond just rates or durations of interactions, networks allow for 138 

modeling the heterogeneity in relationships between entities (i.e. individual animals or humans,  139 

assigned as nodes) based on shared or interactive patterns of their association (assigned as edges) 140 

(Farine & Whitehead, 2015; Wey et al., 2008). In particular, social networks, which link animals 141 

based on their shared patterns of space-use associations or contact and non-contact social 142 

interactions (Farine & Whitehead, 2015), have found wide-ranging applications in animal 143 

behavioral ecology (Croft et al., 2008; Krause et al., 2014), including of late in conservation 144 

behavior (Snijders et al., 2017). For instance, epidemiological studies have used animal social 145 

network analysis (SNA) to assess the vulnerability of wildlife populations to infectious disease 146 

outbreaks (Craft, 2015; Drewe & Perkins, 2015). More pertinently, an increasing number of 147 

studies have revealed how interactions with humans may decrease the connectedness of animal 148 

social networks (e.g. spotted hyenas, Crocuta crocuta: Belton et al., 2018; giraffes, Giraffa 149 

camelopardalis: Bond et al., 2020; bottlenose dolphins, Tursiops aduncus: Chilvers & Corkeron, 150 

2001; moor macaques, M. maura: Morrow et al., 2019), and in extreme cases to the 151 

fragmentation of social networks (e.g. the simulated removal of nodes in networks of Killer 152 

whales, Orcinus orca: Williams & Lusseau, 2006). Such findings are of profound importance 153 

since decreased social network connectedness or fragmentation can impact animal health and 154 

reproductive success (Nunn et al., 2015). Yet while most SNA studies have focused on space-use 155 

overlap or social interaction networks, little research has implemented SNA to model human-156 

wildlife interactions themselves. A recent, exceptional study on feral dogs used SNA to show 157 

that dog-dog social interactions were mediated by interactions between dogs and humans 158 

(Bhattacharjee & Bhadra, 2021). However, SNA is yet to be used to examine associations 159 
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between free-ranging animals that co-inhabit anthropogenic components of their environment, or 160 

jointly take risks by co-interacting with humans, at the same time and space (Sosa et al., 2021a).  161 

In this study, we address the above gaps in our current understanding of the ecology of 162 

human-wildlife interactions. We do so by implementing comparative, network-based approaches 163 

to understand whether free-ranging nonhuman primates engage in joint risk-taking behavior in 164 

anthropogenic environments by co-interacting with humans. We also ask whether such co-165 

interactions are influenced by animals’ socioecology, and their sociodemographic characteristics 166 

related to their evolutionary history and life-history strategies. Aside from sharing close 167 

evolutionary histories with humans (Hasegawa et al., 1985; Roos & Zinner, 2018), wild primates 168 

are also increasingly sharing ecological space and resource-use overlap with humans (Fuentes, 169 

2012; Mckinney, 2015). Anthropogenic factors may present (in evolutionary time-scales) 170 

relatively novel, socioecological constraints on wild primates, with individuals having to 171 

continuously adjust their behavior to adapt to human activities and behavior (Mckinney, 2015). 172 

Among the most ecologically and behaviorally flexible of all nonhuman primates, many species 173 

of macaque, particularly rhesus macaques (M. mulatta), long-tailed macaques (M. fascicularis), 174 

and bonnet macaques (M. radiata), are considered ‘edge’ wildlife species that overlap and 175 

experience spatiotemporally variable contact rates and interactions with humans (Gumert, 2011; 176 

Priston & McLennan, 2013; Radhakrishna & Sinha, 2011). At the same time, they also show 177 

marked inter- and intra-specific variation in both competitive (i.e. aggression, submissive status 178 

signaling) and cooperative (e.g. grooming, tolerance through proximity, other forms of affiliation 179 

such as lip-smacking and coalitionary support during conflicts) social interactions and 180 

(consequently) social network connectedness with their conspecifics. Such variation in 181 

macaques' social networks has previously been linked to differences in their evolutionary or 182 
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phylogenetic relationships (Balasubramaniam et al., 2012; Thierry, 2007), exposure to 183 

socioecological factors (Sterck et al, 1997), and exposure to anthropogenic impact 184 

(Balasubramaniam et al., 2020b; Kaburu et al., 2019b; Marty et al., 2019). For these reasons, 185 

they are well-suited model systems for this study. 186 

We constructed ‘human co-interaction networks’ for ten groups of three macaque species 187 

living in anthropogenic environments in India and Malaysia. These networks linked individual, 188 

pre-identified macaques and their group conspecifics based on their tendencies to co-interact 189 

with humans within the same time and space. To determine whether macaques were prone to 190 

jointly take risks by consistently and repeatedly co-interacting with humans within and across 191 

time and space, we first tested whether (1) the connectedness of macaques within their human 192 

co-interaction networks was significantly greater than expected by chance. Second, we examined 193 

whether (2) macaques’ tendencies to jointly take risks were also influenced by aspects of their 194 

socioecology and sociodemography. Specifically, we tested whether macaques that were more 195 

well-connected to others, i.e. more central within their social networks of grooming, tolerance or 196 

(hereafter) proximity, and affiliative interactions of shorter durations, were also more well-197 

connected or central within their human co-interaction networks. Furthermore, we tested whether 198 

males and higher-ranking individuals of both sexes, given their relatively greater exploratory 199 

tendencies and energetic demands compared to females and lower-ranking macaques 200 

(Balasubramaniam et al., 2020a; Marty et al., 2020; Morrow et al., 2019), were more prone to 201 

joint risk-taking through being more well-connected in their co-interaction networks. As a cross-202 

species comparative component, we also explored whether the above-predicted associations 203 

between macaques’ human co-interaction network connectedness and social network 204 

connectedness varied across different macaque species. 205 
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 206 

Materials and Methods: 207 

Study sites and subjects: We collected demographic and behavioral data on ten groups of 208 

macaques living in urban and peri-urban environments ranging from temperate areas in Northern 209 

India to tropical environments in Southern India and Malaysia. The groups were as follows: four 210 

groups of rhesus macaques at a Hindu temple and the surrounding forested area (three groups) 211 

and in the city center (one group) of Shimla in Northern India (31.05 N, 77.1 E); four groups of 212 

long-tailed macaques at a Hindu temple (two groups) and a recreational park (two groups) in the 213 

outskirts of Kuala Lumpur in Malaysia (3.3 N, 101 E); and two groups of bonnet macaques at a 214 

recreational area in the outskirts of the rural town of Thenmala within the state of Kerala in 215 

Southern India (8.90 N, 77.10 E) (Balasubramaniam et al., 2020b; Marty et al., 2020).  216 

Supplementary Table 1 provides details on the duration and periods of data collection, 217 

study groups, and subjects. We collected data for a period of 16-18 months (July 2016 – May 218 

2018) for rhesus macaques in Northern India and long-tailed macaques in Malaysia, and for a 219 

period of 11 months (July 2017 – May 2018) for bonnet macaques in Southern India. Despite 220 

these cross-site differences in observation period, all groups were observed for substantial 221 

amounts of time, that were also closer to each other than expected since we observed just two 222 

bonnet macaque groups compared to four groups each of rhesus and long-tailed macaques 223 

(Supplementary Table 1). In any case, we accounted for differences in observation times in our 224 

network constructions and analyses (see details below). Although seasonal differences may have 225 

impacted intraspecific variation in macaque ecology and behavior, more in-depth longitudinal 226 

assessments of such variation were beyond the scope of this study (see Discussion). As such, the 227 
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data analyzed in this study spanned the entire duration of data collection and therefore the breath 228 

of both seasons and times of the day (9:00 am – 5:00 pm: see below).  229 

Subjects were all adult males and females within each group. All subjects were pre-230 

identified using facial and other physical features during a ~2 month preliminary phase prior to 231 

the commencement of data collection at each site. At all three locations, macaque home ranges 232 

overlapped with humans and anthropogenic landscape features. However, there were systematic 233 

inter- and intraspecific differences in macaques’ degrees of exposure to humans, and indeed the 234 

frequency and types of interactions that they engaged/experienced with humans, which informed 235 

our expectation of detecting both within- and between-site differences or heterogeneity in human 236 

co-interaction patterns. More details regarding the similarities and differences between the study 237 

sites may be found in our previous publications (Balasubramaniam et al., 2020b; Marty et al., 238 

2020).  239 

Data collection: We collected data following a standardized protocol that was 240 

implemented across all three field-sites, with inter-observer reliability being reached both within 241 

and across sites (details in Kaburu et al., 2019a). All data were collected for five days a week, 242 

between 9:00 am and 5:00 pm. Moreover, given the susceptibility of social network analysis to 243 

sampling methods and sampling bias (Farine, 2017; Farine & Whitehead, 2015), particularly to 244 

the inter-dependencies of data used to construct multiple types of networks, we used different 245 

sampling approaches to collect data on human-macaque interactions and macaque-macaque 246 

social behavior.  247 

To record human-macaque interactions, we used an ‘event sampling’ approach (Altmann, 248 

1974; Beisner & McCowan, 2013; Kaburu et al., 2019a). For each macaque group and site, we 249 

divided their home-range that overlapped with anthropogenic settlements into a series of spatial 250 
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blocks of roughly equal sizes, within which human-macaque interactions were most likely to 251 

occur (see Kaburu et al., 2019a for details). Choices of block numbers and locations differed 252 

across groups, and were assigned during the preliminary phase (see above) during which the 253 

groups’ home-ranges were determined. However, block numbers and locations changed during 254 

the course of data collection in accordance with any shifts we saw in macaques’ home ranges 255 

that resulted in our adding or dropping event sampling at some blocks. Critically, block sizes 256 

were uniformly similar within and across study sites, and were set such that observers could 257 

potentially view and record all macaques and humans that were present within the block at a 258 

given time. To record human-macaque interactions, observers visited these blocks in a pre-259 

determined, randomized order on each day. From a pre-assigned, fixed location within each 260 

block that maximized their visual field, observers recorded all human-macaque interactions that 261 

involved pre-identified macaques that were present within the block for a ten-minute duration, 262 

before moving on to the next block. We followed such a randomized block sampling approach to 263 

avoid over-sampling of human-macaque interactions in more (versus less) densely populated 264 

areas of macaques’ home-ranges, which can result in sampling bias (Farine, 2017; Farine & 265 

Whitehead, 2015). 266 

We defined a ‘human-macaque interaction’ as any contact or non-contact behavior that 267 

was initiated by a macaque towards a human (e.g. approach, aggression, begging for food), or by 268 

a human towards a macaque (e.g. approach, aggression, provisioning with food), that elicited a 269 

reaction behavior (e.g. submissive avoidance, fleeing, or screaming, counter-aggression, 270 

acquiring and feeding on human foods) from the initial recipient. We defined an “event” as either 271 

a single such interaction, or a series of such sequentially occurring interactions that were linked 272 
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to each other temporally and/or through common/multiple participants (more details and 273 

definitions in Kaburu et al., 2019a). 274 

We used ‘focal animal sampling’ (Altmann, 1974) to record macaque-macaque social 275 

interactions and social proximity with conspecifics. On each day, and in each location, we 276 

followed individual macaques in a pre-determined, randomized sequence for ten-minute 277 

durations. In each session, we recorded events of dyadic agonistic interactions (aggressive and 278 

submissive behaviors), social or allogrooming, and other forms of dyadic affiliation that were of 279 

shorter durations than grooming (i.e. coalitionary support during social conflicts, lip-smacking, 280 

non-sexual mounting, or silent bare-teeth displays in non-agonistic or peaceful contexts), that 281 

involved the focal animal as either the initiator or the recipient. Once every two minutes within a 282 

focal session, we temporarily ceased recording data in a continuous manner to conduct a point-283 

time scan of the focal, to record the identities of all group conspecifics that were within body-284 

length proximity of the focal. More details on the definitions of behaviors may be found in 285 

Kaburu et al., 2019a.  286 

Construction of human co-interaction networks and social networks: For each macaque 287 

group, we constructed weighted, undirected ‘human co-interaction networks’ based on the 288 

spatiotemporal similarity of monkeys’ interactions with humans (Fig. 1a). That is, we assigned 289 

links between all macaque subjects in a given group that engaged in human-macaque interactions 290 

within the same ten-minute event sampling session and within the same block. Such 291 

reconstructions enable determining whether macaques were associated by way of their consistent 292 

and repeated tendencies to jointly take risks by co-interacting with humans within the same time 293 

and anthropogenic space, and (ultimately) the factors that influence such associations. Edge-294 

weights were calculated and assigned to these human co-interaction networks, as the ratio 295 
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between the total number of such occasions in which pairs of macaques ‘co-interacted’ with 296 

humans within the same block and time-period, to the total duration of event sampling sessions 297 

conducted during the course of their overlapping tenure within their group. This approach 298 

accounted for the observability of each pair of macaques within a particular group, although not 299 

necessarily for their propensities to co-occur at these blocks at the same time and (thereby) their 300 

opportunities to interact with humans (we provide an alternative approach to account for the 301 

latter in the data analysis described below; see also Discussion). 302 

For each macaque group, we also constructed three types of weighted, undirected ‘social 303 

networks’ based on our recordings of social macaque-macaque interactions of grooming, short-304 

duration affiliative behaviors, and social proximity (Fig. 1b). In grooming and short-duration 305 

affiliation networks, nodes were individual macaques, and edge-weights were calculated as the 306 

frequency of behaviors (given or received) between each pair of animals divided by the total 307 

focal observation time of each member of that pair during the course of their overlapping tenure 308 

within their group (details in Balasubramaniam et al., 2020a). In proximity networks, edge-309 

weights were calculated as the number of point-time samples in which a pair of individuals was 310 

seen within body-length of each other, divided by the total number of point-time samples 311 

collected for each member of the pair during the course of their overlapping tenure within their 312 

group. We used the conservative criterion of animals within body-length (as opposed to more 313 

liberal criteria of proximity within 3 meters) to better capture and distinguish social tolerance of 314 

conspecifics from aggregations of animals that simply overlap or share the same space (Adams et 315 

al., 2012; Albery et al., 2020; Pawley & McArdle, 2018; more details in the Discussion). 316 
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 317 

Figure 1: Macaque (a) co-interaction networks (dotted line inter-linking two macaques via 318 

their joint interactions with humans) and (b) social networks (dotted line directly inter-319 

linking two macaques that share a social interaction).  320 

 321 

Calculations of dominance rank and social network centrality: Using data on male-male 322 

and female-female dyadic aggressive interactions that elicited a submissive response from the 323 

recipient, we constructed dominance hierarchies separately for males and females for each group. 324 

Using these, we calculated the dominance rank of each macaque in each group, using the ‘Perc’ 325 

package in R (Fujii et al., 2015). Perc is a network-based ranking method that combines 326 

information from direct dominance interactions with information from multiple indirect 327 

dominance pathways (via common third parties) to quantify dyadic dominance relationships, and 328 

uses these to generate ordinal ranks (Fujii et al., 2015). Perc has been implemented in several of 329 

our previous studies to estimate rank orders of macaque groups (e.g. Balasubramaniam et al., 330 

2016; Marty et al., 2019; Vandeleest et al., 2016). Moreover, the method has been shown to yield 331 

rank orders that are consistent with those yielded by other, popularly used methods by behavioral 332 

ecologists such as David’s score, I&SI ranks, and Elorating (Funkhouser et al., 2018). To 333 
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account for cross-group variation in group size, we standardized ordinal ranks to create a rank 334 

index ranging between zero (lowest-ranking macaque) and one (highest-ranking macaque) 335 

(Kaburu et al., 2019b).  336 

For each individual macaque within each type of network, we calculated weighted, 337 

undirected measures of their connectedness or centrality. Our choices of which centrality 338 

measures to calculate were informed by their biological relevance, using the decision-trees 339 

provided in Sosa et al. (2021b). In the context of our human co-interaction networks, we were 340 

interested in the extent to which individual macaques co-engaged with humans at the same time 341 

and space as others. To determine this, we calculated each macaque’s direct co-engagement with 342 

humans with other macaques, i.e. their weighted degree or (hereafter) strength centrality, as the 343 

sum of all the edge-weights of edges directly connected to an individual (Croft et al., 2008; 344 

Newman, 2003). Moreover, we were also interested in determining the extent to which 345 

individuals interacted more with humans alongside group members who themselves interacted 346 

more with humans while alongside other monkeys within the same time and space. To this end, 347 

we also calculated eigenvector centrality, as the number and strength of an individuals’ direct 348 

and secondary connections, i.e. the reach of an individuals’ connectedness or social ties 349 

(Bonacich, 2007; Brent, 2015). In summary, we anticipated that these two measures of 350 

individuals’ connectedness would be the most biologically relevant to understanding the 351 

socioecological underpinnings of macaques’ joint propensities to co-engage in risk-taking 352 

behaviors to access anthropogenic foods (this study), as well as whether some individuals, due to 353 

their greater connectedness in one or both types of networks, may serve as targets for 354 

interventions to manage human-wildlife interactions and the risk of zoonotic transmission (see 355 

Discussion). To account for differences in group size (and hence the number of nodes or 356 
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available partners within a network), we re-scaled the values calculated for each network 357 

measure within each group to obtain percentile scores, i.e. to lie between 0 (lowest score) and 1 358 

(highest score). Centrality measures were calculated using the ‘Igraph’ package in R (Csardi & 359 

Nepusz, 2006).  360 

Data analysis: To assess whether macaques consistently and repeatedly engaged or co-361 

interacted with humans within and across time and space (1), we used ‘null-model’ pre-network 362 

randomization tests (Farine, 2017; Farine & Carter, 2020). For each human co-interaction 363 

network, we calculated the mean strength centrality of all individuals, and compared this 364 

‘observed’ mean to a distribution of mean strength centrality scores calculated from each of 1000 365 

permuted networks. These permuted networks were constructed after randomly swapping the 366 

identities of interactants from the raw data that was used to construct the original network. Thus, 367 

permuted networks retained some key characteristics of the original network the number of 368 

nodes (individuals) and the total number of edges (Farine, 2017). They were, therefore, useful in 369 

determining whether, for a given network size and total number of connections, the observed 370 

connectedness of macaques within their human co-interaction networks was significantly greater 371 

than expected by chance. Recent studies have shown that pre-network randomizations are more 372 

reliable than post-network randomization tests (i.e. node-swapping: Farine, 2017) to test ‘null’ 373 

hypotheses pertaining to the (non)randomness of network connectedness (Puga-Gonzalez et al., 374 

2020).  375 

To test whether macaques that were more well-connected or central within their social 376 

networks were also more central within their human co-interaction networks (2), we ran 377 

Generalized Linear Mixed-effects Models (GLMMs) with a Beta error structure, using the 378 

‘glmmtmb’ package in R (Magnusson et al., 2019). We selected a Beta error structure since our 379 
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outcome variables ranged between 0 and 1. For an effective sample size of 338 macaques (after 380 

removing one influential case: see below) across ten groups, we ran two sets of GLMMs, one for 381 

each of two outcome variables of macaques’ human co-interaction network centrality measures, 382 

i.e. strength centrality and eigenvector centrality (Supplementary Tables 2 and 3). Each model-383 

set consisted of seven models. We implemented a corrected Akaike Information Criterion (AICc) 384 

to select and interpret the best-fit model from each set, using the MuMIn package in R (Burnham 385 

& Anderson, 2002; Burnham et al. 2011). 386 

Rather than testing multiple combinations of predictor variables and risking Type-I 387 

errors, our model sets were composed of seven, carefully constructed models that were informed 388 

by the hypotheses we were testing (Burnham et al., 2011). In all models, we included macaques’ 389 

sociodemographic attributes (i.e. sex, dominance rank, species) as main effects, and group ID as 390 

a random effect. To control for the time spent by macaques at the interface areas (blocks), and 391 

their overall exposure or opportunities to interact with people which may influence their 392 

connectedness within human co-interaction networks, we also included macaques’ overall 393 

proximity to humans (proportions of time spent within three meters of one or more humans) as a 394 

main effect in all the models. In each model set, the first model (model 1 of Supplementary 395 

Tables 2 and 3) was effectively the ‘null’ or ‘control’ model that did not include any social 396 

network centrality measures as main effects. Models 2 and 3 included measures of macaques’ 397 

centrality within their grooming and short-duration affiliation networks (model 2), and proximity 398 

and short-duration affiliation networks (model 3) respectively. This was because grooming and 399 

proximity network centrality measures (but not short-duration affiliation networks) were 400 

collinear, and so could not be included in the same model. Finally, models 4 to 7 were more 401 

complex versions of models 3 and 4, as they included interaction terms between species and each 402 
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social network centrality measure to explore cross-species differences in the effects of social 403 

network centrality on human co-interaction network centrality.  404 

From each model set, we shortlisted and interpreted model summary parameters from a 405 

single, best-fit model that had the lowest AICc score, that was also < 8 AICc points from the next 406 

best-fit model (Burnham et al., 2018; Harrison et al., 2018). Such a large difference of AICc 407 

points is a more conservative criterion than a difference of 2 points that is otherwise accepted 408 

(Burnham et al., 2011), and has been suggested as being more appropriate for model selection 409 

under many circumstances as it further minimizes the likelihood of Type-I errors (Burnham et 410 

al., 2011; Harrison et al., 2018). To account for inter-dependencies in human co-interaction 411 

network measures examined as outcome variables, we used a post-network ‘node-swapping’ 412 

randomization procedure to calculate permuted p (pperm) values for the observed model 413 

coefficients for predictor variables that showed significant effects in each candidate model 414 

(Farine, 2017; Farine & Carter, 2020). In these, we compared observed model coefficients to a 415 

distribution of coefficients generated by re-running the candidate GLMM following the re-416 

assignment of human co-interaction centrality scores through randomly swapping the nodes of 417 

each human co-interaction network. We preferred post-network randomizations to pre-network 418 

randomizations in this case, since this approach is less susceptible than the latter to type-II errors 419 

while testing regression-based null hypotheses (Weiss et al., 2020). 420 

We used the influence_mixed and infIndexPlot functions to check the presence of 421 

influential observations. This revealed a single influential case, which was subsequently omitted 422 

from the analyses. We confirmed that all GLMMs met the necessary assumptions of model 423 

validity (i.e., distribution of residuals, residuals plotted against fitted values: Quinn & Keough, 424 
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2002). All statistical tests were two-tailed, and we set the p values to attain statistical 425 

significance to be < 0.05. 426 

 427 

Results: 428 

(1) Macaques’ joint engagement or co-interactions with humans: 429 

Across macaque groups and species, we found evidence to suggest that macaques took 430 

joint risks by co-interacting with humans. For all ten macaque groups, human co-interaction 431 

networks were more well-connected than expected by chance (examples in Fig. 2a-c). Table 1 432 

summarizes the attributes and characteristics of each network. The majority of human co-433 

interaction networks (7/10) were somewhat fragmented, insofar as they had one or up to a few 434 

individuals that remained disconnected from the main network fragment (a minimum of one 435 

individual in a bonnet macaque group: BM_G2; a maximum of 7 individuals in a rhesus 436 

macaque group: RM_G4). There was also marked inter-network variation in the average human 437 

co-interaction strength of individuals (Table 1). Despite these features, pre-network 438 

randomization tests revealed that, for each network, the observed mean strength centrality of 439 

individuals was significantly greater than the distribution of strength centralities calculated 440 

following 1000 permuted networks generated by swapping the identities of the individuals from 441 

the original edge-list. That is, all networks deviated significantly from the null hypothesis of 442 

random connectedness, suggesting that specific macaques consistently, repeatedly co-interacted 443 

with humans within and across time and space.    444 

 445 

Table 1: Summary of attributes of macaques’ human co-interaction networks. For mean 446 

strength, p values are based on pre-network randomization tests (see Methods)   447 
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Species 
(group) 

Network 
(group) Size 

Males Females Edges 
or links 

Unconnected 
individuals 

Strength1  
(mean ± sd) 

Bonnet 
(BM_G1) 

48 26 22 318 4 0.10 ± 0.07** 

Bonnet 
(BM_G2) 

28 10 18 115 1 0.09 ± 0.06** 

Long-tailed 
(LM_G1) 

35 11 24 144 5 0.10 ± 0.08** 

Long-tailed 
(LM_G2) 

19 7 12 122 0 0.30 ± 0.16** 

Long-tailed 
(LM_G3) 

34 15 19 91 6 0.20 ± 0.24** 

Long-tailed 
(LM_G4) 

24 5 19 178 0 0.23 ± 0.14** 

Rhesus 
(RM_G1) 

27 9 18 87 2 0.08 ± 0.06** 

Rhesus 
(RM_G2) 

24 7 17 173 0 0.10 ± 0.05** 

Rhesus 
(RM_G3) 

41 13 28 342 2 0.05 ± 0.03** 

Rhesus 
(RM_G4) 

59 14 45 238 7 0.05 ± 0.03** 

**p < 0.01 448 
1Values were calculated from raw strength scores calculated for each macaque as the sum of its edge-weights that factored in co-449 
interactions with humans within the same time and space per unit observation effort during their shared tenure within the group     450 
 451 

 452 

(a)                                             (b)                                              (c) 453 



Balasubramaniam et al.          

 

21
 

Figure 2: Examples of weighted (thickness of the edges), undirected human co-interaction 454 

networks constructed for groups of (a) bonnet macaques (BM_G1), (b) long-tailed 455 

macaques (LM_G1), and (c) rhesus macaques (RM_G1).  456 

 457 

(2) Effects of macaques’ social networks and sociodemography on their human co-interaction 458 

networks: 459 

We found that aspects of macaques’ social network centrality (specifically short-duration 460 

affiliation centrality and proximity centrality) and sociodemography (specifically species and 461 

sex) influenced their tendencies to co-interact with humans.  462 

For macaques’ strength centrality within their human co-interaction networks, the best-fit 463 

model (model 6 from Supplementary Table 2: dAICc of < 8 from the next best-fit model) 464 

included short-duration affiliation centrality and proximity centrality, but not grooming centrality 465 

(Table 2). Specifically, this model showed a significant positive effect of short-duration 466 

affiliation strength centrality on human co-interaction strength centrality (Table 2; Fig. 3a). 467 

There was also a significant interaction between proximity strength centrality and species, which 468 

revealed that the effect of proximity strength centrality on human co-interaction strength 469 

centrality was most pronounced among bonnet macaques, moderate but still significant among 470 

rhesus macaques, and least pronounced (did not reach significance) among long-tailed macaques 471 

(Table 2; Fig. 3b). Macaque sex had a significant impact on human co-interaction strength 472 

centrality, with males showing greater values than females (Table 2; Fig. 3c). However, 473 

dominance rank had no effect on human co-interaction strength centrality (Table 2). 474 

 475 
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Table 2: Candidate GLMM (model 6 of Supplementary Table 3) examining the effects of 476 

individuals’ sociodemographic attributes (sex, dominance rank, species), and social 477 

network strength centrality (short-duration affiliation, and proximity by species), on their 478 

human co-interaction network strength centrality. Macaques’ overall proximity to humans, 479 

i.e. an indicator of their presence at the interfaces and thereby their opportunities to 480 

interact with humans, was included as a ‘control’ predictor variable. Pperm indicate p values 481 

from permuted networks that were estimated using the post-network randomizations or 482 

‘node-swapping’ algorithm (see Methods). 483 

Predictor B SE Z P Pperm 

(Intercept) -3.83 0.49 -7.87 <0.01**  

Sex (males vs females) 0.60 0.15 4.01 <0.01** <0.01** 

Rank Index 0.23 0.20 1.14 0.25  

Species (long-tailed vs bonnet) 1.83 0.56 3.27 <0.01** <0.01** 

Species (rhesus vs bonnet) 0.39 0.56 0.69 0.49  

Species (long-tailed vs rhesus) 1.44 0.45 3.18 <0.01** <0.01** 

Human proximity 1.06 0.23 4.64 <0.01** <0.01** 

Short-duration affiliation strength centrality 0.67 0.27 2.45 0.01*  

Proximity strength centrality (bonnets) 2.06 0.46 4.50 <0.01** <0.01** 

Proximity strength centrality (long-tailed) -0.40 0.34 -1.17 0.24   0.18 

Proximity strength centrality (rhesus) 0.98 0.35 2.78 0.01* <0.01** 

Proximity strength centrality (long-tailed vs 

bonnets) 

-2.45 0.52 -4.69 <0.01** <0.01** 
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Proximity strength centrality (rhesus vs 

bonnets) 

-1.08 0.51 -2.10 0.04*  

Proximity strength centrality (long-tailed vs 

rhesus) 

-1.37 0.44 -3.10 <0.01**   0.04* 

**p < 0.01; *p < 0.05 484 

 485 
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486 

 487 
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Figure 3: Effect of macaques’ (a) short-duration affiliation strength, (b) proximity strength 488 

by species, and (c) sex, on their human co-interaction network strength. For the effect of 489 

sex (c), the box-and-violin plot indicates the median (horizontal line in the middle of each 490 

box), the inter-quartile ranges (boxes), data-points including outliers (whiskers), and the 491 

probability density of the data at different values (violins).  492 

 493 

The results were consistent for eigenvector centrality. Once again, the best-fit model 494 

(model 6 from Supplementary Table 3: dAICc of < 8 from the next best-fit model) was one that 495 

included short-duration affiliation eigenvector centrality and proximity eigenvector centrality, 496 

but not grooming eigenvector centrality (Table 3). Individuals’ short-duration affiliation 497 

eigenvector centrality showed a non-significant trend to be positively associated with their 498 

human co-interaction network centrality (Table 3). As with the strength model, there was a 499 

significant interaction between proximity eigenvector centrality and species, which revealed that 500 

the effect of proximity eigenvector centrality on co-interaction eigenvector centrality was most 501 

pronounced among bonnet macaques, moderate but still significant among rhesus macaques, and 502 

least pronounced (did not reach significance) among long-tailed macaques (Table 3; Fig. 4). As 503 

with strength centrality, there was also a significant effect of macaques’ sex - males showed 504 

greater co-interaction eigenvector centrality than females (Table 3). Finally, dominance rank had 505 

no effect on human co-interaction network eigenvector centrality (Table 3).  506 

 507 

Table 3: Candidate GLMM (model 6 of Supplementary Table 3) examining the effects of 508 

individuals’ sociodemographic attributes (sex, dominance rank, species), and social 509 

network eigenvector centrality (short-duration affiliation, and proximity by species), on 510 
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their human co-interaction network eigenvector centrality. Macaques’ overall proximity to 511 

humans, i.e. an indicator of their presence at the interfaces and thereby their opportunities 512 

to interact with humans, was included as a ‘control’ predictor variable. Pperm indicate p 513 

values from permuted networks that were estimated using the post-network 514 

randomizations or ‘node-swapping’ algorithm (see Methods). 515 

Predictor B SE Z P Pperm 

(Intercept) -2.98 0.48 -6.15 <0.01**  

Sex (males vs females) 0.64 0.16 3.96 <0.01** <0.01** 

Rank Index 0.31 0.22 1.40   0.16  

Species (long-tailed vs bonnet) 0.91 0.57 1.60   0.11  

Species (rhesus vs bonnet) 0.62 0.56 1.11   0.27  

Species (long-tailed vs rhesus) 0.29 0.47 0.61   0.54  

Human proximity   0.89 0.26 3.42 <0.01** <0.01** 

Short-duration affiliation eigenvector 

centrality 

  0.46 0.28 1.64   0.10   0.09(*) 

Proximity eigenvector centrality (bonnets)   2.24 0.45 5.03 <0.01** <0.01** 

Proximity eigenvector centrality (long-tailed)   0.25 0.38 0.67   0.50   0.58 

Proximity eigenvector centrality (rhesus)   0.90 0.39 2.30   0.02* <0.01** 

Proximity eigenvector centrality (long-tailed 

vs bonnets) 

 -1.99 0.53 -3.73 <0.01** <0.01** 

Proximity eigenvector centrality (rhesus vs 

bonnets) 

 -1.34 0.52 -2.56   0.01* <0.01** 
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Proximity eigenvector centrality (long-tailed 

vs rhesus) 

 -0.65 0.50 -1.30   0.19   0.15 

**p < 0.01; *p < 0.05; (*) 0.05 < p < 0.10 516 

 517 

 518 
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Figure 4: Effects of macaques’ (a) short-duration affiliation eigenvector centrality, (b) 521 

proximity eigenvector centrality by species, and (c) sex on their human co-interaction 522 

network eigenvector centrality. For the effect of sex (c), the box-and-violin plot indicates 523 

the median (horizontal line in the middle of each box), the inter-quartile ranges (boxes), 524 

data-points including outliers (whiskers), and the probability density of the data at 525 

different values (violins). 526 

 527 

Discussion: 528 

  For all macaque groups, we found that animals were significantly more well-connected 529 

within their human co-interaction networks than expected by chance. That is, wild animals were 530 

actively involved in joint risk-taking behavior with their conspecifics, by consistently and 531 

repeatedly co-engaging with humans within and across time and anthropogenic space. This 532 

finding provides an important pretext to conducting assessments of whether or how such patterns 533 

of joint risk-taking by wild animals in anthropogenic environments may be influenced by their 534 

life-history and socioecological strategies, which we tested in the second part of this study. Such 535 

evidence of joint risk-taking also has important implications both for understanding animals’ 536 

adaptive responses to dynamic anthropogenic environments, and for conservation- and public 537 

health-related initiatives (discussed below). In constructing human co-interaction networks, we 538 

advanced previous studies that have focused on specific types of human-wildlife interactions 539 

(e.g. encounter rates, avoidance, contact-behaviors like aggression and food provisioning), or the 540 

overall frequencies of human-wildlife interactions (reviewed in Balasubramaniam et al. 2020a; 541 

Morrow et al., 2019), to reveal clear spatiotemporal patterns of associations to these interactions 542 

as revealed by our SNA approach. Researchers have been increasingly implementing SNA to 543 
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understand human impact on animal-animal spatial and social behavior, but not necessarily to 544 

model human-wildlife interactions themselves (Snijders et al., 2017; Sosa et al., 2021a). Our 545 

construction of human co-interaction networks addressed this gap. Indeed, approaches similar to 546 

ours may be used to construct other human-wildlife co-interaction networks in which terrestrial, 547 

group-living wildlife populations that overlap with anthropogenic environments (e.g. wild 548 

ungulates, elephants, other nonhuman primates like baboons and chimpanzees) may be inter-549 

linked based on their shared spatiotemporal co-occurrence or overlap with anthropogenic 550 

landscapes, or interspecies co-interactions with humans, livestock, or feral mammals. 551 

  We found evidence for some (but not other) aspects of macaque socioecology and 552 

demography to influence their co-interactions with humans. First, macaques’ centrality within 553 

their short-duration affiliation networks positively predicted their centrality within human co-554 

interaction networks. In group-living primates, affiliative interactions like grooming, coalitionary 555 

support, and lip-smacking may reduce animals’ short- and long-term stress levels (Aureli et al., 556 

1999; Shutt et al., 2007), and are key to the establishment and maintenance of strong long-term 557 

social bonds (Silk et al. 2003; Young et al., 2014). One of the primary motivations for wild 558 

primates to interact with humans is to obtain anthropogenic foods (Marty et al., 2020). The 559 

benefits of possessing within-group social alliances and strong social bonds may, at least in part, 560 

help offset the potential physiological and health-related costs of risking interactions with 561 

humans to gain such foods. More generally, we speculate that in challenging, potentially 562 

unpredictable anthropogenic environments that also reduce the time available for grooming 563 

(discussed further below), animals may rely more than usual on short-duration affiliative 564 

interactions to maintain strong social bonds. In other words, these forms of affiliative 565 
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relationships may particularly underlie or encourage animals’ collective (or we speculate perhaps 566 

even cooperative) tendencies to take risks through co-interacting with humans. 567 

Human co-interaction networks were also positively influenced by proximity networks of 568 

social tolerance, with the effect sizes being somewhat different across species. They were the 569 

strongest for bonnet macaques and the weakest for long-tailed macaques, with rhesus macaques 570 

falling in-between. Species-typical differences in behavior that is also linked to differences in 571 

evolutionary history may at least partly explain these patterns. In comparison to rhesus macaques 572 

and long-tailed macaques, bonnet macaques are considered to be more socially tolerant of each 573 

other (Balasubramaniam et al., 2012; Thierry, 2007), have a more restricted range, are less 574 

ecologically flexible (Gumert, 2011; Priston & McLennan, 2013; Radhakrishna & Sinha, 2011), 575 

and have had a shorter (in evolutionary time-scales) history of exposure to changing, 576 

anthropogenically impacted environments (Gumert, 2011; Priston & McLennan, 2013; 577 

Radhakrishna & Sinha, 2011). More generally, these patterns across macaques suggest that in 578 

group-living wildlife characterized by more tolerant social systems or less ecological flexibility 579 

(e.g. bonnet macaques compared to rhesus and long-tailed macaques), being near familiar 580 

individuals such as close kin or conspecifics may encourage greater propensities among 581 

individual animals to jointly take risks in anthropogenic environments.  582 

Alternatively, these cross-species differences in the effects of proximity networks on co-583 

interaction networks may in fact be an outcome of cross-site, or indeed even within-site 584 

differences in the distribution and density of anthropogenic factors and (consequently) human-585 

macaque (co-)interactions. For instance, bonnet macaques experienced the overall lowest 586 

densities of humans, and their interactions with humans were also more concentrated when the 587 

groups were within specific areas (blocks) of their home-range (McCowan, Unpublished Data). 588 
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In comparison, rhesus and (especially) long-tailed macaques were exposed to higher densities of 589 

humans, and their interactions with humans were also more widely distributed across the groups’ 590 

home-ranges (McCowan, Unpublished Data). It is therefore likely that rhesus and long-tailed 591 

macaques, more so than bonnet macaques, engaged with humans both preferentially while being 592 

near their conspecifics, as well as opportunistically when they were not near their conspecifics. 593 

More comprehensive tests of these explanations await future research that quantitatively 594 

evaluates, rather than controls for (as was done in this study), intraspecific variation within and 595 

across groups of the same species. 596 

Macaques’ sex also had an effect on their centrality within human co-interaction 597 

networks: males were more central or well-connected than females. Sex-biased differences may 598 

also reflect differences in life-history requirements and the socioecological roles of males and 599 

females. While philopatric females usually form the core of macaque social networks, dispersing 600 

males tend to be more exploratory, stay in the group periphery, and (consequently) experience 601 

more frequent interactions (Balasubramaniam et al., 2020a; Morrow et al., 2019). Moreover, 602 

across group-living mammals, males face high long-term energetic demands pertaining to their 603 

life-history requirements of maintaining large body sizes and other physical features (e.g. horns, 604 

antlers, canines) that render competitive and reproductive advantages (Clutton-Brock, 2017). 605 

Thus, a combination of their exploratory behavior, movement and dispersal, and life-history 606 

requirements that may entail greater joint risk-taking behavior among social allies may all 607 

explain why males are more central in human co-interaction networks than females 608 

(Balasubramaniam et al., 2020a; Morrow et al., 2019). 609 

Unlike short-duration affiliation and proximity, macaques’ grooming networks had no 610 

effect on their human co-interaction networks. One reason for this may be because anthropogenic 611 
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factors may influence primate grooming patterns in different, sometimes contrasting ways. For 612 

instance, our previous work on these populations revealed how increased monitoring of human 613 

activity led to a systematic reduction in the time invested by macaques in grooming, but less so 614 

to a reduction in the number of partners individuals chose to groom (rhesus macaques: Kaburu et 615 

al., 2019b; longtailed macaques: Marty et al., 2019; bonnet macaques: Balasubramaniam et al., 616 

2020b). Moreover, in two out of the four groups of long-tailed macaques that were exposed to an 617 

exceptionally high density of humans, interactions with humans led to an increase (rather than to 618 

a decrease) in rates of grooming, presumably as means to cope with anthropogenic stressors 619 

(Marty et al., 2019). Such contrasting findings within species suggest that it may be necessary to 620 

examine intraspecific variation (cross-group, but also within-group differences) in macaque 621 

socioecology to better understand how grooming networks influence co-interaction networks. 622 

One potential limitation of this study concerned the lack of information on macaques’ co-623 

occurrence or space-use overlap, which may influence their social interactions (Adams et al., 624 

2012; Albery et al., 2020; Pawley & McArdle, 2018). Lacking data on GPS coordinates, we were 625 

unable to construct animals’ space-use sharing or co-occurrence networks. Despite this, it is 626 

unlikely that our networks, findings and interpretations may simply be explained as a by-product 627 

of macaques’ aggregation or space-use overlap, for the following reasons. First, the results of our 628 

pre-network randomization tests suggest that human co-interaction networks, rather than being 629 

by-products of simple aggregations or co-occurrence of animals, were an outcome of specific 630 

animals actively choosing to consistently and repeatedly co-interact with humans. Second, in 631 

group-living animals like nonhuman primates that show complex social systems, social 632 

interactions like grooming and other forms of affiliation are selectively and heterogeneously 633 

distributed in spite of animals that overlap in space. Moreover, our conservative criterion for 634 
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defining ‘proximity’ (animals within body-length of each other) is more likely to capture 635 

selective social tolerance of conspecifics, rather than capturing animals that simply overlap in 636 

space. Third, our results were independent of macaques’ overall occurrence (if not co-637 

occurrence) in anthropogenic areas, as indicated by our inclusion of their times’ spent in 638 

proximity to humans as a predictor of their centrality within human co-interaction networks. A 639 

second potential limitation concerns the lack of more precise information on the (GPS) locations 640 

of human-wildlife interactions. Although we contained the assignment of links based on 641 

interactions within the same block and time-frame, the construction of more conservative, albeit 642 

more sparsely-connected, human co-interaction networks may have been possible if we had 643 

restricted links to interactions that occurred between macaques and the same human(s), and at 644 

the same precise GPS location. Collecting geospatial data on both macaque space-use overlap 645 

and human-macaque interactions would be vital next steps. Finally, implementing multi-level 646 

approaches (Finn et al., 2019) to capture potential heterogeneity in human co-interaction patterns 647 

across different spatial (blocks) and temporal (observation windows) layers was also beyond the 648 

scope of this study, but another important next step.  649 

Our study has important implications for the conservation and management of human-650 

wildlife interfaces. Macaques that are more central in their human co-interaction networks, 651 

because of their coming into contact with more people across time and space, may be targets of 652 

interventions that move these human-wildlife interactions from conflict towards coexistence 653 

(Nyhus, 2016). Human-wildlife interfaces, now more so than ever before, are also widely 654 

recognized as ‘hotspots’ for the transmission of zoonotic and emerging infectious disease, 655 

including SARS-CoV-2 (Cunningham et al., 2017; Townsend et al., 2020). From an 656 

epidemiological perspective, it is now well-established that animals that are central within their 657 
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social networks may function as within-group ‘superspreaders’ of infectious agents (Craft, 2015; 658 

Drewe & Perkins, 2015). Similarly, it is likely that macaques that are central within human co-659 

interaction networks may be social-ecological ‘superspreaders’ of disease, i.e. both within 660 

wildlife systems and across human-wildlife interfaces. We reckon that these animals would be 661 

particularly important targets of disease intervention or control strategies like vaccination and 662 

antibiotic treatment (Rushmore et al., 2014). Indeed, our finding of a lack of association between 663 

macaques’ human co-interaction networks and grooming networks suggests that these networks 664 

may offer somewhat independent socioecological pathways for disease spread. Assessing the 665 

vulnerability versus resistance of both types of networks to zoonotic transmission and disease 666 

outbreaks would therefore be vital from both conservation and public health perspectives. 667 

 668 

Acknowledgements: 669 

We thank various organizations, specifically the Himachal Pradesh Forest Department 670 

(HPFD), Economic Planning Unit Malaysia, the Forestry Department of Peninsular Malaysia, the 671 

Department of Wildlife and National Parks Peninsular Malaysia, Tourism Selangor, and the 672 

Kerala Forest and Wildlife Department, for giving us permission and logistical support to 673 

conduct research in India and Malaysia. We thank several research assistants - Shelby Samartino, 674 

Mohammed Ismail, Taniya Gill, Alvaro Sobrino, Rajarshi Saha, Camille Luccisano, Eduardo 675 

Saczek, Silvia La Gala, Nur Atiqua Tahir, Rachael Hume, Kawaljit Kaur, Bidisha Chakraborty, 676 

Benjamin Sipes, Nalina Aiempichitkijkarn, Pooja Dongre, and Menno van Berkel - for their 677 

assistance with data collection, processing, and storage in the field. The authors were supported 678 

by the U.S. National Science Foundation (Grant no. 1518555) awarded to PI McCowan. 679 

 680 



Balasubramaniam et al.          

 

36
 

Author Contributions: 681 

K.N.B (first- and corresponding-author), under the supervision of B.M. (last-author), took 682 

the lead in in the study design, supervision of data collection, and the conductance of data 683 

analysis and manuscript writing. B.A.B. and E.B.M. were involved in the study design and 684 

manuscript writing. P.M., S.S.K., and M.A. all helped design the study, supervised data 685 

collection, and participated in manuscript writing. N.R., A.I., S.A.M.S., L.M., S.R., and U.K. 686 

helped formulate and implement data collection protocols in India and Malaysia and participated 687 

in manuscript writing as co-authors. B.M. supervised the entire study. 688 

 689 

Graphical Abstract Caption: 690 

 Long-tailed macaques co-interacting with a human who is provisioning them, in Kuala Lumpur 691 

Malaysia (Picture Credits: Dr. Pascal R. Marty). 692 

 693 

Data Availability: 694 

  The data used for this manuscript is available with the corresponding-author, and will be 695 

made available to reviewers upon request. It will be made publicly available through an online 696 

repository if or when the manuscript is accepted for publication. 697 

  698 

References: 699 

Adams, J., Faust, K., & Lovasi, G. S. (2012). Capturing context: Integrating spatial and social 700 

network analyses. Social Networks, 34, 1–5. 701 

https://doi.org/10.1016/j.socnet.2011.10.007 702 

 703 



Balasubramaniam et al.          

 

37
 

Albery, G. F., Kirkpatrick, L., Firth, J. A., & S. Bansal (2020). Unifying spatial and social 704 

network analysis in disease ecology. Journal of Animal Ecology, 90, 45-61.  705 

 706 

Altmann, J. (1974). Observational study of behavior. Behaviour, 49, 227–267. 707 

 708 

Aureli, F., Preston, S. D., & de Waal, F. (1999). Heart rate responses to social interactions in 
709 

free-moving rhesus macaques (Macaca mulatta): a pilot study. Journal of comparative 
710 

psychology, 113(1), 59. 
711 

 712 

Balasubramaniam, K. N., Dittmar, K., Berman, C. M., Butovskaya, M., Cooper, M. A., Majolo, 713 

B., Ogawa, H., Schino, G., Thierry, B., & de Waal, F. B. M. (2012). Hierarchical steepness and 714 

phylogenetic models: phylogenetic signals in Macaca. Animal Behaviour, 83(5), 1207–1218. 715 

https://doi.org/10.1016/j.anbehav.2012.02.012 716 

 717 

Balasubramaniam, K. N., Beisner, B. A., Vandeleest, J., Atwill, E., & McCowan, 718 

B. (2016). Social buffering and contact transmission: network connections have 719 

beneficial and detrimental effects among captive rhesus macaques (Macaca 720 

mulatta). PeerJ, 4, e2630, doi: 10.7717/peerj.2630. 721 

 722 

Balasubramaniam, Krishna N., Marty, P. R., Samartino, S., Sobrino, A., Gill, T., Ismail, M., 723 

Saha, R., Beisner, B. A., Kaburu, S. S. K., Bliss-Moreau, E., Arlet, M. E., Ruppert, N., Ismail, 724 

A., Sah, S. M., Mohan, L., Rattan, S. K., Kodandaramaiah, U., & McCowan, B. (2020a). Impact 725 

of individual demographic and social factors on human–wildlife interactions: a comparative 726 

study of three macaque species. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-727 



Balasubramaniam et al.          

 

38
 

020-78881-3 728 

 729 

Balasubramaniam, K. N., Marty, P. R., Arlet, M. E., Beisner, B. A., Kaburu, S. S. K., Bliss-730 

Moreau, E., Kodandaramaiah, U., & McCowan, B. J. (2020b). Impact of anthropogenic factors 731 

on affiliative behaviors among bonnet macaques. American Journal of Physical Anthropology, 732 

171, 704–717. 733 

 734 

Balasubramaniam, K. N., Bliss-Moreau, E., Beisner, B. A., Marty, P. R., Kaburu, S. S. K., & 735 

McCowan, B. J. (2021) Addressing the challenges of human-wildlife conflict research using 736 

Coupled Natural and Human Systems. Biological Conservation, 257. 109095.  737 

 https://doi.org/10.1016/j.biocon.2021.109095 738 

 739 

Barua, M., Bhagwat, S. A., & Jadhav, S. (2013). The hidden dimensions of human – wildlife 740 

conflict: Health impacts, opportunity and transaction costs. Biological Conservation, 157, 309–741 

316. 742 

 743 

Beisner, B. A., & McCowan, B. (2013). Policing in Nonhuman Primates: Partial Interventions 744 

Serve a Prosocial Conflict Management Function in Rhesus Macaques. PLoS ONE, 8(10). 745 

https://doi.org/10.1371/journal.pone.0077369 746 

 747 

Belton, L. E., Cameron, E. Z., & Dalerum, F. (2018). Social networks of spotted hyenas in areas 748 

of contrasting human activity and infrastructure. Animal Behaviour, 135, 13–23. 749 

https://doi.org/10.1016/j.anbehav.2017.10.027 750 



Balasubramaniam et al.          

 

39
 

 751 

Berger-Tal, O., Blumstein, D. T., Carroll, S., Fisher, R. N., Mesnick, S. L., Owen, M. A., Saltz, 752 

D., St. Claire, C. C., & Swaisgood, R. R. (2016). A systematic survey of the integration of 753 

animal behavior into conservation. Conservation Biology, 30(4), 744–753. 754 

https://doi.org/10.1111/cobi.12654 755 

 756 

Bhattacharjee, D., & Bhadra, A. (2020). Humans dominate the social interaction networks of 757 

urban free-ranging dogs in India. Frontiers in Psychology, 11(August), 1–11. 758 

https://doi.org/10.3389/fpsyg.2020.02153 759 

 760 

Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 761 

555–564. https://doi.org/10.1016/j.socnet.2007.04.002 762 

 763 

Bond, M. L., König, B., Lee, D. E., Ozgul, A., & Farine, D. R. (2020). Proximity to humans 764 

affects local social structure in a giraffe metapopulation. Journal of Animal Ecology, 90, 212–765 

221. https://doi.org/10.1111/1365- 2656.13247 766 

 767 

Brent, L. J. N. (2015). Friends of friends: are indirect connections in social networks important to 768 

animal behaviour? Animal Behaviour, 103, 211–222. 769 

https://doi.org/10.1016/j.physbeh.2017.03.040 770 

 771 

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference. New 772 

York: Springer. 773 



Balasubramaniam et al.          

 

40
 

 774 

Burnham, Kenneth P, Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and 775 

multimodel inference in behavioral ecology: some background , observations , and comparisons. 776 

Behavioural Ecology and Sociobiology, 65, 23–35. https://doi.org/10.1007/s00265-010-1029-6 777 

 778 

Carter, N. H., Vina, A., Hull, V., McConnell, W. J., Axinn, W., Ghimire, D., & Liu, J. (2014). 779 

Coupled human and natural systems approach to wildlife research and conservation. Ecology and 780 

Society. https://doi.org/10.5751/es-06881-190343 781 

 782 

Chilvers, B. L., & Corkeron, P. J. (2001). Trawling and bottlenose dolphins’ social structure. 783 

Proceedings of the Royal Society B, 268(March), 1901–1905. 784 

https://doi.org/10.1098/rspb.2001.1732 785 

 786 

Chiyo, P. I., Moss, C. J., & Alberts, S. C. (2012). The influence of life history milestones and 787 

association networks on crop-raiding behavior in male african elephants. PLoS ONE, 7(2). 788 

https://doi.org/10.1371/journal.pone.0031382 789 

 790 

Clutton-Brock, T. (2017) Reproductive competition and sexual selection. Philos. Trans. R. Soc. 791 

B Biol. Sci. 372, 20160310. 792 

 793 

Craft, M. E. (2015). Infectious disease transmission and contact networks in wildlife and 794 

livestock. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669). 795 

https://doi.org/10.1098/rstb.2014.0107 796 



Balasubramaniam et al.          

 

41
 

 797 

Croft, D. P., James, R., & Krause, J. (2008). Exploring Animal Social Networks. Princeton NJ: 798 

Princeton University Press. 799 

 800 

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. 801 

Complex Systems: InterJournal. 802 

 803 

Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One health, emerging infectious 804 

diseases and wildlife: two decades of progress? Philosophical Transactions of the Royal Society 805 

of London. Series B, Biological Sciences, 372. 806 

 807 

Dickman, A. J. (2010). Complexities of conflict: The importance of considering social factors for 808 

effectively resolving human-wildlife conflict. Animal Conservation, 13(5), 458–466. 809 

https://doi.org/10.1111/j.1469-1795.2010.00368.x 810 

 811 

Drewe, J. A., & Perkins, S. E. (2015). Disease transmission in animal social networks. In J. 812 

Krause, R. James, D. W. Franks, & D. P. Croft (Eds.), Animal Social Networks (pp. 95–110). 813 

Oxford: Press, Oxford University. 814 

 815 

Farine, D. R. (2017). A guide to null models for animal social network analysis. Methods in 816 

Ecology and Evolution, 8(10), 1309–1320. https://doi.org/10.1111/2041-210X.12772 817 

 818 

Farine, D. R., & Carter, G. G. (2020). Permutation tests for hypothesis testing with animal social 819 



Balasubramaniam et al.          

 

42
 

data: problems and potential solutions. BioRxiv, 2020.08.02.232710. Retrieved from 820 

https://doi.org/10.1101/2020.08.02.232710 821 

 822 

Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal social 823 

network analysis. Journal of Animal Ecology, 84(5), 1144–1163. https://doi.org/10.1111/1365-824 

2656.12418 825 

 826 

Finn, K., Silk, M. J., Porter, M. A., Pinter-Wollman, N. (2019). The use of multi-layer network 827 

analysis in animal behavior. Animal Behaviour, 149, 7-22. 828 

 829 

Fuentes, A. (2012). Ethnoprimatology and the Anthropology of the Human-Primate Interface. 830 

Ssrn. https://doi.org/10.1146/annurev-anthro-092611-145808 831 

 832 

Fujii, K., Jin, J., Shev, A., Beisner, B., McCowan, B., & Fushing, H. (2015). Perc: using 833 

percolation and conductance to find information flow certainty in a direct network. R Package 834 

Version 0.1. 835 

 836 

Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K., Mulcahy, J. B., & J. H. Li (2018). 837 

Comparative investigations of social context-dependent dominance in captive chimpanzees (Pan 838 

troglodytes) and wild Tibetan macaques (Macaca thibetana). Sci. Rep. 8, 1–15. 10.1038/s41598-839 

018-32243-2. 840 

 841 

Gumert, M. D. (2011). A common monkey of Southeast Asia: longtailed macaque populations, 842 



Balasubramaniam et al.          

 

43
 

ethnophoresy, and their occurrence in human environments. In M. D. Gumert, A. Fuentes, & L. 843 

Jones-Engel (Eds.), Monkeys on the edge: ecology and management of longtailed macaques and 844 

their interface with humans (pp. 3–43). Cambridge: Cambridge University Press. 845 

 846 

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., 847 

Robinson, B. S., Hodgson, D. J., & R. Inger (2018). A brief introduction to mixed effects 848 

modelling and multi-model inference in ecology. PeerJ: https://doi.org/10.7717/ peerj.4794 849 

 850 

Hasegawa, M., Kishino, H., & Yano, T. aki. (1985). Dating of the human-ape splitting by a 851 

molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174. 852 

https://doi.org/10.1007/BF02101694 853 

 854 

Kaburu, S. S. K., Marty, P. R., Beisner, B., Balasubramaniam, K. N., Bliss-Moreau, E., Kaur, K., 855 

Mohan, L., & McCowan, B. (2019a). Rates of human–macaque interactions affect grooming 856 

behavior among urban-dwelling rhesus macaques (Macaca mulatta). American Journal of 857 

Physical Anthropology, 168(1), 92–103. https://doi.org/10.1002/ajpa.23722 858 

 859 

Kaburu, S. S. K., Beisner, B. A., Balasubramaniam, K. N., Marty, P. R., Bliss-Moreau, E., 860 

Mohan, L., Rattan, S. K., Arlet, M. E., Atwill, E. R., & McCowan, B. (2019b). Interactions with 861 

humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). 862 

Behaviour, 156, 1255-1282. https://doi.org/10.1163/1568539X-00003565 863 

 864 

Karanth, K. K., Gupta, S., & Vanamamalai, A. (2018). Compensation payments, procedures and 865 



Balasubramaniam et al.          

 

44
 

policies towards human-wildlife conflict management: Insights from India. Biological 866 

Conservation. https://doi.org/10.1016/j.biocon.2018.07.006 867 

 868 

Krause, J., James, R., Franks, D. W., & Croft, D. P. (2014). Animal Social Networks. Oxford 869 

UK: OUP Oxford. 870 

 871 

Lischka, S. A., Teel, T. L., Johnson, H. E., Reed, S. E., & Breck, S. (2018). A conceptual model 872 

for the integration of social and ecological information to understand human-wildlife 873 

interactions. Biological Conservation, 225, 80–87.  874 

 875 

Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham K., 876 

Sadat, N., Bolker, B., & M. Brooks. (2019). Package ‘glmmTMB’. https://cran.r-877 

project.org/web/packages/glmmTMB/ glmmTMB.pdf 878 

 879 

Marty, P. R., Balasubramaniam, K. N., Kaburu, S. S. K., Hubbard, J., Beisner, B., Bliss-Moreau, 880 

E., Ruppert, N., Arlet, M. E., Sah, S. A. M., Ismail, A., Mohan, L., Rattan, S. K., 881 

Kodandaramaiah, U., & McCowan, B. (2020). Individuals in urban dwelling primate species face 882 

unequal benefits associated with living in an anthropogenic environment. Primates, 61, 249–255. 883 

Marty, P. R., Beisner, B., Kaburu, S. S. K., Balasubramaniam, K., Bliss-Moreau, E., Ruppert, N., 884 

Sah, S. A. M., Ismail, A., Arlet, M. E., Atwill, E. R., & McCowan, B. (2019). Time constraints 885 

imposed by anthropogenic environments alter social behaviour in longtailed macaques. Animal 886 

Behaviour, 150, 157-165. https://doi.org/10.1016/j.anbehav.2019.02.010 887 

 888 



Balasubramaniam et al.          

 

45
 

Mckinney, T. (2015). A classification system for describing anthropogenic influence on 889 

nonhuman primate populations. American Journal of Primatology, 77(7), 715–726. 890 

https://doi.org/10.1002/ajp.22395 891 

 892 

Morrow, K. S., Glanz, H., Ngakan, P. O., & Riley, E. P. (2019). Interactions with humans are 893 

jointly influenced by life history stage and social network factors and reduce group cohesion in 894 

moor macaques (Macaca maura). Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-895 

019-56288-z 896 

 897 

Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E - Statistical Physics, 898 

Plasmas, Fluids, and Related Interdisciplinary Topics, 67(2), 13. 899 

https://doi.org/10.1103/PhysRevE.67.026126 900 

 901 

Nunn, C. L., Craft, M. E., Gillespie, T. R., Schaller, M., & Kappeler, P. (2015). The sociality-902 

health-fitness nexus: synthesis, conclusions and future directions. Phil Trans B, 370, 20140115. 903 

 904 

Nyhus, P. J. (2016). Human–Wildlife conflict and coexistence. The Annual Review of 905 

Environment and Resources, 41, 143–171. https://doi.org/10.1146/annurev-environ-110615-906 

085634 907 

 908 

Priston, N. E. C., & McLennan, M. R. (2013). Managing humans, managing macaques: Human-909 

macaque conflict in Asia and Africa. In The Macaque Connection: Cooperation and Conflict 910 

between Humans and Macaques. https://doi.org/10.1007/978-1-4614-3967-7_14 911 



Balasubramaniam et al.          

 

46
 

 912 

Puga-Gonzalez, I., Sueur, C., & Sosa, S. (2020). Null models for animal social network analysis 913 

and data collected via focal sampling : Pre-network or node network permutation? Methods in 914 

Ecology and Evolution, 12, 22-32. https://doi.org/10.1111/2041-210X.13400 915 

 916 

Quinn, G. P., & Keough, M. J. (2002). Experimental Designs and Data Analysis for Biologists. 917 

Cambridge: Cambridge University Press. 918 

 919 

Radhakrishna, S., & Sinha, A. (2011). Less than wild? Commensal primates and wildlife 920 

conservation. Journal of Biosciences, 36(5), 749–753. https://doi.org/10.1007/s12038-011-9145-921 

7 922 

 923 

Roos, C., & Zinner, D. (2018). Primate Phylogeny. In M. Bezanson, K. C. MacKinnon, E. Riley, 924 

C. J. Campbell, K. A. I. Nekaris, A. Estrada, … A. Fuentes (Eds.), The International 925 

Encyclopedia of Primatology. John Wiley & Sons, Inc. 926 

 927 

Rushmore, J., Caillaud, D., Hall, R. J., Stumpf, R. M., Meyers, L. A., & S. Altizer (2014). 928 

Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. 929 

Soc. Interface, 11, 20140349. 930 

 931 

Shutt, K., MacLarnon, A., Heistermann, M., & Semple, S. (2007). Grooming in Barbary 932 

macaques: better to give than to receive? Biology Letters, 3(3), 231-233. 933 

  934 



Balasubramaniam et al.          

 

47
 

Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance infant 935 

survival. Science, 302, 1231–1234. 936 

 937 

Snijders, L., Blumstein, D. T., Stanley, C. R., & Franks, D. W. (2017). Animal Social Network 938 

Theory Can Help Wildlife Conservation. Trends in Ecology and Evolution, 32(8), 567–577. 939 

https://doi.org/10.1016/j.tree.2017.05.005 940 

 941 

Sosa, S., Jacoby, D. M. P., Lihoreau, M., & Sueur, C. (2021a). Animal social networks: Towards 942 

an integrative framework embedding social interactions, space and time. Methods in Ecology & 943 

Evolution, 12, 4-9. https://doi.org/10.1111/2041-210X.13539 944 

  945 

Sosa, S., Sueur, C., & Puga-Gonzales, I. (2021b). Network measures in animal social network 946 

analysis: Their strengths, limits, interpretations and uses. Methods in Ecology & Evolution, 12, 947 

10-21. https://doi.org/10.1111/2041-210X.13366 948 

 949 

Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social 950 

relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41(5), 291–309. 951 

 952 

Thierry, B. (2007). Unity in diversity: Lessons from macaque societies. Evolutionary 953 

Anthropology, 16(6), 224–238. https://doi.org/10.1002/evan.20147 954 

 955 

Townsend, A. K., Hawley, D. M., Stephenson, J. F., & Williams, K. E. G. (2020). Emerging 956 

infectious disease and the challenges of social distancing in human and non-human animals: 957 



Balasubramaniam et al.          

 

48
 

EIDs and sociality. Proceedings of the Royal Society B: Biological Sciences, 287(1932). 958 

https://doi.org/10.1098/rspb.2020.1039 959 

 960 

Vandeleest, J. V., Beisner, B. A., Hannibal, D., Nathman, A., Capitanio, J., Fushing, H., & B. 961 

McCowan (2016). Decoupling social status and status certainty effects on health in macaques: a 962 

network approach. PeerJ, 4: e2394: 10.7717/peerj.2394 963 

 964 

van Hooff, J. A. R. A. M., & van Schaik, C. P. (1992). Cooperation in competition: The ecology 965 

of primate bonds. In A. H. Harcourt & F. B. M. de Waal (Eds.), Coalitions and Alliances n 966 

Humans and Other Animals (pp. 357–389). Oxford, England: Oxford University Press. 967 

 968 

Weiss, M. N., Franks, D. W., Brent, L. J. N., Ellis, S., Silk, M. J., & Croft, D. P. (2020). 969 

Common permutations of animal social network data are not appropriate for hypothesis testing 970 

using linear models. BioRxiv, 1–26. 971 

 972 

Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal 973 

behaviour: a promising tool for the study of sociality. Animal Behaviour, 75(2), 333–344. 974 

https://doi.org/10.1016/j.anbehav.2007.06.020 975 

 976 

Williams, R., & Lusseau, D. (2006). A killer whale social network is vulnerable to targeted 977 

removals. Biology Letters, 2, 497–500. https://doi.org/10.1098/rsbl.2006.0510 978 

 979 

Wong, B. B. M., & Candolin, U. (2015). Behavioral responses to changing environments. 980 



Balasubramaniam et al.          

 

49
 

Behavioral Ecology, 26(3), 665–673. https://doi.org/10.1093/beheco/aru183. 981 


