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Abstract 22 

Scully et al [1] in their recent contribution review and revise past life cycle assessments (LCAs) 23 

of corn-grain ethanol’s carbon (C) intensity to suggest that a current ‘central best estimate’ is 24 

considerably less than all prior estimates. Their conclusion emerges from selection and 25 

recombination of sector-specific greenhouse gas emission predictions from disparate studies in a 26 

way that disproportionately favors small values and optimistic assumptions without rigorous 27 

justification nor empirical support. Their revisions most profoundly reduce predicted land use 28 

change (LUC) emissions, for which they propose a central estimate that is roughly half the smallest 29 

comparable value they review (Figure 1). This LUC estimate represents the midpoint of (i) values 30 

retained after filtering the predictions of past studies based on a set of unfounded criteria; and (ii) 31 

a new estimate they generate for domestic (i.e. U.S.) LUC emissions. The filter the authors apply 32 

endorses a singular means of LUC assessment which they assert as the ‘best practice’ despite a 33 

recent unacknowledged review [2] that shows this method almost certainly underestimates LUC. 34 

Moreover, their domestic C intensity estimate surprisingly suggests that cropland expansion newly 35 

sequesters soil C, counter to ecological theory and empirical evidence. These issues, among others, 36 

prove to grossly underestimate the C intensity of corn-grain ethanol and mischaracterize the state 37 

of our science at the risk of affecting perverse policy outcomes.  38 
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Introduction 43 

The carbon intensity (CI) of corn grain ethanol has long been assessed and debated due, in part, to 44 

its inherent uncertainty and its regulatory implications for policies like the U.S. Renewable Fuel 45 

Standard (RFS) and the California Low-Carbon Fuel Standard [3–9]. The CI of corn ethanol 46 

represents the estimated life cycle greenhouse gas (GHG) emissions associated with burning a unit 47 

of ethanol as fuel. It additively accounts for emissions and offsets associated with all aspects of 48 

ethanol use and production, including those associated with on-farm biofuel feedstock production 49 

and any direct and indirect land use change (LUC) that results from feedstock demand. In their 50 

recent review, Scully et al [1] select and revise past emissions estimates for each of these 51 

components and combine them into an aggregated value they present as a ‘central best estimate’ 52 

of U.S. ethanol’s total CI. Yet, their proposed value proves to be considerably smaller than all 53 

prior estimates, an outcome that primarily results from their profoundly reduced estimate of LUC 54 

emissions (Figure 1). 55 

Emissions from LUC have persistently been one of the most uncertain elements of 56 

ethanol’s GHG profile [7,8,10]; their estimation requires that the patterns of LUC be predicted or 57 

observed and compared to the predictions of a counterfactual scenario representing expected 58 

outcomes absent bioenergy policy. To date, this has largely been accomplished using partial or 59 

computable general equilibrium models (hereafter “P/CGEs”) which simulate part or all of the 60 

global economy, respectively, to predict LUC in the presence and absence of bioenergy policy. In 61 

their review of LUC estimates, Scully et al exclusively consider P/CGE predictions and endeavor 62 

to identify those which are ‘best’. However, they dismiss that variation among past predictions 63 

reflects the vetted diversity of relevant thought by asserting a single method they favor and 64 

rejecting all non-compliant predictions. We contend that impartial valuation of past predictions 65 



instead necessitates a rigorously objective, empirical basis. To do less is to merely add to the 66 

existing diversity of opinion.  67 

 68 

Unjustified selection of past land use change estimates 69 

Scully et al present a set of P/CGE-based LUC estimates and then assert as justification for 70 

selective consideration that “variability among the[se] LUC estimates stem primarily from 71 

differences in the four major elements that comprise these [carbon intensity] values: the agro-72 

economic model, economic data year, yield price elasticity, and land intensification.” Despite 73 

offering no statistical evidence that these four criteria are the primary determinants of variability 74 

(see Supplemental Discussion 1), they operationalize them as selection criteria they call “best 75 

practices” and use them to reject non-compliant studies from further consideration. For each 76 

practice, they state a modeling configuration that they believe to be optimal—though they offer no 77 

rigorous scientific basis for these choices (see Supplemental Discussion 2)—and then they assess 78 

studies’ binary compliance with each. Accordingly, they require that LUC predictions be generated 79 

using (i) the GTAP-BIO computable general equilibrium model, with (ii) an economic data year 80 

of 2004, (iii) a yield price elasticity between 0.175 and 0.325, and (iv) include additional treatment 81 

of “land intensification”. These requirements distill to an unsubstantiated endorsement of a 82 

singular treatment of cropping-intensification in ethanol life cycle assessment (LCA); one that was 83 

explicitly discussed in an unacknowledged review by Malins et al [2] that showed it almost 84 

certainly underestimates LUC by overestimating agriculture’s capacity to intensify production on 85 

existing cropland (see Supplemental Discussion 2). 86 

When applied to the studies Scully et al initially consider, these criteria systematically 87 

eliminate those reporting all but the smallest LUC emissions without adequate justification (see 88 



Supplementary Discussion 2). Requiring use of GTAP is a necessary precondition of the 89 

subsequent criteria; requiring 2004 as the economic data year arbitrarily mandates use of outdated 90 

data [11] and specifically dismisses GTAP studies reporting high LUC estimates; and requiring 91 

explicit treatment of ‘land intensification’ in addition to a relatively high yield price elasticity that 92 

implicitly accounts for some of the same process [12] likely double-counts intensification 93 

responses to bioenergy demand and thus underestimates rates of LUC [2]. Ultimately, select 94 

elements of just two of the 16 studies Scully et al initially reviewed comply with these criteria: (i) 95 

the smallest of the four total-LUC prediction reported by Taheripour et al [11]; and (ii) one 96 

domestic and two international LUC predictions reported in the ICF report that Scully et al most 97 

consistently reference as Rosenfeld et al [13], and which are simply the LUC results from one of 98 

the two corn feedstock scenarios (“Corn Ethanol 2013”) provided in the Argonne National 99 

Laboratory’s (ANL) GREET LCA model. Notably, Taheripour et al repeatedly describe the value 100 

selected from their study as a heuristic based on outdated data and do not endorsed it [11]; instead, 101 

they endorse a larger value that Scully et al reject for its use of a more recent economic data year. 102 

Likewise, Scully et al’s retention of just one GREET scenario also appears to be a specific and 103 

unsubstantiated endorsement of that which predicts the lowest LUC emissions.  104 

 105 

A new, self-calculated and unrealistic estimate of domestic land use change emissions 106 

In addition to their use of these selection criteria, Scully et al also generate their own domestic 107 

LUC emissions estimate using CCLUB—the LUC emissions accounting framework in GREET 108 

[14]—which oddly predicts that gross domestic cropland expansion results in soil C sequestration. 109 

This prediction is particularly curious because soil C is generally lost upon converting perennial 110 

vegetation to annual cropland regardless of the land use history or subsequent tillage regime [15–111 



21] and U.S. cropland is no exception. More broadly, the authors’ inclusion of a self-calculated 112 

data-point is also surprising for a self-described ‘review’ and is accompanied by little explanation 113 

nor any validation (see Supplementary Discussion 3).  114 

We recreated the CCLUB configuration used by Scully et al and found that they only report 115 

the most anomalous prediction generated for the management assumptions they adopt (Figure 2). 116 

CCLUB allows users to pick from two corn-specific LUC scenarios that predict the extent of LUC 117 

resulting from bioenergy demand, and three distinct sets of emissions factors (EFs)—the so called 118 

“Winrock,” “Woods Hole,” and (for domestic LUC only) “CENTURY/COLE'' (hereafter 119 

“CENTURY-based”) EFs—that represent the expected loss or gain of ecosystem C stocks per unit 120 

area following LUC. While CCLUB asks users to select a set of EFs, the results of all three are 121 

reported side-by-side in the model output. Only when the CENTURY-based EFs are used with the 122 

‘Corn Ethanol 2013’ scenario—the authors’ specification—does CCLUB predict net C 123 

sequestration from domestic LUC (Figure 2).  124 

 The Corn Ethanol 2013 feedstock scenario predicts that ‘cropland-pasture’ comprises the 125 

vast majority (1.7M ha; 92%) of land converted from non-use to corn production and it is cropland-126 

pasture conversion in particular for which the CENTURY-based EFs invariably predict 127 

sequestration (Figure 2). While CCLUB does not explicitly identify the lands it presumes 128 

cropland-pasture to encompass, it inherits the ambiguous class from GTAP which defines it as 129 

land “in long-term crop rotation which is marginal for crop uses” [22] following the USDA’s 130 

definition for it as land that is “routinely rotated between crop and pasture use… and may remain 131 

in pasture indefinitely” [23]. Cropland-pasture is therefore, by definition, land that has been 132 

removed from annual cultivation for some indeterminate time and is thus akin to those enrolled in 133 



the CRP—a U.S. federal program that retires land from production for the duration of at least one 134 

10- or 15- year contract.  135 

Yet, the treatment of cropland-pasture underlying the CENTURY-based EFs instead 136 

assumes that it has been cultivated for 25 years prior to its conversion to corn production. Unlike 137 

the other two sets of EFs, which are based on summaries of empirical data, the CENTURY-based 138 

EFs are based on the predictions of a biophysical model—a variant of the popular CENTURY 139 

model—that simulates SOC stocks and their responses to LUCs. The EF’s reported in CCLUB 140 

represent the average annual SOC changes (losses or gains) ensuing from these simulated 141 

transitions and are reported for each U.S. county. Like most biophysical models, CENTURY 142 

requires that SOC stocks be ‘spun-up’—a necessary technical procedure that predicts baseline 143 

SOC stocks based on a prescribed land use history. For their spin-up of cropland-pasture, the 144 

CCLUB developers prescribed a proximate history of “50 years as cropland followed by 25 years 145 

of pasture and 25 years of cropland” [24].  146 

By simulating the most recent 25 years of cropland-pasture as cropland, this treatment, 147 

effectively pre-depletes the simulated baseline SOC stocks such that when cropland-pasture is 148 

subsequently converted to corn production in the model, its SOC is predicted to respond similar to 149 

converting generic ‘cropland’ to corn production (Figure 3 & S1). Indeed, the CENTURY-based 150 

EFs for cropland-pasture and cropland conversion are statistically indistinguishable when effects 151 

are considered to a maximum depth of 30 cm, and only slightly distinct when considered to a 152 

greater depth of 100 cm (mean < 0.04 MgC ha-1 yr-1; ɑ = 0.05; Table S1). For both cropland-pasture 153 

and cropland, the CENTURY-based EFs oddly predict that their conversion sequesters SOC 154 

regardless of the accompanying tillage and yield assumptions (Figure S1, Table S1). While a meta-155 

analysis of empirical studies by the CCLUB developers and others suggests that crop rotations 156 



containing corn may sequester small amounts of C over time [20], it does not show this in the 157 

context of LUCs like cropland-pasture conversions to corn, nor even when generic cropland on 158 

which corn is rotated with other crops is converted to a continuous corn rotation [25]. Moreover, 159 

while there exists tremendous variance among observed responses [20], CCLUB’s county-level 160 

CENTURY-based EFs for conversion of cropland and cropland-pasture to corn exhibit little 161 

variance and similar rates of C sequestration in virtually all U.S. counties (Figure 3 & S1). 162 

To our knowledge, there exists no empirical evidence supporting the proposition that 163 

cropland-pasture conversion to corn production generally enhances SOC stocks. While the breadth 164 

and ambiguity of cropland-pasture’s definition admittedly confounds direct comparison with 165 

empirical studies, land leaving the CRP, for one, falls within the purview of cropland-pasture and 166 

has been estimated to account for ~30% of RFS caused domestic LUC [26]. Field studies assessing 167 

SOC changes after recultivation of CRP lands consistently report either net emissions or 168 

indeterminant change [19,27–31], with estimated SOC losses as high as 154 MgCO2e ha-1 when 169 

CRP land is converted to a corn-soy rotation managed with conventional tillage [29]. Conversion 170 

to no-till management results in lower but still substantial GHG costs [19].We know of no studies 171 

reporting net gains. These emissions reflect the tendency of abandoned croplands to recover SOC 172 

to varying degrees during their retirement that can later be lost if re-cultivated [16,32–40].  173 

Had Scully et al instead or further considered CCLUB’s Winrock-based estimate, they 174 

would have reported a less optimistic CI estimate for domestic LUC of +8.7 gCO2e MJ-1 (Figure 175 

2)—a value more in line with many of the estimates they dismissed, and a contemporaneous study 176 

in Environmental Research Letters [41]. The Winrock EFs calculate cropland-pasture emissions 177 

as simply one-half the estimate generated using the corresponding pasture/grassland EFs. Despite 178 

its simplicity, this approach may more accurately represent the C dynamics of cropland-pasture 179 



conversion by implicitly assuming higher levels of vulnerable SOC upon initiation of corn cropping. 180 

Adding this Winrock-based estimate, for the sake of example, to Scully et al ’s international LUC 181 

estimate (6.0 gCO2e MJ-1)—which, itself, is likely an underestimate given the selection criteria by 182 

which it was obtained—yields an estimated total-LUC C intensity of 14.7 gCO2e MJ-1; a value 183 

nearly four-times larger than the total-LUC value proposed by Scully et al as a ‘central best 184 

estimate’ and comparable to the raw median of estimates they initially reviewed (Figure 1). Scully 185 

et al recommend that, “future studies conduct a thorough review of the various emissions factors 186 

to assess the validity of their assumptions and functions''. We reaffirm this recommendation but 187 

add that, in the absence of such an assessment, reporting the range of possible outcomes ought to 188 

be considered the minimum reporting standard. 189 

 190 

Misconstruing the state of the science 191 

Scully et al’s ‘central best estimate’ of total-LUC emissions is less than even the smallest 192 

such estimate they initially reviewed (Figure 1). This statistical feat is only possible because they 193 

first, when able, parse the domestic and international estimates of studies and then treat them as 194 

being entirely independent when subjecting them to the aforementioned selection routine that 195 

rejects nearly all but the smallest estimates of each. They then calculate a ‘credible range’ of total-196 

LUC estimates by combining the smallest disparate domestic and international estimates to define 197 

the lower bound of their range (-1 gCO2e MJ-1), and by defining its upper bound as the retained 198 

estimate of Taheripour et al [11] (8.7 gCO2e MJ-1), which is the largest possible value compliant 199 

with their selection criteria. The value they present as a ‘central best estimate’ is the midpoint of 200 

this range (3.85 gCO2e MJ-1) and is less than half the estimate of Taheripour et al—the smallest 201 



peer-reviewed total-LUC estimate the authors initially reviewed—though, again, Taheripour et al 202 

expressly renounced this estimate as outdated and instead favor a larger value [11].  203 

The more general approach used by Scully et al and some of the non-peer-reviewed 204 

analyses they consider [13,42] of deconstructing and recombining elements of disparate LCAs 205 

belies the scientific intent of LCA and may ultimately miscount emissions. LCA is, by its nature, 206 

an integrated science in which the assumptions underlying system elements and boundaries are to 207 

be treated consistently throughout. When LCAs are instead deconstructed and recombined, 208 

assumptions can get lost or conflict among recombinant elements. Scully et al, for example, 209 

assume a large degree of cropping intensification in their treatment of LUC, which presumably 210 

requires additional fertilizer and amendments that would increase emissions from the ‘farming’ 211 

sector. Yet, because they determine farming emissions separately as the mean of a GREET-based 212 

estimate and their own revisions to ecoinvent, their estimate does not appear to account for these 213 

additional intensification emissions. In fact, Scully et al laud GREET’s recently reduced estimates 214 

of fertilizer usage, and they, themselves, revise downward ecoinvent’s relatively high emissions 215 

estimate for irrigation based on their own unpresented analysis of USDA-reported water use 216 

trends. These revisions appear to diminish the chance that their farming estimate even 217 

coincidentally captures some of the emissions from the intensification they implicitly assume. 218 

Moreover, since their LUC prediction is itself the mean of four disparate predictions from two 219 

studies and their own self-calculated value—each with distinct assumptions—it is not clear how 220 

one would even determine the precise acreage or type of intensification assumed. To avoid these 221 

ambiguities and maintain coherence, earnest LCA as a discipline has increasingly embraced 222 

sensitivity and uncertainty analyses, rather than piecemeal selection, as a means of better 223 

understanding—rather than erasing—variance [7,43,44]. 224 



Scully et al provide neither a comprehensive nor an impartial review. As we have shown, 225 

well-established concerns are not acknowledged nor discussed. Instead, assertions are made either 226 

without support or are ostensibly supported by unvetted analyses. When discussing LUC in the 227 

U.S., for example, they cite a single, second-hand account of a non-peer-reviewed conference 228 

presentation to claim that “agricultural land area declined by 38 million acres [between 2002-229 

2017]” [45]. Yet, using those same USDA data, Lark et al [46] showed instead that cropland 230 

underwent a net expansion after implementation of the RFS by as much as 13.9M acres (between 231 

2007 - 2017; see Supplemental Note 2 and Table S7 in [46]). Moreover, Lark et al [46] further 232 

corroborated their findings with three independent data sources and ultimately favored a smaller 233 

net estimate of 6.5M acres between 2009-2016. Separate peer-reviewed studies have estimated 234 

similar recent rates of net expansion using a range of data sources [26,47–50] as has a 235 

comprehensive review of biofuel-relevant LUC by the US Environmental Protection Agency [51], 236 

yet none of these antithetical studies are acknowledged by Scully et al.  237 

In all, the C intensity estimate of Scully et al for corn-grain ethanol is hardly credible. It is 238 

based on a flawed assessment that systematically disqualifies high estimates without cause, a new 239 

self-calculated estimate that contradicts empirical observation and can be explained by a semantic 240 

contradiction, and an inconsistent general methodology that belies the science it seeks to emulate. 241 

While we do not claim to know the true C intensity of corn ethanol, we strongly assert that the 242 

estimate of Scully et al should not be interpreted as such. It grossly mischaracterizes the land 243 

system, our means of understanding it, and, ultimately, the state of our science. In so doing, it has 244 

the potential to spawn perverse policy outcomes by attributing far greater climate benefits to the 245 

production and use of corn grain ethanol than can be supported by current evidence.  246 
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  375 

Figure 1. Boxplot showing the total (i.e. international + domestic) land use change carbon intensity 376 

estimates of all the studies initially considered by Scully et al, as well as the much lower estimate 377 

they advance after reviewing these studies. These values were taken from figure 2 of Scully et al. 378 

When a study reported parsed international and domestic estimates, we combined them into a 379 

single ‘total’ estimate when possible and excluded estimates (n = 11 of 26) from which a total 380 

estimate could not be obtained. Predictions are colored to illustrate the disproportionate 381 

representation of GREET-based estimates (this includes studies authored by primary GREET 382 

developers and the so-called “USDA 2018” study which also uses GREET). The width of the box 383 

represents the interquartile range of the 15 estimates, their median is denoted by the vertical middle 384 

line, and their 95th percentile range is shown as the affixed whiskers. The full range of the 385 

estimates reviewed is indicated by the bracket above the boxplot. Points have been randomly 386 

jittered vertically to enable visualization of overlapping data points. 387 

388 
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 389 

Figure 2. Varied carbon intensity of land use change estimates resulting from CCLUB’s two corn 390 

ethanol feedstock scenarios (“2011” and “2013”) and its three emission factor (EF) options 391 

(“Winrock”, “Woods Hole”, and “CENTURY/COLE”), all else being equal to the specifications 392 

used by Scully et al. Positive and negative values indicate emissions and sequestration, 393 

respectively. The emission/sequestration contribution of each land source is parsed by color and 394 

the net effect is noted as a horizontal black line. The Woods Hole EFs do not include an estimate 395 

for cropland-pasture conversion (it simply omits these emissions) so we show the net effect of 396 

adding either the corresponding Winrock or CENTURY/COLE-based cropland-pasture estimate 397 

as dashed horizontal lines. Of the six comparable estimates, Scully et al choose the only one that 398 

suggests sequestration, without acknowledging the others nor the relative dissimilarity of their 399 

choice.  400 
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  401 

Figure 3. Density distributions of CCLUB’s CENTURY-based county-level soil C emissions 402 

factors (EFs) for conversion of cropland, cropland-pasture, and pasture to corn production under 403 

one of CCLUBs tillage/yield scenarios (plots for all 16 tillage/yield scenarios are included as 404 

Figure S1 and all show the same general pattern). CCLUB provides two estimates for each 405 

tillage/yield scenario: one considering effects to a maximum soil depth of 30cm (left) and the other 406 

to 100cm (right). Due to the similar way in which their initial SOC stocks are spun-up, EFs for 407 

cropland-pasture and cropland conversions are remarkably similar to each other yet distinct in both 408 

sign and magnitude from those of pasture (i.e. grasslands). When considered to a depth of 30cm, 409 

cropland and cropland-pasture EFs are statistically the same (Table S1) and, visually, their 410 

distributions directly overlap; when considered to a depth of 100cm, they are statistically-distinct, 411 

but both still report that significant rates of C sequestration ensue from LUC.  412 
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