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Abstract
The “holy grail” of trait-based ecology is to predict the fitness of a species in a particular environment based on its functional traits, which has become all the more relevant in the light of global change. However, current ecological models are ill-equipped to predict ecological responses to novel conditions due to their reliance on statistical methods and current observations rather than the mechanisms underlying how functional traits interact with the environment to determine plant fitness. Here, I will advocate the use of functional-structural plant (FSP) modelling in combination with evolutionary modelling to explore climate change responses in natural plant communities. Gaining a mechanistic understanding of how trait-environment interactions drive natural selection in novel environments requires consideration of individual plants with multidimensional phenotypes in dynamic environments that include abiotic gradients and biotic interactions, and their effect on the different vital rates that determine plant fitness. Evolutionary FSP modelling explicitly represents the trait-environment interactions that drive eco-evolutionary dynamics from individual to population scales and allows for efficient navigation of the large, complex and dynamic fitness landscapes that emerge from considering multidimensional plants in multidimensional environments. Using evolutionary FSP modelling as a tool to study climate change responses of plant communities can further our understanding of the mechanistic basis of these responses, and in particular, the role of local adaptation, phenotypic plasticity, and gene flow.
[bookmark: _Hlk54791139]Introduction
The “holy grail” of trait-based ecology is to predict the fitness of a species in a particular environment based on its functional traits (Lavorel and Garnier 2002), which has become all the more relevant in the light of global change (Funk et al. 2017). The persistence of many plant species relies on their ability to either adapt to changing conditions in their current habitats, or to track their climatic niche beyond their current range and into previously unoccupied habitats. Either way, these plant species will face an array of novel abiotic and biotic conditions that exert selection pressures not experienced within their current range (Franks et al. 2007, Franks and Weis 2008, Lustenhouwer et al. 2018). Predicting how plant populations and communities will respond to the novel conditions caused by climate change has thus far been challenging, because the roles of key eco-evolutionary mechanisms such as adaptive evolution, phenotypic plasticity and gene flow are still poorly understood (Anderson and Song 2020). Furthermore, current ecological models are ill-equipped to predict ecological responses to novel conditions due to their reliance on statistical methods and current observations rather than the mechanisms that underlie how functional traits interact with the environment and determine plant fitness (Williams and Jackson 2007, Angert et al. 2011, Alexander et al. 2016). This calls for the development of novel mechanistic modelling approaches designed to make predictions and formulate hypotheses on the adaptive value of functional traits and life-history strategies in a changing world. Here, I will advocate for the combination of functional-structural plant (FSP) modelling and evolutionary modelling to explore climate change responses of natural plant communities. First, I will introduce how understanding climate change responses of plant communities requires a broad perspective of multidimensional phenotypes in multidimensional environments. I will then introduce FSP modelling as a tool to mechanistically simulate the trait-by-environment interactions that drive climate change responses of plant communities. Second, I will discuss how coupling FSP modelling to an evolutionary model of natural selection can help navigate the large and complex fitness landscapes that arise from considering plant phenotypes as networks of interconnected traits. Third, I will highlight the importance of considering the spatial and temporal dynamics of these multidimensional environments and their effects on selection. Lastly, I will highlight the importance of scaling evolutionary FSP models to the population level and consider mechanisms that drive eco-evolutionary processes across larger temporal and spatial scales.
Understanding climate change responses requires mechanistic, individual based approaches
Plant communities are complex mixtures of different species that represent a range of functional strategies, each with their own functional variation that describes the different vital rates that make up the fitness of a species (Laughlin et al. 2020). Broad species level variation is often comprised of a range of populations that have adapted to their local environmental conditions, each with their own population level variation. This variation is important to consider in the context of climate change, as it can either improve or impede a species’ ability to track their environmental niche or adapt to environmental change (Atkins and Travis 2010, Anderson and Song 2020, Anderson and Wadgymar 2020). Patterns of local adaptation along environmental gradients suggest that populations at the species’ cold range edge are generally adapted to abiotic conditions, while populations at the warm range edge are generally adapted to biotic interactions (Griffith and Watson 2005, Hargreaves et al. 2014). These observations are in accordance with ecological theory, which suggests that the selection pressures exerted by abiotic conditions play a larger role in environments that are abiotically stressful, while biotic interactions play a larger role in more benign environments (Louthan et al. 2015, Briscoe Runquist et al. 2020). However, how individual (a)biotic selection pressures interact to shape locally adapted phenotypes is not clear-cut (Briscoe Runquist et al. 2020, Hargreaves et al. 2020), yet these interactions are key to understanding climate change impacts on plant communities (HilleRisLambers et al. 2013). For example, competitive interactions are driven by functional traits, have a large impact on the performance of individual plants , and are known to shape species co-existence in plant communities through competitive exclusion and niche differentiation (Kunstler et al. 2016, Levine et al. 2017, Adler et al. 2018). However, plant communities are expected to see a re-shuffling of competitors as a result of climate change, leading to major changes in the identity and strength of competitive interactions, as well as the context in which these interactions occur (Alexander et al. 2015). Understanding how plant communities respond to the novel conditions expected after climate change requires mechanistic approaches that seek to link functional traits to plant fitness through trait-environment interactions (Alexander et al. 2016). While functional traits are a great tool to describe variation in functional strategies on the species level (Wright et al. 2004, Díaz et al. 2016), they have proven to be poor predictors of ecosystem functioning (van der Plas et al. 2020). This indicates that species level functional trait variation may fail to capture the granularity required to accurately link traits to vital rates, and that traits taken out of the context of the individual lack predictive power (Yang et al. 2018). Also, the fact that multiple functional strategies can coexist in a given environment challenges the idea that traits can predict ecosystem level responses in a detailed way (Adler et al. 2014). Thus, understanding how climate change will shape future plant populations requires mechanistic, individual based approaches. 
[bookmark: _Hlk54711907][bookmark: _Hlk64304874][bookmark: _Hlk67678807]To this end, I propose the use of function-structural plant (FSP) modelling (Evers et al. 2018), which is a mechanistic modelling approach that simulates the performance of individual plants through an explicit representation of plant structure in a 3D environment in combination with functional responses to that environment. FSP models are often used to simulate single plant species, but models that focus on simulation of mixed-species systems are still lacking (Evers et al. 2019, Bongers 2020). However, I think FSP models can be strong tools to simulate diverse mixed-species systems, highlighted by their ability to represent the four pillars of trait-based ecology proposed by McGill et al. (2006). These themes advocate the consideration of (1) individual plants with multidimensional phenotypes in dynamic environments (Laughlin and Messier 2015) that include (2) abiotic gradients (Anderson and Song 2020) and (3) biotic interactions (Post 2013, Alexander et al. 2015), and (4) theirs effect on the different vital rates that determine plant fitness (Laughlin et al. 2020) (Fig. 1).  First, FSP models often take a trait-based approach and simulate plant form and function using a large variety of morphological and physiological plant traits such as leaf shape (Schmidt and Kahlen 2018), plant height (Renton et al. 2005), leaf insertion angle (de Wit et al. 2012), root insertion angle (Postma et al. 2014), or defence expression (de Vries et al. 2019), among many others. Second, FSP models can mechanistically simulate how plant growth and development is affected by gradients in abiotic conditions such as temperature (Chen et al. 2014), nutrient availability (Dunbabin et al. 2004), water availability (Braghiere et al. 2020), or light intensity (Hitz et al. 2019). Here, the carbon economy is a strong fundamental mechanisms that links plant form and function to plant performance in its abiotic environment, and has been widely adopted as the mechanistic basis of FSP models (Sterck and Schieving 2007, Evers et al. 2010). Third, FSP models can mechanistically simulate biotic interactions such as resource competition between plants (Postma and Lynch 2012, Evers and Bastiaans 2016, Bongers et al. 2018, de Vries et al. 2018), interactions between plants and insect herbivores (de Vries et al. 2018), or between plants and pathogens (Robert et al. 2008, Garin et al. 2014, Streit et al. 2017). Fourth, FSP models are able to simulate different performance currencies that underly plant fitness, such as photosynthesis (Evers et al. 2010), nutrient uptake (Dunbabin et al. 2013), biomass accumulation (Zhang et al. 2020) and seed production (Sterck and Schieving 2007, de Vries et al. 2018). The primary strengths of FSP models lie in their ability to capture the spatial and temporal heterogeneity that emerges from interactions between biotic and abiotic conditions, and in its ability to simulate the component mechanisms from which trait-environment interactions and correlations between traits and fitness emerge. This makes FSP modelling an excellent tool to explore functional traits variation in a dynamic eco-evolutionary context (Bongers et al. 2019, de Vries et al. 2019, Douma et al. 2019).
Simulating multidimensional phenotypes in multidimensional environments	
Plants exist in complex environments where multiple drivers of selection interact with multiple plant traits to determine the plant’s fitness in that environment (Laughlin 2014, Sterck et al. 2014, Anderson and Song 2020). While individual functional traits are generally good predictors of average fitness differences between species, describing a species’ niche requires multiple trait axes that differentiate between species in multiple ecological dimensions (Kraft et al. 2015). Furthermore, plant fitness is generally determined by interacting functional traits that cannot be regarded separately, indicated by the existence of numerous trade-offs that define functional strategies (Wright et al. 2004, Sterck et al. 2011, Díaz et al. 2016, Züst and Agrawal 2017). The relationship between functional traits and realised fitness can be conceptualised as a surface with peaks and valleys that is described by one or more trait axes, called a fitness landscape (Gavrilets 2010, Svensson and Calsbeek 2012, De Visser and Krug 2014), which can be explored using mechanistic models. However, navigating large and complex fitness landscapes composed of multiple interacting trait axes carries significant computational constraints due to the exponentially increasing computational demand with every added trait. To explore how multidimensional environments drive selection of multiple interconnected traits, FSP models can be coupled to an evolutionary algorithm of natural selection designed to dynamically navigate the large and complex fitness landscapes simulated by the FSP model. This combined approach can drastically reduce the number of simulations required to find the optima in a given fitness landscape, as the model only simulates a path from a set of initial conditions (i.e. initial trait values) to an optimal solution, rather than a full exploration of the fitness landscape. This is exemplified by the work of Renton and Poot (2014), who pioneered the use of evolutionary FSP modelling with a model that simulated single root systems searching for bedrock cracks that would provide access to ground water and ensure their survival in the dry Australian summer. The model was used to simulate selection in a large fitness landscape consisting of 16 traits, which would require 1016 simulations to fully explore using a full factorial simulation design and ten values for each trait. However, because an evolutionary alogirthm was used to navigate the fitness landscape, these 1016 simulations were reduced to a more managable 800 000 simulations (2000 generations * 100 plants * four runs). The work by Renton and Poot (2014) also demonstrated that a large fitness landscape may have multiple local optima that will be missed when only traversing a single path through the fitness landscape. To identify the presence and locations of these local optima requires multiple, preferably randomly generated, initial conditions, both through an initial population of plants with randomly generated genotypes and through replication of the evolutionary runs. Although the fitness landscape investigated by Renton and Poot (2014) was both large and complex (i.e. consisting of many interacting trait axes), both the environment and the drivers of selection did not change between generations and the plants were simulated in isolation rather than in competition with other plants. This made the fitness landscape simulated by the model static in time, rather than the dynamic fitness landscapes that shape plant communities. Recent years have seen the development of three other evolutionary FSP models that simulated dynamic fitness landscape driven by resource competition between plants (Yoshinaka et al. 2018, Bongers et al. 2019, de Vries et al. 2020), marking the first steps towards simulating selection in a dynamic environment. 
Selection in a dynamic environment	
Plants live in dynamic environments where both abiotic conditions and biotic interactions vary over temporal and spatial scales. Plants can be seen as the sum of selection pressures exerted by the environment over large temporal and spatial scales, as these environmental dynamics determine the dynamics of the fitness landscape (MacColl 2011). Therefore, a phenotype observed in a natural system is not necessarily optimised for the local environment in which it is observed, but rather optimised for the broader context of the temporal and spatial variation of the environment in which the plant occurs (Laughlin and Messier 2015). One way in which plants can adapt to this variation is through plastic responses to environmental signals that aim to maximise their fitness in dynamic environments (Sultan 2000, Morel‐Journel et al. 2020). However, a plastic response will not necessarily allow the plant to express the optimal phenotype in all possible environments that the plant might encounter (Bongers et al. 2019, Douma et al. 2019). Thus, plastic responses allows plants to scale between two extreme strategies, a jack-of-all trades that is able to maintain fitness in unfavourable environments, versus a master-of-some that is able to maximise fitness in favourable environments (Richards et al. 2006). These strategies highlight that we must be cautious in assuming that a plant is expressing the optimal phenotype for the environment it is currently observed in, but rather consider the plant within the broader context of spatial and temporal variation in the environment. Understanding phenotypic plasticity in this broad environmental context is essential to accurately predict plant population responses to climate change (Nicotra et al. 2010, Valladares et al. 2014, Henn et al. 2018). However, elaborate experimental setups are required to accurately measure phenotypic plasticity (Arnold et al. 2019), which might contribute to it often being neglected in research on plant population responses to climate change (Matesanz and Ramírez‐Valiente 2019). As a result, many outstanding questions regarding the role of phenotypic plasticity in plant population responses to climate change remain. 
FSP modelling has proven to be an excellent tool to evaluate the adaptive value of phenotypic plasticity (Bongers et al. 2019). In FSP models, phenotypic plasticity can be mechanistically represented as a dose-response curve that describes the expression of a trait in response to a particular environmental cue (Evers et al. 2007).The calibration of these response curves relies on experimental studies to elucidate the different components of the plastic response, such as the type of response curve (Poorter et al. 2010), the different cues involved in the response (Pierik et al. 2013), as well as the location of signal perception and integration (Pantazopoulou et al. 2017). When such detailed experimental data is available, FSP modelling can be used to assess the adaptive value of the plastic response by treating the shape of the response curve as a functional trait that is subject to selection by the (a)biotic environment (Bongers et al. 2018). Evolutionary FSP models can help elucidate how a variable environment drives selection for plastic responses by simulating the selection pressure exerted by the strength and frequency of environmental variation, which is an emergent property of the model shaped by the mechanisms underlying trait-environment interactions. This goes beyond what is possible with experimental methods and is an important step towards understanding the role of phenotypic plasticity in the response of plant populations to the novel conditions caused by climate change. 
Scaling from individuals to populations 	
Understanding the full scope of the eco-evolutionary dynamics that drive climate change responses of plant communities requires explicit consideration of population level processes, both genetic and demographic, that drive evolution through selection, genetic drift and gene flow (Lowe et al. 2017). In particular, gene flow between populations is known to play a complex evolutionary role as it can either promote or constrain adaptation (Garant et al. 2007). Low amounts of gene flow ensure that beneficial alleles can spread across populations to maintain adaptive genetic variation (Slatkin 1987, Rieseberg and Burke 2001, Tallmon et al. 2004), while large amounts of gene flow can homogenise populations and work against the diversifying forces of mutation, genetic drift and directional selection that drive local adaptation (Haldane 1930, García‐Ramos and Kirkpatrick 1997, but see Fitzpatrick et al. 2015). This highlights the importance of considering eco-evolutionary processes that act on the population and species levels in models that aim to predict climate change responses of plant communities. FSP modelling is an individual based modelling approach that has the potential to scale to the population level and simulate mixed species plant communities (Bongers 2020). Evolutionary FSP models have proven to be able to simulate selection and stochastic processes in local populations (de Vries et al. 2020), and can be further developed to include mechanisms that act across populations, namely gene flow, by simulating several connected populations in parallel. This would open up an exciting new avenue of research that takes a mechanistic, individual and trait-based approach, yet is able to scale to dynamics that take place on eco-evolutionary scales.
Conclusions
Understanding climate change responses of plant communities requires consideration of functional trait variation at the individual level in relation to the (a)biotic environment. These trait-environment interactions can be related to the individual vital rates that drive population level eco-evolutionary dynamics. Here, I have outlined how evolutionary FSP modelling can help understand climate change responses of plant communities by taking a mechanistic, individual based modelling approach that captures the component mechanisms from which trait-environment interactions and relations between traits and fitness emerge. Using evolutionary FSP modelling as a tool to study climate change responses of plant communities can further our understanding of the mechanistic basis of these responses, in particular, the role of local adaptation, phenotypic plasticity, and gene flow. 
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Fig 1. The phenotype of an individual plant is determined by its functional traits in relation to its (a)biotic environment, and in turn affects the abiotic conditions and biotic interactions it experiences. The trait-environment interactions that shape plant phenotype shape individual vital rates (growth, reproduction and survival), which in turn contribute to population level demography and thus shape population level processes that act on eco-evolutionary scales (selection, genetic drift and gene flow). These population level processes determine the variation of functional traits in the population and thus feed back to the functional traits of the individuals in that population.
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