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Plant microbiomes have become one of the hottest topics in plant biology. Driven by the 12 

increased availability of metagenome sequencing methods, analyses of plant-associated 13 

microbiomes have been skyrocketing during the last decade. They have generally taken one of 14 

two main perspectives: (1) a focus on the microbiome itself, where researchers describe 15 

microbiome diversity and attempt to understand its drivers (Fig. 1A), or (2) a focus on the 16 

consequences of microbiomes, where researchers analyse effects of microbiomes on plants (Fig. 17 

1B). Below, we briefly discuss these two perspectives, and we argue that for both a genotype-by-18 

environment (G x E) framework will be key for achieving a deeper and more general 19 

understanding of plant microbiomes. 20 

 21 

Two perspectives in plant microbiome research 22 

Studies with a microbiome focus typically describe the diversity and composition of the root or 23 

leaf microbiomes of plants, and they often test influences of plant characteristics or 24 

environmental conditions on the microbiomes (Fig. 1A). For instance, previous studies show that 25 

microbiome composition varies within and among plant species, with significant influences of 26 

plant genotype (Agler et al., 2016; Wagner et al., 2016; Bowen et al., 2017; Bergelson et al., 27 

2019) and phylogeny (Fitzpatrick et al., 2018), and that plant tissue but also plant age and 28 

developmental stage (Chaparro et al., 2014; Wagner et al., 2016) influence plant microbiomes. In 29 

addition to plant characteristics, environmental conditions also play a role in microbiome 30 

development. For instance, soil conditions and root exudates strongly influence root 31 

microbiomes (Fitzpatrick et al., 2018; Hu et al., 2018; Sasse et al., 2018), and leaf microbiomes 32 

vary predictably among different habitats (Agler et al., 2016; Wagner et al., 2016). 33 

Microbiome studies with a plant focus, in contrast, are interested in how the microbiome of 34 
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a plant affects its growth or environmental tolerances. They test - through experiments or 35 

association patterns - how plant performance is influenced by the presence or composition of 36 

microbiota, sometimes also taking plant or environmental characteristics into account (Fig. 1B). 37 

Studies with individual microbe taxa have demonstrated that these can promote growth and 38 

stress tolerance of plants (Rodriguez et al., 2008; Lugtenberg and Kamilova, 2009) and influence 39 

pathogen and herbivore resistance (Pieterse et al., 2014; Hu et al., 2018). More recent studies 40 

with complex microbiomes have confirmed these effects: inoculation with diverse microbiota 41 

altered plant growth and physiology (Fitzpatrick et al., 2019; Belimov et al., 2020), phenology 42 

(Panke-Buisse et al., 2015) and pathogen resistance (Berendsen et al., 2018; Berg and Koskella, 43 

2018), sometimes in a genotype- or environment-dependent fashion (Berg and Koskella, 2018; 44 

Belimov et al., 2020).  45 

In summary, recent research has demonstrated the ubiquity and importance of plant 46 

microbiomes, but it has also shown that microbiomes are complex, and influenced by a range of 47 

plant and environmental factors. Another challenge is that drivers of microbiome variation often 48 

interact. For instance, Wagner et al. (2016) carried out a multi-site field experiment with 49 

different genotypes of Boechera stricta and found that genotype- and age-effects on bacterial 50 

microbiomes were often site-specific. In an experiment with natural ecotypes of Arabidopsis 51 

thaliana, Fitzpatrick et al. (2019) found that the effects of a natural soil microbiome on plant 52 

fitness depended on the plant genotype but also the ecological conditions under which they were 53 

tested.  54 

In spite of the many and often interacting drivers of microbiome diversity and microbiome 55 

effects, the vast majority of previous studies focused on only one or few drivers, and there have 56 

been very few solid multifactorial studies to date that allowed to test for interactions between 57 
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different factors. As a result, the generality of many previous results remains uncertain, and we 58 

are still far from understanding natural plant microbiomes. A significant step forward could 59 

therefore be to embrace an important conceptual framework from evolutionary ecology: that of 60 

genotype-by-environment interactions. 61 

 62 

Adopting a G x E framework 63 

Genotype-by-environment (G x E) interactions are statistical interactions between the effects of 64 

genotypes and environment on phenotypes, i.e. when phenotypic differences among genotypes 65 

depend on the environment in which they are tested, or vice versa phenotypic responses to 66 

environment depend on the genotype. The G x E concept has long been central to plant 67 

evolutionary ecology (Sultan, 2000), and a large body of research has often found strong G x E 68 

interactions in many plant species - to the extent that genotype effects may be strong in some but 69 

completely absent in other environments, and phenotypic responses to environment are 70 

sometimes opposite for different genotypes. Similar results in animal research confirmed that G 71 

x E interactions are the rule in natural populations, and that one therefore needs to be cautious 72 

with generalisation from single-factor studies. 73 

The classic experimental approach to testing G x E interactions is a common garden 74 

experiment where multiple genotypes are replicated across different environments in a multi-75 

factorial design, so that the generality of both genotype and environment effects, as well as their 76 

interactions, can be statistically tested. The results of such experiments are often visualized 77 

through reaction norm plots that show genotype-specific responses to environment, or other 78 

relevant interactions (Fig. 1C,D). We can easily apply these concepts and experimental 79 

approaches to a multi-factorial study of plant microbiomes, both for the microbiome and the 80 
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plant perspective. 81 

Microbiome-focused studies with a G x E character will essentially treat the microbiome as 82 

an ‘extended phenotype’ of the plant that is subject to the same complex influences as other plant 83 

phenotypes. Such studies will e.g. test the influence of plant genotype on plant microbiomes 84 

under different environmental conditions, or vice versa environmental effects on plant 85 

microbiomes across multiple plant genotypes (Fig. 1C). For instance, field experiments can 86 

transplant multiple plant genotypes into different habitats and test the interactive effects of 87 

genotype and habitat on spontaneous microbiome development (Wagner et al., 2016). Lab 88 

experiments can inoculate different plant genotypes with identical microbial communities and 89 

follow their dynamics under different growth conditions. With a generous interpretation of the G 90 

x E concept, these studies may also include plant factors other than genotype, such as plant 91 

tissue, plant age, or even plant species. More complex studies may include several environmental 92 

factors and/or additional microbial drivers of microbiome composition (Fig. 1A). 93 

Plant-focused studies with a G x E framework generally test microbiome effects on plant 94 

performance or stress tolerance not only for one narrow type of experimental set-up but across a 95 

range of different environments and/or multiple plant genotypes (Fig. 1B). For instance, lab 96 

experiments can study the beneficial or pathogenic effects of different microbial inoculates under 97 

several, controlled levels of resource availability or abiotic stress (Fitzpatrick et al., 2019). For 98 

more realistic tests, field experiments can plant seedlings inoculated with different microbial 99 

communities into a range of natural habitats. Depending on one’s perspective and strategy of 100 

data analysis, these approaches will examine how microbiome effects on plants are modulated by 101 

environmental influences or – an equally important perspective – how plant responses to the 102 

environment (phenotypic plasticity; environmental tolerances) are modulated by microbes (Fig. 103 
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1D). Finally, the ‘environment’ component in such experiments may also include additional 104 

biotic factors, such as competitors (Fitzpatrick et al., 2019), herbivores or other (background) 105 

microbiota, which will allow for testing microbe-microbe interactions or other complex biotic 106 

interactions. 107 

 108 

Conclusions 109 

The study of plant microbiomes is an important research frontier in current plant biology, with 110 

many open questions, particularly from an ecological-evolutionary (Koskella et al., 2017; 111 

Fitzpatrick et al., 2020) and agricultural perspective (Toju et al., 2018). Irrespective of whether 112 

their focus is on the plant or the microbiome, plant microbiome studies are challenged by the 113 

complexity of their subject. Plant microbiome studies that are too simple may therefore overlook 114 

important interactions between different factors, and they run the risk of overestimating or 115 

overgeneralizing their results. A more thorough understanding of plant microbiomes will require 116 

not only working with a broader range of plant genotypes and non-model species, but also to 117 

take a G x E perspective and explicitly test the generality of plant-microbiome interactions across 118 

multiple, and interacting, drivers. 119 
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Figure 1. Two main perspectives in plant microbiome research, and reaction norm plots 185 

illustrating possible G x E interactions tested in each. With a microbiome perspective, 186 

researchers usually study community-level characteristics of the microbiome, and test effects of 187 

plant genotype or other plant characteristics (P1/P2) and environmental conditions (E1/E2). With 188 

a plant perspective, the dependent variables are measures of plant performance, and experiments 189 

test influences of microbiomes (M1/M2), environmental conditions, and their interactions. The 190 

dashed lines in the upper graphs indicate indirect effects where some drivers of plant or 191 

microbiome variation alter plant or microbiome responses to others. Note that while the bottom 192 

graphs display only categorical variables, the G x E framework can be equally applied to 193 

continuous explanatory variables. 194 
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