
A community convention for ecological forecasting: output files and metadata v0.5

Michael C. Dietze1, R. Quinn Thomas2,3, Jody Peters4, Carl Boettiger5, Gerbrand Koren6, Alexey

N. Shiklomanov7, Jaime Ashander8

1Department of Earth & Environment, Boston University, Boston, MA

2Department of Forest Resources and Conservation, Virginia Tech, Blacksburg, VA

3Department of Biological Sciences, Virginia Tech, Blacksburg, VA

4Department of Biological Sciences, University of Notre Dame, South Bend, IN

5Department of Environmental Science, Policy and Management, University of California

Berkeley, Berkeley, CA

6Copernicus Institute of Sustainable Development, Utrecht University, Netherlands

7NASA Goddard Space Flight Center, Greenbelt, MD, USA

8 U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA

Corresponding author: Michael C. Dietze, dietze@bu.edu

Open Research statement: No data were collected for this study

Key words/phrases: comma-separated values (CSV); data assimilation; ecological forecasting;

ecological metadata language (EML); ensemble; netCDF; standards; uncertainty

1

mailto:dietze@bu.edu

Table of Contents

Abstract 3

1. Introduction 4
1.1 A Simple Example 10

2. Forecast Output Data Structures 12
2.1 Design Assumptions 12
2.2 Global attributes 14
2.3 Dimensions 17
2.4 Forecasted Variables 27
2.5 Ancillary Indicator Variables 28
2.6 File Formats 30

2.6.1 netCDF 30
2.6.2 CSV 32

3. Forecast Dataset Metadata 34
3.1 Forecast uncertainty 36
3.3 Metadata validator and metadata helper functions 46

4. Forecast Archiving 47
4.1 Short-term distribution and long-term archiving 47
4.2 Platforms for forecast distribution and archiving 49
4.3 Code and workflow archiving 53

5. Conclusions 57

6. Acknowledgements 58

7. Conflict of Interest Statement 59

8. References 59

9. Tables 66

10. Figures 74

11. Supporting Information 80
11.1 Base EML 82
11.2 additionalMetadata REQUIRED elements 92

2

Abstract

This paper summarizes the open community conventions developed by the Ecological

Forecasting Initiative (EFI) for the common formatting and archiving of ecological forecasts and

the metadata associated with these forecasts. Such open standards are intended to promote

interoperability and facilitate forecast communication, distribution, validation, and synthesis. For

output files we first describe the convention conceptually in terms of global attributes, forecast

dimensions, forecasted variables, and ancillary indicator variables. We then illustrate the

application of this convention to the two file formats that are currently preferred by EFI, netCDF

(Network Common Data Form) and comma-separated values (CSV) but note that the convention

is extensible to future formats. For metadata, EFI’s convention identifies a subset of conventional

metadata variables that are required (e.g., temporal resolution, output variables) but focuses on

developing a framework for storing information about forecast uncertainty propagation, data

assimilation, and model complexity that aims to facilitate cross-forecast synthesis. The initial

application of this convention expands upon the Ecological Metadata Language (EML), a

commonly used metadata standard in ecology. To facilitate community adoption we also provide

a Github repository containing a metadata validator tool and several vignettes in R and Python

on how to both write and read in the EFI standard. Lastly, we provide guidance on forecast

archiving, making an important distinction between short-term dissemination and long-term

forecast archiving, while also touching on the archiving of code and workflows. Overall, the EFI

convention is a living document that can continue to evolve over time through an open

community process.

3

1. Introduction

Ecological forecasting is an important and rapidly growing research area that aims to

simultaneously accelerate ecological research and provide decision-relevant information to

stakeholders (Dietze 2017a, Dietze and Lynch 2019, Bradford et al. 2020, Lewis et al. 2022). In

this time of rapid environmental change, forecasts respond to the imperative need to provide

society with the best-available information to support environmental decision making (Clark

2001). The nonstationary nature of many environmental changes highlights the need for forecasts

as traditional management approaches rely on historical norms that may no longer be relevant

(Milly et al. 2008, Rollinson et al. 2021). Iterative forecasts, which can be tested and updated on

decision-relevant timescales, are particularly useful and are now possible in many domains

through increases in data volume, openness, and speed (i.e., reduced latency) (Dietze et al.

2018). This process of iterative learning serves to accelerate basic research, while comparative

analyses across forecasts allow researchers to tackle grand challenge questions about the

predictability of ecological processes and the transferability of ecological understanding to new

contexts (Lewis et al. 2022).

Numerous definitions exist across different disciplines, as well as within the discipline of

ecology, for what constitutes a forecast. Within this document we will use the term “ecological

forecast” to encompass both predictions of ecosystems and the services they provide based on

our current understanding and projections made conditional on future scenarios or decision

alternatives (Dietze 2017a). Within our definition forecasts also possess three key features. First,

4

https://www.zotero.org/google-docs/?G63RhR
https://www.zotero.org/google-docs/?KoIQMC
https://www.zotero.org/google-docs/?KoIQMC
https://www.zotero.org/google-docs/?2zDD0c
https://www.zotero.org/google-docs/?bGxxxq
https://www.zotero.org/google-docs/?bGxxxq
https://www.zotero.org/google-docs/?w8hWn1
https://www.zotero.org/google-docs/?9KsH4E

forecasts have to be made for quantities that were genuinely unobservable at the time the forecast

was issued. Forecasts are typically made into a future time that has not been observed yet, but

predictions to new spatial locations, state variables, or species (i.e., phylogenetic predictions) are

also considered forecasts under this definition. We generally do not consider hindcasts,

cross-validation, or any other post-hoc modeling to constitute a forecast, although it is worth

noting that many forecast workflows are also used to produce “nowcasts” and reanalysis

products (Baatz et al. 2021, Dokoohaki et al. 2021). Second, forecasts need to be quantitative and

specific, which makes them falsifiable. Although qualitative input from experts and users,

including indigenous knowledge, can be valuable for the construction and interpretation of

forecasts, qualitative prognostications about the future do not constitute forecasts (Tetlock and

Gardner 2015). The final defining feature of ecological forecasts is that they include a robust and

formal accounting of the uncertainties in predictions and projections, and thus they tend to be

probabilistic in nature (Clark 2001).

Because ecological forecasting is a relatively new research area (Lewis et al. 2021), how

practitioners develop, implement, operationalize, and archive forecasts can vary greatly. Up to

this point in time almost every new ecological forecast system brought online has been unique,

with its own implementation of solutions to common forecasting problems such as automation,

data processing, and uncertainty propagation. Although innovation is critical for an emerging

field, the current approach of “boutique” solutions comes at the cost of substantial redundancy in

efforts. The cost of such redundancy is nontrivial – in bringing a forecast “online” as an

automated workflow, the bar for reproducibility is considerably higher than for other types of

5

https://www.zotero.org/google-docs/?sA0Z5I
https://www.zotero.org/google-docs/?rSeYu2
https://www.zotero.org/google-docs/?rSeYu2
https://www.zotero.org/google-docs/?kRNBgT
https://www.zotero.org/google-docs/?2bHlTH

modeling and analysis, and thus requires a substantial amount of specialized technical

knowledge. This further acts as a barrier to entry for researchers wanting to work in this area.

And even beyond the steep learning curve, simply maintaining unique, independent workflows

incurs a substantial ongoing cost, one that can be prohibitive for many government agencies,

academic institutions, and nongovernmental organizations (NGOs), thus acting both as a further

barrier to operationalization and putting operational forecasts continually at risk of being

terminated (Brown 2019).

In disciplines where forecasting is a more established part of the field, such as

meteorology, these workflow and operationalization costs are often carried by centralized

agencies (e.g., government weather services) that have invested in highly-specialized

cyberinfrastructure capable of handling data volumes in excess of 10TB/day (Hamill et al. 2013,

Hersbach et al. 2020). The societal relevance of weather predictions (e.g., to address flood risks,

aviation safety, or military purposes) have justified government funding for many decades,

thereby creating a solid foundation for the field of numerical weather prediction (which is the

origin of many of the mathematics and theoretical concepts that are now an intrinsic part of

ecological forecasting’s vocabulary and toolbox) (Shuman 1989). However, the biological

diversity that is innate to ecology as a field prevents such monolithic approaches – ecology does

not have one big forecasting problem with an agreed upon set of governing equations (e.g.,

weather) but rather has a large number of “medium-sized” problems (i.e., large enough in size to

be challenging, but not so large as to justify centralized infrastructure) that rely upon a diverse

set of different models and data streams. For example, ecological forecast span terrestrial,

6

https://www.zotero.org/google-docs/?YsCsDS
https://www.zotero.org/google-docs/?f7LOxg
https://www.zotero.org/google-docs/?f7LOxg
https://www.zotero.org/google-docs/?AzMe8N

freshwater, and marine systems using a wide range of methods (statistical models, machine

learning, process-based models) to make predictions across a range of biological scales and

processes (ecophysiology, individuals [e.g., animal movement], populations, communities,

ecosystems, biogeochemical rates). In the face of such challenges, an important framework that

has emerged is the idea of community cyberinfrastructure that is decentralized but scalable to

new problems (Fer et al. 2021).

At the core, community cyberinfrastructure starts first with agreed upon community

standards and conventions (variable names, data structures, file formats, archiving, etc.). Such

conventions form the basis for interoperability, which allows the development of shared,

reusable, and scalable tools. Community conventions are especially important for ecological

forecasts: the output files from the forecasts themselves; the metadata about these forecasts as the

models used to produce them; and the archiving of output files, metadata, models, and

workflows. Such a convention would not just benefit interoperability of tools and analyses but

would also improve dissemination by allowing end users of different forecasts to work with

consistent, predictable data. This would further support the development of tools that facilitate

dissemination (e.g., standards and conventions around Application Programming Interfaces

[APIs], visualization, and decision support) and, more broadly, signal the maturation of the field

in a way that the status quo (i.e., every forecast is different) does not.

Independent of infrastructure, community conventions also benefit the community

scientifically. From the standpoint of data analysis, synthesizing data that are not standardized

7

https://www.zotero.org/google-docs/?hX9CHr

and interoperable is time-consuming, error-prone, and not scalable. At the same time, from the

standpoint of data production, adopting community standards after data have already been

generated is also challenging, especially for long-running projects producing high volumes of

data. As a relatively new research area, ecological forecasting has the opportunity to adopt

community conventions now, while the community is relatively small and time series are

relatively short. This would not only facilitate independent validation of individual forecasts, but

also larger efforts at cross-forecast synthesis (Figure 1) and the testing of grand challenge

questions about the patterns of predictability across ecological systems (Dietze 2017b). It would

also allow the community to generate multi-model forecasts and to run forecast model

intercomparisons, such as the National Ecological Observatory Network (NEON) Ecological

Forecasting Challenge organized by the Ecological Forecasting Initiative’s Research

Coordination Network (EFI-RCN) (Thomas et al. 2021). Overall, community conventions play a

key role in making ecological forecasts FAIR (Findable, Accessible, Interoperable, and

Reusable), in particular tackling the interoperability and reusability that are widely considered to

be the more challenging half of FAIR (Wilkinson et al. 2016).

The need for ecological forecasting conventions and standards is recognized by the

community (Dietze et al. 2018), and conventions emerged as a top priority at the inaugural

conference of the Ecological Forecasting Initiative (EFI) in 2019. EFI (ecoforecast.org) is a

grassroots, international, and interdisciplinary consortium that aims to build a community of

practice around ecological forecasting, with a particular emphasis on near-term iterative forecasts

(Dietze and Lynch 2019). Discussions about standards and conventions initially occurred across

8

https://www.zotero.org/google-docs/?e2ME9d
https://www.zotero.org/google-docs/?BUzzvw
https://www.zotero.org/google-docs/?FjzOeI
https://www.zotero.org/google-docs/?p61XvO
https://www.zotero.org/google-docs/?3nwLr8

four different EFI working groups (Cyberinfrastructure, Methods, Social Science, and Theory),

with the last particularly interested in making sure any community standard would enable

cross-forecast synthesis and comparative analysis. A series of cross-working group calls led to

the launch of a stand-alone EFI Standards working group in early 2020, and an initial draft

convention was released in time for the EFI-RCN 2020 conference in May 2020. The proposed

convention was adopted by the EFI-RCN as part of the NEON Ecological Forecasting Challenge,

and as part of the competition design phase (June-Dec 2020) and the Standards working group

continued to refine the convention based on feedback from the five design teams and >90 teams

participating in the first and second rounds (Jan 2021-Dec 2022) of the challenge. EFI

membership is open to anyone, as is participation in EFI working groups and the NEON

Ecological Forecasting Challenge, and by the end of 2022 EFI had engaged >3000 academic,

agency, NGO, and industry scientists and partners through a broad mix of conferences,

workshops, working groups, international chapters, webinars, journal articles, white papers,

social media, videos, and policy briefs. The EFI network operates following the Integrated,

Coordinated, Open, Networked (ICON) principles (Dwivedi et al. 2022), and this convention

was thus developed in an open and inclusive manner and has been vetted by hundreds of

researchers within the ecological forecasting community.

Overall, while not a formal specification or schema itself, this document lays out the

design principles, concepts, and requirements needed to implement the EFI community

conventions for forecast file formats, forecast metadata, and forecast archiving. This allows these

conventions to be implemented formally, as well as for the serialization of specific forecast

9

https://www.zotero.org/google-docs/?Sad7rt

output and metadata formats that adhere to this convention and the development of community

tools around those files.

Figure 1: EFI standards from the stage of the individual forecast to the synthesis of multiple

forecasts.

1.1 A Simple Example

In the following sections we lay out the current EFI community convention for forecast output

and metadata, the key design considerations underlying this convention, and the tools and

tutorials that have been developed to help researchers use this convention. In demonstrating the

application of this convention, we start by introducing a simple forecast that will be carried

10

through into later examples. We begin with a population forecast using the classic Lotka-Volterra

population growth model and only consider two interacting species (Volterra 1926). To make this

more realistic, and to be able to illustrate how the EFI convention works, we next run an

ensemble of predictions (a.k.a. Monte Carlo simulation) to account for three distinct

uncertainties in our forecast: initial condition uncertainty (i.e., starting population size), an

additive process error, and an observation error. To illustrate the ability of the output format to

accommodate spatial dimensions, we run the model at three depths in a water column. To keep

things as simple as possible we assume that the depths are not interacting and that the model

parameters (r, K, α), process error, and observation error only vary by species, not depth, and that

the model parameter and process and observation error variances are known without uncertainty.

Further, we also assume that there are no correlations in any of the uncertainties (initial

conditions, process error, observation error) across species or depths. Overall this gives a model

with a mean and variance for each of six initial conditions (2 species × 3 depths), two process

error variances, two observation error variances, and six parameters, all of which we assume to

have already been calibrated against data. The specific values assigned to each of these are

provided in a supplemental vignette (Appendix 1: http://rpubs.com/dietze/988117), which

illustrates the model simulation and the application of the EFI convention to the forecast output

and metadata in both R and Python. Figure 2 illustrates an example ensemble forecast for one of

the three depths.

11

https://www.zotero.org/google-docs/?scczHs

Figure 2: Example ensemble forecast (n=10 ensemble members) for two species at one depth.

The “true” latent state of each ensemble member is represented by the lines, while the

observation error is represented by the points.

2. Forecast Output Data Structures

2.1 Design Assumptions

In developing a convention for how to store ecological forecasts, three key features were

considered central to any design. First, as noted earlier, not only are forecasts quantitative and

12

specific, but they are also typically probabilistic and include a robust accounting of uncertainties.

Thus, capturing forecast uncertainties is an essential feature of any output storage format.

Furthermore, these uncertainties are often highly structured, with complex covariances across

space, time, and state variables that are important to preserve. Such covariances are important to

capture if one ever needs to aggregate (sum, integrate) forecasts over space or time, detect

changes in space or time, or calculate differences, as approaches that fail to account for these

covariances can be massively misleading (NASA Carbon Monitoring System Uncertainty

Working Group, written commun. 2022). Second, ecological forecasts frequently use Monte

Carlo methods to propagate uncertainties (i.e., using ensembles) so it was important to be able to

store individual ensemble members. Preserving ensembles greatly facilitates the correct handling

of covariances. Third, ecological forecast outputs are frequently high-dimensional (e.g.,

ensembles of multiple state variables through time and across multiple spatial locations) so it was

important that data be easy to organize, access, and process, by dimension.

In the sections below we first define the EFI forecast output convention in the abstract,

and then illustrate the application of this convention to the two file formats that EFI has currently

adopted: netCDF (Network Common Data Form) and CSV. (comma-separated values). netCDF

has the advantage of being self-documenting, more compact, and more flexible when working

with high-dimensional data (especially when not all variables have the same dimensions). CSV,

on the other hand, is more familiar to a broader audience, especially among non-academic end

users, but is more reliant on external metadata. That said, the convention is defined such that the

combination of output and metadata files allows the two file formats to be interconverted with no

13

loss of information. More broadly, the EFI convention is defined in general enough terms that it

is applicable to new and emerging file formats (e.g., parquet, zarr). Indeed ,netCDF has recently

extended its data model to support the zarr file format.

The EFI forecast output convention consists of four components, each described in a

subsection below: (1) global attributes used to track the provenance of the forecast, (2) the

dimensions of the forecast (e.g., time, space, uncertainty), (3) the output variables being forecast,

and (4) ancillary indicator variables that aid in interpreting output variables.

2.2 Global attributes

For “global attributes” the EFI convention provides up to four unique identifiers for any

forecast: a target_id identifying what the forecast is scored against; a model_name that can link

across multiple model versions; a model_version that connects all forecasts produced by a

specific version of a forecast model and workflow; and an iteration_id for that specific forecast

(Table 1). These elements are part of the EML metadata and the output file’s internal metadata

for the netCDF format, and are recommended as additional outer columns in the CSV format,

especially when forecasts are expected to be used in multimodel predictions or syntheses. The

hierarchical order of these variables reflects their potential use as additional outer dimensions in

such syntheses (i.e., a given target_id can be predicted by multiple models, a single model_name

can have multiple model_versions, a single model_version can be used make many forecasts with

unique iteration_ids).

14

Attribute Description

target_id (OPTIONAL) Unique identifier pointing to data or metadata about
what the forecast is being scored against

model_name Unique identifier for a forecasting project that can be used to link
across different model versions

model_version (RECOMMENDED) Unique identifier for a specific forecast
model/workflow version

iteration_id (OPTIONAL) Unique identifier for a specific forecast run. Important
to include in cases where a forecast might be rerun (e.g., real-time
forecast versus reanalysis)

Table 1: Global attributes (metadata) for netCDF forecast files. See Figure 3 for an example

application.

First, target_id, which is optional, is a unique identifier (e.g., Uniform Resource Location

[URL], Digital Object Identifier [DOI]) that links to data or metadata about what the forecast is

being scored against. The idea of the target_id is to facilitate intercomparison by being able to

definitively say that two (or more) different forecasts were trying to predict the same thing (e.g.,

in a forecasting challenge). For example, one of the NEON Ecological Forecasting Challenges

was to predict the Green Chromatic Coordinate (GCC) observed by phenological cameras at

Harvard Forest, Massachusetts; in this case, all of the forecasts would have the same target_id

corresponding to a URL to this dataset. As of January 2023 the EFI standard does not specify

requirements about what the target_id can validly point to (e.g., raw data versus standardized

machine-readable metadata describing a forecast’s ‘rules’), but this is an area of active

development.

15

The model_name is a unique identifier that links across different model versions.

Examples might include the name or acronym for a pre-existing process-based model, a project

code repository, URL, or a forecasting competition team name.

The model_version is a unique identifier for a specific version of a forecast model and

workflow. This identifier should update when the model is updated or when the underlying

forecast workflow is updated (e.g., model recalibration, switching sources for driver/covariate

data, adding additional data constraints, changes to observation operators). Specifically, results

from a single model_version can be considered as coming from the same system and thus are

comparable. That said, algorithms that learn iteratively over time (e.g., reinforcement learning or

including model parameters within iterative data assimilation) only require a new model_version

when the underlying algorithm is updated, not for every incremental update of the learning

process itself. EFI recommends issuing DOIs for different model/workflow versions, and thus

this is a natural choice for a model_version.

The iteration_id is a unique identifier for a specific forecast run (character string). The

datetime for the start of the forecast is generally most convenient, but it could be any alternative

system-specific identifier (e.g., database ID, content identifier) (Farrell et al. 2013, Boettiger and

Poelen 2021). That said, EFI recommends against issuing a DOI for an individual forecast, as

will be discussed in Section 4. In brief, DOIs are typically associated with persistent, unchanging

archives. For iterative forecasts, there are many reasons to archive batches of forecasts over a

16

https://www.zotero.org/google-docs/?HD4O7n
https://www.zotero.org/google-docs/?HD4O7n

specific period (e.g., one year) rather than to mint a new DOI every time a new forecast is issued

(e.g., daily) or to use a single DOI to reference a forecast record that is being updated iteratively.

If users need to store forecasts that come from different model_names, model_versions

and iteration_ids in the same file (e.g., for multi-model ensembles or forecast inter-comparisons)

then the set of attributes needed to identify a forecast within the file should be added as

additional dimensions ahead of the time dimension and should be entered in the order indicated

in Table 1 (i.e., with iteration_id as the innermost dimension that comes right before time (see

below)).

2.3 Dimensions

A core part of the EFI convention is the definition of variable dimensions (Table 2). Building

upon the Climate and Forecast (CF, http://cfconventions.org/) (Eaton et al. 2020) and

Cooperative Ocean/Atmosphere Research Data Service (COARDS 1995) conventions, the order

of dimensions for all file formats is T, Z, Y, X, U where T is time, Z, Y, and X are spatial

dimensions, and U represents forecast uncertainty (e.g., ensemble member or summary statistic).

Each row in the file thus represents a unique datetime, location, etc. That said, for any particular

application, not all dimensions may be required. For example, Tables 3 and 4 shows the top few

rows of the Lotka-Volterra example forecast (Section 1.1) written out in the ensemble CSV

format (Table 3) and probability distribution CSV format (Table 4) respectively. Because this

17

https://www.zotero.org/google-docs/?zfmMAf
https://www.zotero.org/google-docs/?k0wyXE

forecast is for a single location only time, depth, and uncertainty are required (X and Y would be

recorded in the metadata).

Dimension Description

reference_datetime ISO 8601 (ISO 2019) datetime the forecast starts from (a.k.a. issue
time); Only needed if more than one reference_datetime is stored in a
single file. Forecast lead time is thus datetime - reference_datetime. In
a hindcast the reference_datetime will be earlier than the time the
hindcast was actually produced (see pubDate in Section 3). Datetimes
are allowed to be earlier than the reference_datetime if a
reanalysis/reforecast is run before the start of the forecast period. This
variable was called start_time before v0.5 of the EFI standard.

datetime ISO 8601 (ISO 2019) datetime being predicted; follows CF convention
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coor
dinate. This variable was called time before v0.5 of the EFI
convention.

For time-integrated variables (e.g., cumulative net primary
productivity), one should specify the start_datetime and end_datetime
as two variables, instead of the single datetime. If this is not provided
the datetime is assumed to be the MIDPOINT of the integration
period.

depth or height No single standard name for the Z dimension. Where possible, CF
conventions for vertical dimension names and attributes
(https://cfconventions.org/cf-conventions/cf-conventions.html#vertical
-coordinate) should be used.

lon or X Longitude (units = "degrees_east") is the default spatial coordinate.
The alternative use of Y, X for spatial coordinates should conform to
the CF convention and requires additional metadata about grids and
projections.

lat or Y Latitude (degrees_north)

site_id For forecasts that are not on a spatial grid, use of a site dimension that
maps to a more detailed geometry (points, polygons, etc.) is allowable.
In general this would be documented in the external metadata (e.g., a
look-up table that provides lon and lat); however in netCDF this could
be handled by the CF Discrete Sampling Geometry data model.

18

https://www.zotero.org/google-docs/?4GOdXR
https://www.zotero.org/google-docs/?8rOg1j
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coordinate
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coordinate
https://cfconventions.org/cf-conventions/cf-conventions.html#vertical-coordinate
https://cfconventions.org/cf-conventions/cf-conventions.html#vertical-coordinate

family For ensembles: “ensemble.” Default value if unspecified

For probability distributions: Name of the statistical distribution
associated with the reported statistics. The “sample” distribution is
synonymous with “ensemble.”

For summary statistics: “summary.”

If this dimension does not vary, it is permissible to specify family as a
variable attribute if the file format being used supports this (e.g.,
netCDF).

parameter REQUIRED

For ensembles: Integers 1 to Ne (Ne = total size of ensemble) Note: for
backward compatibility this can alternatively be named “ensemble”
but this is planned to be deprecated in future versions.

For named distributions: parameter/statistic being specified (e.g.,
mean, standard deviation)

obs_flag Flag indicating whether observation error has been included in the
prediction. Only REQUIRED if forecasting both the latent and
observed state.

Table 2: Ecological forecast dimensions in the order that should be used to specify variables

(time, space, uncertainty). The only required dimension is parameter; other dimensions can be

dropped if they only have a single value and that value is clearly documented in the metadata.

Global attributes (Table 1) can also optionally be used as outer dimensions if needed.

reference_
datetime
<date>

datetime
<date>

depth
<dbl>

family
<chr>

parameter
<int>

obs_flag
<int>

variable
<chr>

prediction
<dbl>

2001-03-04 2001-03-05 1.0 sample 1 1 species_1 0.983

2001-03-04 2001-03-05 1.0 sample 1 1 species_2 1.946

2001-03-04 2001-03-05 3.0 sample 1 1 species_1 0.972

2001-03-04 2001-03-05 3.0 sample 1 1 species_2 1.948

2001-03-04 2001-03-05 5.0 sample 1 1 species_1 0.985

2001-03-04 2001-03-05 5.0 sample 1 1 species_2 1.954

19

2001-03-04 2001-03-05 1.0 sample 2 1 species_1 0.974

2001-03-04 2001-03-05 1.0 sample 2 1 species_2 1.950

2001-03-04 2001-03-05 3.0 sample 2 1 species_1 0.956

2001-03-04 2001-03-05 3.0 sample 2 1 species_2 1.956

2001-03-04 2001-03-05 5.0 sample 2 1 species_1 0.958

2001-03-04 2001-03-05 5.0 sample 2 1 species_2 1.957

Table 3: Ensemble CSV format for Lotka-Volterra example (Section 1.1), where parameter

designates ensemble number. Only 12 of 3600 rows are shown.

reference_
datetime
<date>

datetime
<date>

depth
<dbl>

family
<chr>

parameter
<chr>

obs_flag
<int>

variable
<chr>

prediction
<dbl>

2001-03-04 2001-03-04 1.0 normal mu 1 species_1 0.756

2001-03-04 2001-03-04 1.0 normal sigma 1 species_1 0.174

2001-03-04 2001-03-04 1.0 normal mu 1 species_2 0.250

2001-03-04 2001-03-04 1.0 normal sigma 1 species_2 0.013

2001-03-04 2001-03-04 1.0 normal mu 2 species_1 0.756

2001-03-04 2001-03-04 1.0 normal sigma 2 species_1 0.174

2001-03-04 2001-03-04 1.0 normal mu 2 species_2 0.250

2001-03-04 2001-03-04 1.0 normal sigma 2 species_2 0.013

2001-03-04 2001-03-04 3.0 normal mu 1 species_1 0.982

2001-03-04 2001-03-04 3.0 normal sigma 1 species_1 0.347

Table 4: Lotka-Volterra example forecast (Section 1.1) written in distributional CSV format with

a Normal distribution family. The “summary” format, which does not imply a distributional

assumption, would be analogous to this but with family = “summary” and parameters “mean”

and “sd” (See Table S2). Only 10 of 720 rows shown.

Time:

20

In the EFI convention, datetimes are specified in International Organization for Standardization

(ISO) 8601 format, YYYY-MM-DDThh:mm:ssZ (ISO 2019). The T is the ISO standard

delimiter between date and time. The trailing Z indicates that Coordinated Universal Time

(UTC) is the default time zone, but alternate time zones can be specified as offsets after the time

(e.g., -05:00 for Eastern Standard) in place of the Z (i.e., Z indicates zero offset). Within ISO

8601, date and time terms can be omitted from right to left to express reduced accuracy; for

example, May 2020 would just be 2020-05. Note also, that within netCDF files the convention is

to express the time dimension relative to a user-specified origin (e.g., days since 2020-01-01), in

which case the origin should be in ISO standard and the time increments since the origin are in

UDUNITS (see 2.4 Forecasted Variables below). The ISO standard also allows the specification

of weeks and day-of-week as an alternative to months and day-of-month by using the W prefix

(e.g., 2022-W02-03 specifies the third day of the second week of the year). ISO weeks start on

Mondays and week 01 is the week with the first Thursday of the year in it.

Unlike typical time-series data, forecasts have two time dimensions – the

reference_datetime from which a forecast starts and the datetime being predicted. In particular,

iterative forecasts will frequently make many predictions for a specific datetime that were issued

at different lead times. To clarify, reference_datetime is essentially the t=0 in the forecast model,

and the horizon of a forecast is the difference between datetime and reference_datetime. For a

“true” forecast, the forecast publication time (a.k.a. issue time, see pubDate in Section 3) should

be close to the reference_datetime, with the difference being the latency associated with running

and posting the forecast. For a hindcast or reforecast, the reference_datetime can be much earlier

21

https://www.zotero.org/google-docs/?hREkkp

than the pubDate. In practice, forecasts issued at different dates or times are usually stored in

separate files, and thus the datetime dimension is the time being predicted. If multiple forecasts

are placed within a single file, then the reference_datatime is the first time dimension and then

the datetime being predicted is the second. Furthermore, for time-integrated variables (i.e.,

variables that represent a mean or cumulative over some time period rather than an instantaneous

observation) the datetime dimension should explicitly be split into a start_datetime and

end_datetime rather than relying on potentially ambiguous (and less machine parsable) implicit

definitions within variable descriptions. Finally, the specific names reference_datetime, datetime,

start_datetime, and end_datetime were selected to be interoperable with the SpatioTemporal

Asset Catalogue [STAC] forecasting extension (https://github.com/stac-extensions/forecast).

Space:

The spatial dimensions are developed with the default assumption that the spatial domain is

regular (e.g., on a grid). Following CF convention, the X,Y coordinate is given in longitude and

latitude using lon and lat as standard names and UDUNITS compliant units (e.g., decimal

degrees). Other spatial projections are also possible, but should conform to the CF convention

(https://cfconventions.org/cf-conventions/cf-conventions.html#grid-mappings-and-projections).

If spatial dimensions are lat-lon, the convention assumes EPSG:4326. If spatial dimensions are

given as X-Y, a CF-compliant coordinate grid specification is required. For other geometries

(e.g., non-contiguous points, vector polygons) a site_id dimension is used to map identifiers to a

set of attributes or look-up table with more detailed geometry information (the CF convention

refers to this as a Discrete Sampling Geometry,

22

https://cfconventions.org/cf-conventions/cf-conventions.html#grid-mappings-and-projections

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#discrete-

sampling-geometries). For example, if one were to use netCDF to store forecasts of leaf area

index (LAI) across NEON sites, LAI might have dimensions LAI[datetime,site_id] while there

would also be variables lon[site_id] and lat[site_id] storing the location of the NEON sites.

Similarly, using additional dimensions to indicate nested hierarchical designs (e.g., plots within

sites) is recommended (but not required), but users should document these dimensions in the

metadata and order dimensions from coarsest to finest (e.g., LAI[datetime,site_id, plot_id,

subplot_id]).

The vertical dimension should be indicated as height or depth. Units of height should be

documented in the metadata and should be UDUNITS compliant, with meters being the preferred

international system of units (SI) standard

(https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#vertical

-coordinate). Per CF convention, metadata should document the attribute of whether the positive

direction is up or down. If any of the spatial dimensions require the specification of a datum,

projection, or reference height, this should be documented in the metadata. Finally, spatial

dimensions are optional in the output file if they only include one value (e.g., forecasts at a single

site or forecasts where predictions do not change with height/depth) because this information is

required in the metadata.

Uncertainty:

The uncertainty dimension is a key focus and key feature of the EFI convention, which is

designed around archiving probabilistic forecasts. The most common case for this is the

23

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#discrete-sampling-geometries
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#discrete-sampling-geometries

prediction of a continuous response variable (e.g., biomass) where the probability is represented

using a probability density function (pdf). Although we earlier presented U as a single

dimension, in practice information about this uncertainty is encoded through three variables:

family, parameter, and obs_flag, although in many cases only parameter is required. To

understand what these variables mean and how to use them, consider two alternative ways of

representing uncertainty: (a) using parameters to describe a probability distribution, e.g., N(𝜇,𝜎2),

or (b) using random samples from these predictive distributions (a.k.a. ensemble members), such

as when using Monte Carlo methods (e.g., Markov Chain Monte Carlo [MCMC], sequential

Monte Carlo [SMC], bootstrapping). A specific example of this is the Lotka-Volterra case study

(Section 1.1), which provided stochastic, ensemble-based predictions of two species at three

depths that accounted for uncertainty in initial conditions and process error. Examples of how to

apply the EFI convention to store this case study in netCDF and CSV formats are provided in

Section 2.6 following this conceptual explanation of the convention.

If Monte Carlo methods are used to make a forecast, then preserving the ensemble

members themselves (option b) is strongly preferred over distributional parameters (option a)

because just saving summary statistics results in a loss of information (e.g., shapes of

distributions). This is particularly true for handling the covariances across state variables,

locations, and times, which are often substantial. When working with ensembles, the family

variable should be set to “ensemble,” in which case the parameter dimension is just an indexing

variable for the ensemble members (e.g., 1…Ne). For example, in our Lotka-Volterra case study

Ne = 10, so when written out in netCDF the forecast for each species would have a parameter

24

dimension of length 10, while in CSV a parameter column would specify, for each row in the

output, which ensemble member it belonged to. When working with very large ensembles (e.g.,

MCMC output) thinning output is acceptable to keep file sizes manageable, though care should

be taken to maintain an adequate effective sample size (e.g., Ne=5000, depending on the specific

forecast problem). To maintain compatibility with CF, and backwards compatibility with earlier

versions of the EFI draft standard, it is currently acceptable to use ensemble as a synonym for

parameter when using ensemble-based approaches. Likewise, “ensemble” is the default family,

meaning that a forecast that is only using ensemble-based methods has the option of dropping the

family dimension.

If one is making probabilistic forecasts where the output is explicitly or implicitly a

named probability distribution (option a), then the family variable should be set to the name of

that distribution. Within the EFI convention we adopt the distributional naming convention for

probability distributions adopted by the fable project (https://fable.tidyverts.org/) (O’Hara-Wild

et al. 2021). Likewise, the column name family was adopted to increase interoperability with

fable. For a given choice of distributional family, the parameters dimension is used to encode

specific parameter values for that distribution, such as the normal mean (mu) and standard

deviation (sigma). For example, if we had analytically propagated uncertainty in our

Lotka-Volterra case study using a Normal distribution then the netCDF forecast for each species

would have a family dimension of length 1 to specify the distribution assumed (normal in this

case) and a parameter dimension storing that distributions parameters (e.g., length 2 for mu and

sigma). In CSV the same forecast would have both family and parameter columns and would

25

https://www.zotero.org/google-docs/?tOTll0
https://www.zotero.org/google-docs/?tOTll0

require two rows to specify each prediction (e.g., one specifying normal, mu and the other

specifying normal, sigma). To enter the covariance between two variables (e.g., in the

multivariate_normal) enter cov as the parameter and use a hyphen as the delimiter between the

two variable names. It is worth noting that parameter is the only required dimension in the EFI

convention. For other dimensions it is acceptable to drop a dimension if it only has a single value

that is documented in the metadata (e.g., single location, single time, default “ensemble” family).

Supplementary Table S1 lists the current distributional families and parameters.

Probabilistic forecasting approaches that do not involve either ensembles or probability

distributions can use the “summary” family and the values in Table S2 as parameters. Forecasts

that produce a single realization (e.g., a predicted probability of occurrence, or a model run

without any uncertainty propagation) have two alternatives. The preferred option is to set the

ensemble size to 1. The other option is to use a distribution that produces a point estimate (e.g.,

Normal with standard deviation of 0) or the summary family with just a mean. In either case

retaining the parameter dimension is important to ensure consistent processing of files by end

users and standardized tools.

The final uncertainty dimension is obs_flag, the observation error flag, which is an

indicator variable that records whether observation error had been included in the forecast. The

default is to assume that the observation error is present (i.e., the ensemble quantiles would

produce a predictive interval). If all forecast variables include observation error, then this flag is

optional. By contrast, this flag is REQUIRED if a file includes a mix of confidence and

26

predictive intervals (i.e., latent and observable variables) as otherwise the same variable name

would exists in both confidence and predictive interval forms. Indeed, if the file format allows it

(e.g., netCDF), variables in a file can vary in whether they have an obs_flag dimension or not.

Furthermore, when required, the first slot should store the latent state (confidence interval)

because models that produce latent states tend to be able to do so for all variables, while

observation error may only need to be added to a subset of variables for comparison to data.

Because a model could theoretically be compared to multiple sensors that ostensibly measure the

same thing, but with different error characteristics, an obs_flag dimension can have a length >2.

If this is the case, the file metadata should clearly describe the different observation error cases.

2.4 Forecasted Variables

The third part of the EFI output convention concerns the names and units of the output variables

being forecasted. We use the Climate and Forecast (CF) convention for constructing variable

names and units (Eaton et al. 2020). CF names should be composed of letters, digits, and

underscores and it is recommended that names not be distinguished by uppercase or lowercase

(i.e., if case is dropped, names should not be the same). CF names are typically written in

lowercase with underscore separating words (e.g., net_primary_productivity). Note also that

hyphens are prohibited within variable names because the convention uses hyphens as the

delimiter when specifying covariances.

27

https://www.zotero.org/google-docs/?JAqeDm

Any variable units within the data file should be SI and formatted to be machine-parsable

by the UDUNITS library (https://www.unidata.ucar.edu/software/udunits/) (e.g., kg m-2). On a

practical basis, we recommend using functions such as R’s units::ud_are_convertible to verify

units are correctly formatted (Pebesma et al. 2022).

As will be described in Section 2.6, the formatting of the output data itself is handled

slightly differently between the netCDF and CSV formats. netCDF allows each variable to be its

own object within the file, whereas in CSV output variables are stored in a long format, with

column names for variable, and prediction coming immediately after the previously discussed

dimension columns.

2.5 Ancillary Indicator Variables

In addition to the forecasted variables, the EFI convention also defines four other standard

variables: a required forecast flag, a recommended data_assimilation flag, an optional data

assimilation quality control flag (da_qc), and an optional ensemble log_weight (Table 5).

Variable Description

data_assimilation [RECOMMENDED] Did data assimilation occur (1) or not (0) at that
time step, location, etc.

da_qc [OPTIONAL] Was the data assimilation successful (0) or not (1 or error
code)

forecast [OPTIONAL] Was this timestep a forecast (1) or a hindcast (0)

28

https://www.unidata.ucar.edu/software/udunits/
https://www.zotero.org/google-docs/?xQNsIQ

log_weight [OPTIONAL] Weight assigned to each ensemble member, natural log
scale

Table 5: Additional ecological forecast netCDF variables (beyond the forecast variables

themselves).

Similar to the forecast flag, data_assimilation is a boolean flag that records whether (1)

or not (0) observational data were used to constrain the system state or parameters at that point in

time. If the same time point exists twice, once without data assimilation (data_assimilation = 0)

and the other with data_assimilation = 1, the former is assumed to be the Forecast step, and the

latter is assumed to be the Analysis step within the Forecast-Analysis cycle (Dietze 2017a).

Closely related to this is the optional data assimilation quality flag, da_qc, which records quality

control information about a given assimilation step: 0 is used to encode success; 1 is used to

indicate a general error; and positive integers greater than 1 are used to indicate system-specific

failures documented in the metadata. Like the forecast flag, data_assimilation and da_qc will

typically have a time dimension.

The final variable, log_weight, is used to record any weights assigned to each ensemble

member. This optional variable is primarily used in data assimilation algorithms that iteratively

weight the different ensemble members (e.g., particle filters). Weights are stored on a natural log

(ln) scale to reduce numerical round-off issues. To allow for greater flexibility in algorithms, a

sum-to-one constraint is not required (e.g., users may choose to record underlying scores, such as

logLikelihoods). Because of this end users should note that sum-to-one normalization will need

29

https://www.zotero.org/google-docs/?vmLSlJ

to be applied to perform analyses with weights. Those storing raw scores as their weights are

strongly encouraged to document the meaning of such scores in their metadata.

2.6 File Formats

2.6.1 netCDF

netCDF is a set of self-documenting, machine-independent data formats. It is particularly well

suited for storing large and higher-dimensional data and for situations when different parts of a

data set have different dimensions (e.g., mix of vectors, matrices, and high-dimensional arrays).

Although less familiar to many ecologists, netCDF is commonly used in the physical

environmental sciences (e.g., ObsPack format for greenhouse gas measurements (Masarie et al.

2014)) and by the ecological modeling community. This format has a long history (started in

1998), is well supported by common programming languages (e.g., R, Python), and tools for

archiving, manipulating, and visualizing netCDF are well established (e.g., CDO, ncview,

panoply, THREDDS/OpenDAP). For these reasons netCDF was selected as the preferred file

format for archiving ecological forecasts.

A netCDF file consists of three parts (Hassell et al. 2017): dimensions, which describe

the size of variables (e.g., 5 depths, 20 time points); variables, which store data of different

dimensions; and attributes providing additional arbitrary metadata corresponding to either the

entire file (global attributes; Section 2.2) or specific variables (variable attributes; e.g.,

description, units, sign conventions, fill values for invalid/missing data) (Figure 3).

30

https://www.zotero.org/google-docs/?3KCZdC
https://www.zotero.org/google-docs/?3KCZdC
https://www.zotero.org/google-docs/?y9dlkn

Most of the variables in a netCDF file should be the forecasted systems states, pools, and

fluxes. Unlike the CSV format, where all the data are in one large table, netCDF files store each

forecasted quantity in a dedicated variable, and different variables can have different labelled

dimensions (“coordinates”) (Figure 3). For example, one might forecast

net_primary_productivity with dimensions [datetime, lon, lat, parameter], and in the same file

have a forecast of mass_content_of_water_in_soil_layer with dimensions [datetime, depth, lon,

lat, parameter]. In each of these cases, the dimension corresponds to the integer size of a

particular axis and is paired with a dedicated 1-dimensional coordinate variable of the same size

that provides the labels along that dimension. In the net_primary_productivity above, if the

forecast is hourly over 3 days, then the datetime dimension has an integer value of 24 × 3 = 72

and is accompanied by a dedicated variable called datetime that is a 1-dimensional vector of

length 72 containing the actual timesteps. As noted earlier, dimensions should follow the EFI

convention names and order. If one is using a site dimension for the variables (e.g., if forecast

locations are for a collection of points that are not on a grid), then following the NetCDF

Discrete Sampling Geometry data model, the spatial locations of the sites should be defined as

additional 1-dimensional vectors with corresponding site dimensions (e.g., lat[site], lon[site]).

netcdf logistic-forecast-ensemble-multi-variable-space-long {
dimensions:

datetime = 30 ;
depth = 3 ;
parameter = 10 ;
obs_flag = 2 ;

variables:
double datetime(datetime) ;

31

datetime:units = "days since 2001-03-04" ;
datetime:long_name = "datetime" ;

double depth(depth) ;
depth:units = "meters" ;
depth:long_name = "Depth from surface" ;

int parameter(parameter) ;
parameter:long_name = "ensemble member" ;

int obs_flag(obs_flag) ;
obs_flag:long_name = "observation error flag" ;

float species_1(datetime, depth, parameter, obs_flag) ;
species_1:units = "number of individuals" ;
species_1:long_name = "<scientific name of species 1>" ;

float species_2(datetime, depth, parameter, obs_flag) ;
species_2:units = "number of individuals" ;
species_2:long_name = "<scientific name of species 2>" ;

float data_assimilation(datetime) ;
data_assimilation:units = "integer" ;
data_assimilation:long_name = "EFI standard data assimilation code" ;

// global attributes:
:model_name = "LogisticDemo" ;
:model_version = "v0.5" ;
:iteration_id = "20010304T060000" ;

}

Figure 3: netCDF header for our example forecast (Section 1.1), illustrating how dimensions,

variables, and attributes are structured.

2.6.2 CSV

The CSV format is less efficient than netCDF (in terms of file size, data access performance, and

flexibility of data extraction/manipulation) and is much more reliant on external metadata for

information like variable name explanations and units. That said, provided the same numerical

precision is used and metadata provided (Section 3), CSV can preserve the same information

content as the netCDF. We anticipate the CSV format to be most useful: (1) for simple,

32

low-dimensional forecasts; (2) when forecast producers are unaccustomed to netCDF; or (3) as a

conversion format from netCDF when forecast user communities are unaccustomed to netCDF.

Unless otherwise noted, the CSV format begins with the dimensions in the standard order

and naming (Table 2). Forecast outputs are then stored in a long format using the standard

column names variable and prediction. The variable column will typically be character based,

storing the CF-compliant variable names. The prediction column stores the numeric predictions

for each variable, with the specific meaning dependent on how the family and parameter

columns were specified (e.g., consecutive rows might be individual ensemble members or the

parameters describing a specific probability distributions). The ancillary indicator variables

(forecast, data_assimilation, da_qc, log_weight; Table 5) will be entered as additional columns

after variable and prediction. This long format has the advantages of being easy to filter, sort,

summarize, and append new rows onto, and is relatively compact if a lot of data are missing. The

examples below illustrate how to write out our Lotka-Volterra case study (Section 1.1) in CSV

format. The first example (Table 3) assumes an ensemble-based forecast with dimensions of

datetime, depth, parameter, and obs_flag and the additional variables of forecast and

data_assimilation. This file contains the same information with the same dimensions as the

earlier netCDF example (Figure 3). The second example (Table 4) is the same forecast done

using a distribution-based parameterization, assuming a Normal error distribution.

33

3. Forecast Dataset Metadata

Summary and Design Assumptions

Although the EFI output file convention provides data format metadata, it does not by itself

provide sufficient metadata on the forecast dataset itself to be able to understand how a forecast

was generated or what assumptions and uncertainties are included in the forecast. Therefore, EFI

has also developed a forecast dataset metadata convention (referred to as the “EFI metadata

convention” below) to help set community expectations about what information needs to be

archived about forecasts and to do so in a standard, interoperable format. In developing the EFI

metadata convention, we tried to balance two competing demands: usability versus synthesis.

On the usability side, the EFI metadata convention was developed with a focus on

simplicity and usability. In an ideal world, it would be useful to have a lot of detailed information

about a forecast, the underlying model used to make the forecast, and the workflow the forecast

model is embedded in. However, such a convention would not be used in practice if this required

a lot of additional work. The EFI convention aims to balance the metadata needs specific to

forecasting against the practical aim of producing a standard that forecast producers will adhere

to and forecast users will reference. Because a metadata format already in wide use by the

ecological community is desirable for its utility and familiarity, we selected the Ecological

Metadata Language (EML; https://eml.ecoinformatics.org/) as our base (Fegraus et al. 2005).

EML is an XML-based metadata standard that has a long development history in ecology and is

34

https://www.zotero.org/google-docs/?3R2cB1

interconvertible with many other standards. EML also has the built-in extensibility, using the

additionalMetadata space within the EML schema (https://eml.ecoinformatics.org/schema), that

allows us to add forecast-specific information while continuing to produce valid and

interoperable EML. That said, like with the output standard, the EFI metadata convention is

potentially extensible to other metadata standards (e.g., ISO 19115, SpatioTemporal Asset

Catalogue [STAC]).

On the synthesis side, a key goal of the EFI metadata convention was to address the

needs of users working with multiple forecasts for different systems, and in particular to support

those working on across-forecast syntheses and analyzes. In discussions with EFI’s Theory

working group, key needs that emerged were: (1) the importance of recording the different

sources of uncertainty that were considered in a forecast and how they were propagated; (2) a

way of having simple proxies for the complexity of a model (e.g., number of parameters, number

of covariates/drivers), and (3) a need to set some base EML variables as required for a forecast

that might otherwise be optional. The specifics of how to use base EML to document a forecast,

and which variables are required, are provided in Supplement 1.

In many ways the metadata about forecast outputs shares many of the same

characteristics as any other dataset, where documentation is needed for information like file

format, variables, spatial and temporal resolution and extent, and provenance. However, forecast

outputs have additional characteristics that separate them from observational data, as well as a

35

few features that separate forecasts from most model outputs (e.g., for forecasts that are made

repeatedly, it is not uncommon to make multiple different predictions for the same day that vary

in the day the forecast was issued). To store this forecast-specific metadata we leverage the

extensibility of the EML standard using the “additionalMetadata” field (Figure 4). Many of the

added elements are conceptually straightforward and provide information about forecast time

step, global attributes (Table 1), and modeling approaches (see Supplement 2 for definitions of

these EML elements). That said, one of the most important and novel contributions of the EFI

metadata convention is a formalization of how we describe and account for the different

uncertainties that are included in any particular forecast and how they relate to model structure,

which is described in the following section.

<?xml version="1.0" encoding="UTF-8"?>
<eml:eml>
<dataset>

<title>
<pubDate>
<intellectualRights>
….

</dataset>
<additionalMetadata>

….
</additionalMetadata>

</eml:eml>

Figure 4: Example high-level structure of an EML file.

3.1 Forecast uncertainty

Knowing how a forecasting approach handles different uncertainties is a critical part of

its high-level structure, and is important to be able to interpret a forecast and fairly compare

36

among different forecasts. For example, if a forecast that considers more uncertainties has a

wider predictive interval, that does not necessarily mean it is doing “worse” than a model that

considers fewer uncertainties. Indeed, forecasts that consider fewer uncertainties are more likely

to be (falsely) overconfident.

Following the classification presented by (Dietze 2017b, 2017a), we assume the following

general forecasting model, f

Eqn. 1𝑍
𝑡
 ∼ 𝑔(𝑌

𝑡
|φ)

𝑌
𝑡

= 𝑓(𝑌
𝑡−1

, 𝑋
𝑡
 | θ + α

𝑡
) + ε

𝑡

Where:

● Y is the vector of the unobserved “true” latent state of the variables being predicted,

● Z are observed/observable values of the variables of interest,

● g is a probability distribution with parameters that accounts for observation errors on Yφ

and observation processes, including “observation operators” (i.e., any transformation

between the observed state and the latent state),

● X are any drivers, covariates, or exogenous scenarios,

● are the model’s parameters,θ

● describes the unexplained variability in model parameters (e.g., random effects),α

● is the process error, andε

● t is the dimension being forecasted along (typically time, but could also be space,

phylogenetic distance, community similarity distance, network distance, etc.).

37

https://www.zotero.org/google-docs/?yksPhc

This framework is based on the long-established and frequently used structure of Hidden Markov

models (a.k.a. state space models), which often include all of the terms described above, as well

as that of iterative data assimilation algorithms (e.g., Kalman Filters, Particle Filters, variational

data assimilation), which are widely used in ecological forecasting and represent special cases of

Hidden Markov models (Wikle and Berliner 2007, Auger-Méthé et al. 2021). That said, for any

particular forecast any of the above terms may be absent. For example, in a simple linear model

the function f does not include , , or , leaving just , and all residual error is𝑌
𝑡−1

α
𝑡

ε
𝑡

𝑌
𝑡

= 𝑓(𝑋
𝑡
 | θ)

assumed to be Gaussian observation error, . Generalized linear models and 𝑔(𝑌
𝑡
|φ) = 𝑁(𝑌

𝑡
, σ2)

a wide range of machine learning algorithms have essentially the same high-level structure as

linear models but a more flexible choice of observation error / cost function (and in the case of

machine learning, a more flexible representation of f), whereas generalized linear mixed models

and generalized additive models are the same but add back in random effects, . Classicα
𝑡

timeseries forecasts (e.g., autoregressive integrated moving average [ARIMA] models) and

recurrent neural networks (RNN) would include previous Y’s but typically not , , or𝑋
𝑡

α
𝑡

ε
𝑡

giving . Note that the framework above easily generalizes to continuous-time𝑌
𝑡

= 𝑓(𝑌
𝑡−1

 | θ)

forecasts, but does assume that model outputs are stored at specific discrete times.

Given this framework, there are six REQUIRED elements that are used to provide basic

information about model structure and how the forecast handles different uncertainties, although

in any particular application this element may simply be used to indicate that a specific term is

absent from that model (Table 6).

38

https://www.zotero.org/google-docs/?RhriFY

Tag Description

<initial_conditions> Uncertainty in the initialization of state variables (Y). Initial
condition uncertainty will be a common feature of any dynamic model,
where the future state depends on the current state, such as population
models, process-based biogeochemical pool & flux models, and classic
time-series analysis. For time series models with multiple lags or
dynamic models with memory, the initial conditions may cover multiple
timepoints. Initial condition uncertainty will be absent from many
statistical and machine learning models. Initial condition uncertainty
might be directly informed by field data, indirectly inferred from other
proxies (e.g., remote sensing), sampled from some (informed or
uninformed) prior distribution, or “spun up” through model simulation.
When spun up, initial condition uncertainty may have strong
interactions with the other uncertainties below.

<drivers> Uncertainty in model drivers, covariates, and exogenous scenarios
(X). Driver/covariate uncertainties may come directly from a data
product, as a reported error estimate or through driver ensembles, or
may be estimated based on sampling theory, calibration/validation
documents, or some other source. In most of these cases these
uncertainties are thought about probabilistically. When making
projections, driver uncertainty may also be associated with scenarios or
decision alternatives. These alternative drivers are not themselves
probabilistic (they do not have weights or probabilities) and forecast
outputs are conditional on a specific alternative scenario. Examples
include climate scenarios or treatments associated with system inputs
(irrigation, fertilization, etc).

<parameters> Uncertainty in model parameters (). For most ecological processesθ
the parameters (a.k.a. coefficients) in model equations are not physical
constants but need to be estimated from data. Because parameters are
estimated from data, uncertainty will be associated with them.
Parameter uncertainty is usually conditional on model structure and may
be estimated directly from data (e.g., ecological traits) or indirectly
(e.g., optimization or Bayesian calibration) by comparing model outputs
to observations. Parameter uncertainty tends to decline asymptotically
with sample size.

<random_effects> Unexplained variability and heterogeneity in model parameters ().α
Hierarchical models, random effect models, and meta transfer learning
approaches all attempt to acknowledge that the ‘best’ model parameters
may change across space, time, individual, or other measurement unit.

39

This variability can be estimated and partitioned into different sources
but is (as of yet) not explained within the model’s internal structure.
Unlike parameter uncertainty, this variability in parameters does not
decline with sample size. Example: variability/heterogeneity in
ecological traits such as carbon-to-nitrogen ratios.

<obs_error> Uncertainty in the observations of the output variables (g). Note that
many statistical modeling approaches do not formally partition errors in
observations from errors in the modeling process, but simply lump these
into a residual error. We make the pragmatic distinction that errors that
do not directly propagate into the future be recorded as observation
errors. Observation errors now may indeed affect the initial condition
uncertainty in the next forecast, but we consider this to be indirect.

<process_error> Dynamic uncertainty in the process model () attributable to bothε
model misspecification (a.k.a. structural error) and stochasticity.
Pragmatically, this is the portion of the residual error from one timestep
to the next that is not attributable to any of the other uncertainties listed
above, and which typically propagates into the future. Philosophically,
process error (as defined here) convolves uncertainty that is part of the
natural process itself (i.e., stochasticity), human ignorance about the
true process (e.g., model structure), and errors associated with
numerical approximation. Deconvolving these is both pragmatically and
philosophically very challenging, but teams wishing to do so can
alternatively use the <stochastic_error> and <structural_error> elements
instead of the <process_error> tag.

<stochastic_error> [OPTIONAL] irreducible uncertainty that is associated with
natural stochastic processes (e.g., demographic stochasticity,
disturbance)

<structural_error> [OPTIONAL] uncertainty associated with human ignorance about
the true process (e.g., model structure) and numerical
approximations.

Table 6: Uncertainty classes

Every element in Table 6 needs to be reported at least once, even if the metadata simply

states that a specific term is absent from the model, or that the term is present but the forecast

does not consider any uncertainty. Figure 5 provides an example of the EML uncertainty

40

elements for our Lotka-Volterra case study (Section 1.1), which is a simple dynamic model that

predicts two state variables using six parameters, no random effects, no drivers/covariates, and

both observation and process error. Each uncertainty class has the same basic structure for its

component subelements (although some have some special cases described below).

<initial_conditions>
<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>2</complexity>
<propagation>

<type>ensemble</type>
<size>10</size>

</propagation>
</initial_conditions>
<drivers>

<present>FALSE</present>
</drivers>
<parameters>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>6</complexity>

</parameters>
<random_effects>

<present>FALSE</present>
</random_effects>
<obs_error>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>1</complexity>
<covariance>FALSE</covariance>

<obs_error>
<process_error>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>1</complexity>
<covariance>FALSE</covariance>
<propagation>

<type>ensemble</type>
<size>10</size>

41

</propagation>
</process_error>

Figure 5: Example Extensible Markup Language (XML) for the uncertainty classes

An uncertainty element (Table 6) can be repeated if different terms within the forecasting

process have different subelements. For example, a model may have one subset of <drivers> that

are data-driven and propagate uncertainty (e.g., weather forecast) and another subset that are

scenario-based. Similarly, a process-based model may have one subset of <parameters> that are

fixed constants, another subset that are calibrated a priori, and a third subset that are dynamically

updated via data assimilation.

<present> subelement [REQUIRED]

Within each uncertainty class, the <present> subelement contains a boolean value

(TRUE/FALSE) that is used to indicate whether the model contains this concept. For example, a

model might have parameters (TRUE) but not random effects (FALSE). Similarly, a

regression-style model would not have an initial condition because the predicted state, Y, does

not depend on the current state. If a concept is absent from the model, the forecast cannot

consider uncertainty associated with it and thus none of the other uncertainty elements below

should be included.

<data_driven> subelement [REQUIRED if present = TRUE]

Similar to <present>, <data_driven> is a boolean (TRUE/FALSE) element used to indicate

whether or not a specific input was derived from data (e.g., calibrated model parameters, a single

time series of observed meteorological driver data). For sake of internal consistency, quantitative

42

forecasts of other variables that are used as inputs into ecological forecasts (e.g., weather

forecasts) should be treated as data but scenarios should not. Other examples of non-data-driven

inputs include spin-up initial conditions and hand-tuned or theoretical parameters.

<complexity> subelement [RECOMMENDED if present = TRUE]

Within each uncertainty class, the “complexity” subelement is a positive integer used to help

classify the complexity of different modeling approaches in a simple, understandable way.

Specifically, this element should list the size/dimension of each uncertainty class at a single

location. For example, a forecast that takes in one initial condition for each of 500 grid cells

would still have a complexity of 1.

● initial_conditions: number of state variables in the model. Examples of this would be the

number of species in a community model, number of age/size classes in a population

model, or number of pools in a biogeochemical model.

● drivers: number of different driver variables or covariates in a model. For example, in a

multiple regression this would be the number of X’s. For a climate-driven model, this

would be the number of climate inputs (temperature, precipitation, solar radiation, etc.).

● parameters: number of estimated parameters/coefficients in a model at a single point in

space/time. For example, in a regression it would be the number of slopes and intercepts.

This number can be non-integer for methods that estimate an effective number of

parameters (e.g., generalized additive models [GAMs], hierarchical models).

43

● random_effects: number of random effect terms, which should be equivalent to the

number of random effect variances estimated. For example, if you had a hierarchical

univariate regression with a random intercept you would have two parameters (slope and

intercept) and one random effect (intercept). As of 2023, the convention does not record

the number of distinct observation units that the model was calibrated from. So, in our

random intercept regression example, if this model was fit at 50 sites to be able to

estimate the random intercept variance, that would affect the uncertainty about the mean

and variance but that ‘50’ would not be part of the complexity dimensions.

● obs_error, process_error: dimension of the error covariance matrix. For example, if we

had a n x n covariance matrix, n is the value entered for <complexity>. Typically, n

should match the dimensionality of the initial_conditions unless there are state variables

where process error is not being estimated or propagated. Process and observation error

are special cases that have additional recommended subelements:

○ <covariance>: TRUE = full covariance matrix, FALSE = diagonal only,

○ <localization>: Text. If covariance = TRUE, describe any localization approach

used.

<propagation> subelement

This uncertainty element is used to indicate that the model propagates uncertainty about this

term into forecasts. A common example of this is a model run multiple times (i.e., ensemble) that

samples the distributions of parameters, initial conditions, or drivers. Alternatively, one might be

44

using an analytical approach to estimate how input uncertainties for a specific term translates

into output uncertainties. The <propagation> element has several recommended subelements that

are used to document the approaches used for uncertainty propagation. A specific value is not

reported under <propagation> itself. If subelements are not included users should include an

empty tag, <propagation></propagation>, to indicate that uncertainty was propagated.

Subelements:

● <type> - “ensemble” or “analytic,”

● If type = ensemble

○ <size> = number of ensemble members,

● If type = analytic

○ <method> text.

In terms of subelements, the <type> element distinguishes between analytical approaches to

uncertainty propagation (e.g., quadrature, analytical moments, derivative / adjoint based

methods) and numerical methods (ensembles, Monte Carlo simulation). For analytical

approaches the convention requires a short text description of the <method>, while for numerical

methods it requires the ensemble <size>.

<assimilation> subtag

45

This element is used to indicate that a model iteratively updates this term through data

assimilation. An example would be using a formal variational or ensemble (e.g., Ensemble

Kalman Filter [EnKF], Particle Filter [PF]) data assimilation approach. For simpler models, this

would also include iteratively refitting the whole model to the combination of the new and old

data. Similar to <propagation>, this subelement does not have a single value, but documents the

approaches used for data assimilation using the following recommended subelements:

● <type> - simple title for the approach used (e.g., PF, EnKF),

● <reference> - citation, DOI, or URL for the method used,

● <complexity> - directly analogous to the complexity subtag but describing the number of

states, parameters, variances, etc that are iteratively updated. For spatially explicit

forecasts, this would be the complexity at a single location or grid cell (e.g., a forecast

that updates one state variable at 500 locations would still have a complexity of 1),

● <attributeName> - OPTIONAL element (one per variable) to list the variables being

updated, which can be handy if only a subset of variables are updated. This element

should match the attributeNames in the equivalent metadata “entity” (see below).

3.3 Metadata validator and metadata helper functions

To assist users in adopting the EFI forecasting metadata convention we have developed an

R-based metadata validation tool. This tool builds upon the base EML validation tool in the R

EML package (Boettiger et al. 2022) but adds checks for the EFI-specific variables added in the

46

https://www.zotero.org/google-docs/?W01PDW

additionalMetadata (Section 3.1). Future planned directions are to extend the validator tool to

other languages (e.g., Python) and to predefine customUnits within EML so that UDUNITS will

validate.

In addition to the validation tool, the EFI Research Coordination Network has made a R

package, neon4cast (https://github.com/eco4cast/neon4cast), that provides a suite of tools around

its NEON Ecological Forecasting Challenge, which include a set of helper functions around

metadata creation (neon4cast::generate_metadata) and output file validation

(neon4cast::forecast_output_validator). The tools are somewhat customized to the five NEON

challenge areas (aquatic ecosystems, terrestrial water and carbon fluxes, tick populations, plant

phenology, beetle communities) but provide a useful template.

4. Forecast Archiving

4.1 Short-term distribution and long-term archiving

EFI does not mandate any single, specific repository to be used for archiving forecasts, but rather

provides the following recommendations for the attributes of what makes a good forecast

repository. At a high-level, these guidelines start from the principle that data should be FAIR

(Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al. 2016), but also

acknowledge additional challenges that are common to forecasts that may not be as important for

other data types. For example, forecasts have two concepts of time (Section 2.3),

reference_datetime and datetime, which most searchable archives are not set up to accommodate.

Within forecasts, any individual datetime may show up numerous times in an archive, each

47

https://github.com/eco4cast/neon4cast
https://www.zotero.org/google-docs/?RKPM9I

associated with a different reference_datetime and datetime. Similarly, the uncertainty

dimensions in forecasts are critical to forecasts and tend to have a richer representation of

uncertainty than most data products (Section 2.3). Combined these factors make forecast outputs

high dimensional. Forecasts also share challenges with other streaming data sources, where

records are continuously being appended with the latest forecasts. Similarly, low latency between

when forecasts are generated and when they become available is essential to the usefulness of

many ecological forecasts.

Because of these challenges, EFI finds it useful to make a distinction between the

short-term distribution and long-term archiving of ecological forecasts. Services for short-term

distribution will generally need to be machine-writable to allow forecast workflows to push new

forecasts automatically. Again, this is critical when forecasts are made frequently or when users

need to be able to access forecasts in a timely manner. However, it is currently rare for genuinely

persistent archives to be truly machine-writable (e.g., most machine-writable archives require

keys that need to be manually refreshed every few days, which is an unrealistic barrier to

automation). Furthermore, the frequency at which forecasts are generated can present challenges

to how identifiers are assigned to forecasts. Forecasting projects can easily generate thousands of

forecasts a year (e.g., daily forecasts over multiple sites with multiple models), which can

overwhelm the ability of many archives to mint DOIs as identifiers. In addition, if every forecast

has its own DOI this reduces the findability of forecasts. Additionally, users do not want to have

to report thousands of DOIs in a publication. Creating a distinction between a short-term

machine-writable service for forecast distribution and a separate long-term service for persistent

archiving easily addresses these needs.

48

The EFI convention specifically recommends pushing forecasts from distribution sites to

persistent archives on a periodic basis (e.g., annually) and that DOI minting be associated with

these periodic archives rather than on a rolling basis. In place of minting DOIs for individual

forecasts we recommend using distribution sites that allow forecasts for the same

model/workflow to be grouped within a project, but to still assign a unique identifier and

timestamp to each forecast (e.g., global attribute iteration_id, Table 1). This recommendation of

periodic archiving is consistent with existing processes among other ecological data producers.

For example, NEON data resources are continually updated with a latency ranging from <1 day

to ~1 year depending on the data product and the amount of post-processing required. Because of

this, real-time NEON data are treated as provisional, with updates and corrections being

introduced on-the-fly as needed. Anyone using these provisional data in publications is

encouraged to archive a copy of the data they actually used. At the end of each year, NEON tags

an “official” version of the data, which is assigned a persistent DOI that users can reference in

lieu of creating their own archives. Analogous approaches distinguishing provisional and

archival data are in common use in other disciplines as well (e.g., climate data). Our proposal for

ecological forecast archives would have the same behaviors.

4.2 Platforms for forecast distribution and archiving

In terms of both persistent archives and real-time distribution services, we recommend

that both have the following attributes:

49

1. Publicly available (Open)

EFI strongly recommends that forecasts be archived publicly under permissive,

community-supported open licenses (e.g., Creative Commons, CC0; Open Data

Commons Public Domain Dedication and License, PDDL) that make it clear how/if

forecasts can be used, analyzed, and redistributed. First, public archiving ensures that

forecasts are FAIR and usable by the largest number of end users. Second, public

archiving is key to forecasts acting as out-of-sample tests that public archives provide a

way of verifying that forecasts were indeed made a priori, and are not post-hoc modeling

exercises. Third, public archiving of forecasts forms the basis for providing credit and

transitive credit for forecasts. Fourth, public archiving is key to allowing third-party

verification of forecast accuracy and precision. Although EFI recommends public

archiving, we also acknowledge that, just as with archiving raw data, a range of

circumstances exist where it would be unethical to publicly archive a forecast (Hobday et

al. 2019), for example if it disclosed information that could threaten a sensitive species or

violated the CARE Principles for Indigenous Data Governance (Carroll et al. 2020).

2. Machine readable (Read)

A common feature of forecasts is that any particular automated workflow tends to make a

lot of them. Forecasts that are only accessible through human-readable web interfaces

quickly become difficult to use when one needs to download large numbers of forecasts

or when one is using forecasts as inputs into other tools and analyses. At a minimum,

repositories can facilitate machine access by keeping things as simple as possible; for

example, by streamlining or eliminating authentication, minimizing redirects, and

50

https://www.zotero.org/google-docs/?RgsNgA
https://www.zotero.org/google-docs/?RgsNgA
https://www.zotero.org/google-docs/?wjWNQI

ensuring URLs follow predictable patterns. These relatively simple repositories allow

users to leverage network-based file access increasingly supported by many common data

access libraries (e.g., most data analysis libraries can stream plain-text data directly from

a URL; Python’s fsspec library; Geospatial Data Abstraction Library [GDAL]

network-based file system feature). Application Programming Interfaces (APIs) are also

useful for search and discovery (i.e., for generating a list of direct access URLs), and for

server-side data subsetting (e.g., Data Access Protocol, DAP). Creation of such

repositories is facilitated by the existence of open-source tools that can be deployed to

provide many of these services to an existing data server, such as THREDDS

(https://www.unidata.ucar.edu/software/tds/current/), Hyrax

(https://www.opendap.org/software/hyrax-data-server), and ERDDAP

(https://coastwatch.pfeg.noaa.gov/erddap/index.html) for DAP services or minIO

(https://min.io/) for a more generic interface. Repositories may also benefit from

leveraging managed storage and compute platforms from publicly funded (e.g., Open

Storage Network) or commercial (e.g., Amazon Web Services, Google Cloud, Microsoft

Azure) providers. Looking forward, extending the EFI standard to cloud-native formats

(e.g., zarr, parquet, cloud-optimized GeoTIFF) would make them even easier to analyze.

Finally, as noted earlier, it is also important that distribution services be machine writable,

but this is less important for a persistent archive because archiving is done less frequently

and files can be submitted manually rather than as part of automated workflows.

3. Metadata is searchable (Search)

Because many repositories are designed to be flexible and do not require specific file

51

https://coastwatch.pfeg.noaa.gov/erddap/index.html
https://min.io/

formats or metadata standards, they can end up with limited search capacities. Consistent

with the FAIR principle that forecasts should be Findable, we recommend using

repositories that take advantage of the EFI standard metadata by making that metadata

searchable.

Because creating and maintaining an effective data server is a non-trivial task, forecast data

providers may want to consider existing data repositories that support these attributes (e.g., EDI,

Dryad, Figshare, OSF, Zenodo).

The one notable difference between ecological forecasts and the examples at the end of

the previous section (NEON, climate data, etc.) is that many (if not most) ecological forecasters

end up relying on two different services for archiving versus distribution. On the archiving side,

ecologists tend to rely on third-party services for the persistent archiving (e.g., Environmental

Data Initiative [EDI]), similar to how ecologists rely on such archives for ecological data, rather

than archiving forecasts “in house” the way that most weather forecasting centers do. This is

largely a reflection of a difference in scale and resources.

On the distribution side, most iterative ecological forecasts are currently being distributed

using custom problem-specific systems and portals. That said, the development of such portals

often represents redundant efforts, and creates both barriers to entry and increased maintenance

costs. As the ecological forecasting enterprise increases in scale and scope, there is an argument

in favor of developing shared community infrastructure for forecast distribution (Fer et al. 2021).

A growing number of cloud-based alternatives exist for short-term distribution that may be more

accessible than a custom engineered platform. Some ecological forecasters have made use of

cloud-based version control systems such as GitHub (White et al. 2019), although it should be

52

https://www.zotero.org/google-docs/?8fCmKh
https://www.zotero.org/google-docs/?msJwMP

noted that these systems are not optimized for storing large data volumes so are best suited for

smaller forecasts. A broader suite of tools is also available through the Open Science Foundation

and CyVerse, which both support larger data volumes. Similarly, EFI itself has developed a

cloud-based platform in support of our NEON EcologicalForecasting Challenge that leverages

the EFI output and metadata standards to provide a richer suite of services including provisioning

of input and target data, upload of forecasts, forecast scoring and visualization, and forecast

distribution. Although the EFI platform is not currently available as a distribution service for the

broader set of possible ecological forecasts, the system is available on GitHub

(https://github.com/eco4cast/challenge-ci) as a container-based Docker stack that is easily

redeployable. Lasty, a wide range of commercial and academic cloud-based data stores (e.g.,

Amazon Web Services, NSF Jetstream, Open Storage Network) are available that are capable of

storing and publicly redistributing very large data volumes.

4.3 Code and workflow archiving

Although the bulk of this paper has focused on the forecast output files and metadata, true

transparency and reproducibility requires archiving the underlying models and workflows.

Therefore, EFI recommends a three tiered system to forecast archiving: forecast outputs and

metadata (described above); code; and operational workflows (e.g., using containers).

Code

53

https://github.com/eco4cast/challenge-ci

Archiving code is important to provide transparency, verification, and repeatability. It

also makes it much easier for others to build upon previous work. When it comes to forecasting,

it is important to note that the forecast is usually generated by a whole workflow, not just by the

model within that workflow. Thus, it is important to archive not just the code for the model used,

but also the code for the workflow surrounding that model (e.g., data ingest, assimilation, and

postprocessing). This is particularly important if any sort of iterative data assimilation algorithm

is used, as the forecast can sometimes be more sensitive to the data constraints and assimilation

algorithm used than to the exact structure of the model itself. EFI specifically recommends that

forecasting code:

● be publicly archived,

● be well documented, both internally (e.g., ROxygen/Doxygen function documentation)

and externally (READMEs and tutorials),

● be human readable (i.e., adhere to best practices and language specific conventions for

formatting), and

● have a DOI issued when new versions are released.

In particular, we recommend issuing a new DOI any time the model or workflow has changed

enough that two forecasts from the same system would not be considered equivalent /

comparable (i.e., any time there is a new model_version). Implicitly, users need to operate under

the assumption that forecasts generated under a single DOI can be analyzed together.

Releasing code under a license that would allow a reasonable degree of reuse would also

provide a wide range of benefits (e.g., for reproducibility, verification, and building on previous

research), however more restrictive licenses (e.g., for commercial ecological forecasting

54

ventures) are not prohibited under the EFI convention. Similarly, the use of open source

programming languages (e.g., R, Python, C) can be beneficial for developing forecasts because

these languages generally allow for independent validation and model/workflow reuse.

A common project pattern might involve developing code using a version control system

(e.g., GitHub) that creates a (preferably public) record of how the model and workflow were

engineered, with that development often occurring on a specific ‘devel’ branch. Periodically, this

code would be pushed to the ‘main’ branch of the forecast workflow, becoming the new

operational forecast. At that point, the code would be tagged with a new version number and also

be pushed to a more permanent archive (e.g., Zenodo) that would mint it a new DOI. The

forecast metadata <model_name> would then be updated with this new DOI.

Operational Workflows

The final tier of the EFI forecast archiving standard is to archive the operational

workflow itself. Doing so is important because experience shows that it can be difficult (and

sometimes impossible) for others to successfully build and run other peoples’ models and

workflows. This difficulty can occur because of steep learning curves, differences in operating

system, and (often undocumented) requirements for specific versions of libraries. A range of

options have emerged to deal with these problems (see, for example, the EFI Task View on

Reproducible Workflows,

https://projects.ecoforecast.org/taskviews/reproducible-forecasting-workflows.html). One

approach is to use dependency management tools (e.g., renv or packrat in R; pip or poetry

libraries in Python; or language-agnostic tools like conda), which aim to track the specific

55

versions of all dependencies in a workflow. Another approach is virtualization – to encapsulate

the entire system, from operating system on up, inside a ‘virtual machine’ that completely

isolates the virtual system from the host computer it is running on. Virtual machines (VMs) are

highly portable because the same VM can run on any computer regardless of the operating

system of the host itself. However, VMs have the disadvantage of being fairly large and slow to

launch. A more recent variant on the virtualization idea is ‘containerization,’ which continues

this idea of isolating software and its dependencies in a portable, platform-independent way, but

tends to be more lightweight than a full VM (e.g., Docker, Singularity). To increase

interoperability, EFI standard currently recommends using containers for workflow

reproducibility. The most straightforward way to do this is to put both the workflow and model

inside the container, but it is also acceptable to have the model code in a separate repository that

needs to be pulled into the container, so long as the specific version of container and code are

clearly documented.

Beyond just putting a workflow into a container (or stack of containers), it is important to

consider the inputs and outputs of that container. Standardizing these reduces the barriers to

re-use and makes it easier to perform larger, synthetic analyses (e.g., uncertainty partitioning).

The EFI Theory Working Group specifically chose to recommend containerization, over

providing detailed protocols, as a way of facilitating cross-cutting uncertainty and transferability

analyses (Lewis et al. 2022). Specifically, we recommend that forecast containers return EFI

standard output files and metadata.

Currently, the EFI standard does not yet provide a general specification for how driver,

initial condition, parameter, random effect, and process error files should be passed into

56

https://www.zotero.org/google-docs/?FRcHgb

containers. Although not formally part of the EFI standard, the NEON Ecological Forecasting

Challenge has adopted an internal standard for “target” files, which contain the observational

data used for scoring and which could also be used for model calibration or iterative data

assimilation (Thomas et al. 2021). Overall, the standards required to support a front-to-back

ecological forecasting workflow are still a work in progress and we plan to provide greater detail

in future versions of this standard. In the meantime users can create model containers with this

set of inputs in mind. Likewise we encourage the development of a larger set of workflow

containers with the provisioning of these files in mind. The PEcAn Project (pecanproject.org)

represents a current example of such an integrated system with standards for meteorological

drivers (netCDF-CF), soils (netCDF CF-compliant), parameters (BETY database), initial

conditions, and data constraints, as well as standard workflows for generating these files (Fer et

al. 2021).

5. Conclusions

Overall, the EFI convention represents a community-developed and community-tested attempt to

promote the archiving, interoperability, and synthesis of ecological forecasts. The conventions

build on existing community standards (e.g., CF, EML, STAC, fable) that are in wide use, while

targeting needs that are specific to the ecological forecasting community. As of 2023 the EFI

convention focuses on three file formats, netCDF or CSV for forecast outputs, and EML for

forecast metadata, but the design principles are laid out in a manner that would allow the

convention to be serialized into alternative file formats and data structures in the future as new

approaches to data access, storage, and management emerge and mature (e.g., the current growth

57

https://www.zotero.org/google-docs/?oCf6wY
https://www.zotero.org/google-docs/?9ZbPU0
https://www.zotero.org/google-docs/?9ZbPU0

of cloud-native data). To facilitate community adoption we also provide a Github repository,

https://github.com/eco4cast/EFIstandards, that provides the text of the convention, R-based

validation tools, and several vignettes illustrating both how to generate files and metadata for a

range of different models, and how to access EFI convention files and metadata. Lastly, this

convention is a living document that the community can contribute back to through the EFI

Standards working group and through Issues and Pull Requests to our Github repository, where

we plan to develop a more formal convention specification.

6. Acknowledgements

This project was supported by NSF Research Coordination Network award 1926388 to RQT,

MCD and JAP, funding from the Alfred P. Sloan Foundation to MCD and JAP, and funding from

the Boston University Pardee Center for the Longer Range Future to MCD. The version of the

EFI convention validation tools and vignettes coincident with the paper are archived on Zenodo

at https://doi.org/10.5281/zenodo.7494824. The authors would like to thank the members of the

EFI Standards working group, and in particular the contributions from Rob Kooper (National

Center for Supercomputing Applications), Bruce Wilson (Oak Ridge National Laboratory),

Jacob Zwart (U.S. Geological Survey), and Corrina Gries (Environmental Data Initiative,

University of Wisconsin). Any use of trade, firm, or product names is for descriptive purposes

only and does not imply endorsement by the U.S. Government.

58

https://github.com/eco4cast/EFIstandards
https://doi.org/10.5281/zenodo.7494824

7. Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

8. References

Auger-Méthé, M., K. Newman, D. Cole, F. Empacher, R. Gryba, A. A. King, V. Leos-Barajas, J.

Mills Flemming, A. Nielsen, G. Petris, and L. Thomas. 2021. A guide to state–space

modeling of ecological time series. Ecological Monographs 91:e01470.

Baatz, R., H. J. H. Franssen, E. Euskirchen, D. Sihi, M. Dietze, S. Ciavatta, K. Fennel, H. Beck,

G. D. Lannoy, V. R. N. Pauwels, A. Raiho, C. Montzka, M. Williams, U. Mishra, C.

Poppe, S. Zacharias, A. Lausch, L. Samaniego, K. V. Looy, H. Bogena, M. Adamescu,

M. Mirtl, A. Fox, K. Goergen, B. S. Naz, Y. Zeng, and H. Vereecken. 2021. Reanalysis in

Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of

Geophysics 59:e2020RG000715.

Boettiger, C., M. B. Jones, M. Maier, B. Mecum, M. Salmon, and J. Clark. 2022, April 28. EML:

Read and Write Ecological Metadata Language Files.

https://CRAN.R-project.org/package=EML.

Boettiger, C., and J. Poelen. 2021, November 29. contentid: An Interface for Content-Based

Identifiers. https://CRAN.R-project.org/package=contentid.

Bradford, J. B., J. F. Weltzin, M. Mccormick, J. Baron, Z. Bowen, S. Bristol, D. Carlisle, T.

Crimmins, P. Cross, J. DeVivo, M. Dietze, M. Freeman, J. Goldberg, M. Hooten, L. Hsu,

K. Jenni, J. Keisman, J. Kennen, K. Lee, D. Lesmes, K. Loftin, B. W. Miller, P. Murdoch,

59

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

J. Newman, K. L. Prentice, I. Rangwala, J. Read, J. Sieracki, H. Sofaer, S. Thur, G.

Toevs, F. Werner, C. L. White, T. White, and M. Wiltermuth. 2020. Ecological

forecasting—21st century science for 21st century management. U.S. Geological Survey

Open-File Report 2020-1073, https://doi.org/10.3133/ofr20201073.

Brown, C. 2019. Making Ecological Forecasts Operational: The Process Used by NOAA’s

Satellite & Information Service | Ecological Forecasting Initiative.

https://ecoforecast.org/making-ecological-forecasts-operational-the-process-used-by-noa

as-satellite-information-service/.

Carroll, S. R., I. Garba, O. L. Figueroa-Rodríguez, J. Holbrook, R. Lovett, S. Materechera, M.

Parsons, K. Raseroka, D. Rodriguez-Lonebear, R. Rowe, R. Sara, J. D. Walker, J.

Anderson, and M. Hudson. 2020. The CARE Principles for Indigenous Data

Governance. Data Science Journal 19:43.

Clark, J. S. 2001. Ecological Forecasts: An Emerging Imperative. Science 293:657–660.

COARDS. 1995. COARDS netCDF profile.

https://ferret.pmel.noaa.gov/noaa_coop/coop_cdf_profile.html.

Dietze, M. C. 2017a. Ecological Forecasting. Princeton University Press, Princeton.

Dietze, M. C. 2017b. Prediction in ecology: a first-principles framework. Ecological Applications

112:6252–13.

Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B. Hooten, C. S. Jarnevich, T. H.

Keitt, M. A. Kenney, C. M. Laney, L. G. Larsen, H. W. Loescher, C. K. Lunch, B. C.

Pijanowski, J. T. Randerson, E. K. Read, A. T. Tredennick, R. Vargas, K. C. Weathers,

and E. P. White. 2018. Iterative near-term ecological forecasting: Needs, opportunities,

and challenges. Proceedings of the National Academy of Sciences 115:1424–1432.

Dietze, M., and H. Lynch. 2019. Forecasting a bright future for ecology. Frontiers in Ecology and

60

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

the Environment 17:3–3.

Dokoohaki, H., B. D. Morrison, A. Raiho, S. P. Serbin, and M. Dietze. 2021. A novel model–data

fusion approach to terrestrial carbon cycle reanalysis across the contiguous U.S using

SIPNET and PEcAn state data assimilation system v. 1.7.2. Geoscientific Model

Development Discussions:1–28.

Dwivedi, D., A. L. D. Santos, M. A. Barnard, T. M. Crimmins, A. Malhotra, K. A. Rod, K. S. Aho,

S. M. Bell, B. Bomfim, F. Q. Brearley, H. Cadillo-Quiroz, J. Chen, C. M. Gough, E. B.

Graham, C. R. Hakkenberg, L. Haygood, G. Koren, E. A. Lilleskov, L. K. Meredith, S.

Naeher, Z. L. Nickerson, O. Pourret, H.-S. Song, M. Stahl, N. Taş, R. Vargas, and S.

Weintraub-Leff. 2022. Biogeosciences Perspectives on Integrated, Coordinated, Open,

Networked (ICON) Science. Earth and Space Science 9:e2021EA002119.

Eaton, B., J. Gregory, B. Drach, K. Taylor, S. Hankin, J. Blower, J. Caron, R. Signell, P. Bentley,

G. Rappa, H. Höck, A. Pamment, M. Juckes, M. Raspaud, R. Horne, T. Whiteaker, D.

Blodgett, C. Zender, and D. Lee. 2020. NetCDF Climate and Forecast (CF) Metadata

Conventions. Page 183.

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.pdf.

Farrell, S., D. Kutscher, C. Dannewitz, B. Ohlman, A. Keränen, and P. Hallam-Baker. 2013.

Naming Things with Hashes. Request for Comments, Internet Engineering Task Force,

https://datatracker.ietf.org/doc/rfc6920.

Fegraus, E. H., S. Andelman, M. B. Jones, and M. Schildhauer. 2005. Maximizing the Value of

Ecological Data with Structured Metadata: An Introduction to Ecological Metadata

Language (EML) and Principles for Metadata Creation. The Bulletin of the Ecological

Society of America 86:158–168.

Fer, I., A. K. Gardella, A. N. Shiklomanov, E. E. Campbell, E. M. Cowdery, M. G. D. Kauwe, A.

61

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

Desai, M. J. Duveneck, J. B. Fisher, K. D. Haynes, F. M. Hoffman, M. R. Johnston, R.

Kooper, D. S. LeBauer, J. Mantooth, W. J. Parton, B. Poulter, T. Quaife, A. Raiho, K.

Schaefer, S. P. Serbin, J. Simkins, K. R. Wilcox, T. Viskari, and M. C. Dietze. 2021.

Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological

data-model integration. Global Change Biology 27:13–26.

Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and

W. Lapenta. 2013. NOAA’s Second-Generation Global Medium-Range Ensemble

Reforecast Dataset. Bulletin of the American Meteorological Society 94:1553–1565.

Hassell, D., J. Gregory, J. Blower, B. N. Lawrence, and K. E. Taylor. 2017. A data model of the

Climate and Forecast metadata conventions (CF-1.6) with a software implementation

(cf-python v2.1). Geoscientific Model Development 10:4619–4646.

Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C.

Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G.

Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D.

Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L.

Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P.

Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N.

Thépaut. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal

Meteorological Society 146:1999–2049.

Hobday, A. J., J. R. Hartog, J. P. Manderson, K. E. Mills, M. J. Oliver, A. J. Pershing, and S.

Siedlecki. 2019. Ethical considerations and unanticipated consequences associated with

ecological forecasting for marine resources. ICES Journal of Marine Science

76:1244–1256.

ISO. 2019. ISO 8601-1:2019.

62

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/09/70907.h

tml.

Lewis, A. S. L., C. R. Rollinson, A. J. Allyn, J. Ashander, S. Brodie, C. B. Brookson, E. Collins,

M. C. Dietze, A. S. Gallinat, N. Juvigny-Khenafou, G. Koren, D. J. McGlinn, H.

Moustahfid, J. A. Peters, N. R. Record, C. J. Robbins, J. Tonkin, and G. M. Wardle.

2022. The power of forecasts to advance ecological theory. Methods in Ecology and

Evolution 00:1–11.

Lewis, A. S. L., W. M. Woelmer, H. L. Wander, D. W. Howard, J. W. Smith, R. P. McClure, M. E.

Lofton, N. W. Hammond, R. S. Corrigan, R. Q. Thomas, and C. C. Carey. 2021.

Increased adoption of best practices in ecological forecasting enables comparisons of

forecastability. Ecological Applications:e02500.

Masarie, K. A., W. Peters, A. R. Jacobson, and P. P. Tans. 2014. ObsPack: a framework for the

preparation, delivery, and attribution of atmospheric greenhouse gas measurements.

Earth System Science Data 6:375–384.

Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier,

and R. J. Stouffer. 2008. Stationarity Is Dead: Whither Water Management? Science

319:573–574.

O’Hara-Wild, M., R. Hyndman, E. Wang, G. C. (NNETAR implementation), T.-G. Hensel, and T.

Hyndman. 2021, May 16. fable: Forecasting Models for Tidy Time Series.

https://CRAN.R-project.org/package=fable.

O’Hara-Wild, M., M. Kay, A. Hayes, and E. Wang. 2022, January 5. distributional: Vectorised

Probability Distributions. https://CRAN.R-project.org/package=distributional.

Pebesma, E., T. Mailund, T. Kalinowski, J. Hiebert, I. Ucar, and T. L. Pedersen. 2022, February

5. units: Measurement Units for R Vectors. https://CRAN.R-project.org/package=units.

63

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

Rollinson, C. R., A. O. Finley, M. R. Alexander, S. Banerjee, K.-A. D. Hamil, L. E. Koenig, D. H.

Locke, M. Peterson, M. W. Tingley, K. Wheeler, C. Youngflesh, and E. F. Zipkin. 2021.

Working across space and time: nonstationarity in ecological research and application.

Frontiers in Ecology and the Environment 19:66–72.

Shuman, F. G. 1989. History of Numerical Weather Prediction at the National Meteorological

Center. Weather and Forecasting 4:286–296.

Tetlock, P. E., and D. Gardner. 2015. Superforecasting: The Art and Science of Prediction.

Crown Publishers, New York.

Thomas, R. Q., C. Boettiger, C. Carey, M. Dietze, A. Fox, M. A. Kenney, C. M. Laney, J. S.

McLachlan, J. Peters, J. F. Weltzin, W. M. Woelmer, J. R. Foster, J. P. Guinnip, A. Spiers,

S. Ryan, K. I. Wheeler, A. R. Young, L. R. Johnson, S. Burnet, R. McClure, C. Brown, J.

Zwart, G. Burba, J. Cleverly, A. Desai, W. Hammond, D. Lombardozzi, M. Bitters, M.

Chen, S. LaDeau, C. Lippi, B. Melbourne, W. Moss, K. Gerst, C. Jones, A. Richardson,

B. Seyednasrollah, T. Dallas, N. Franz, K. Norman, T. Surasinghe, E. Sokol, and K. Yule.

2021. Ecological Forecasting Initiative: NEON Ecological Forecasting Challenge

documentation V1.0. Ecological Forecasting Initiative 10.5281/zenodo.4780155.

Volterra, V. 1926. Fluctuations in the Abundance of a Species considered Mathematically1.

Nature 118:558–560.

White, E. P., G. M. Yenni, S. D. Taylor, E. M. Christensen, E. K. Bledsoe, J. L. Simonis, and S.

K. M. Ernest. 2019. Developing an automated iterative near-term forecasting system for

an ecological study. Methods in Ecology and Evolution 10:332–344.

Wikle, C. K., and L. M. Berliner. 2007. A Bayesian tutorial for data assimilation. Physica D:

Nonlinear Phenomena 230:1–16.

Wilkinson, M. D., M. Dumontier, Ij. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg,

64

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark,

M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,

A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t Hoen, R. Hooft, T.

Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P.

Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T.

Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J.

Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons. 2016.

The FAIR Guiding Principles for scientific data management and stewardship. Scientific

Data 3:160018.

65

https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF
https://www.zotero.org/google-docs/?wwQmpF

9. Tables

Attribute Description

target_id (OPTIONAL) Unique identifier pointing to data or metadata about
what the forecast is being scored against

model_name Unique identifier for a forecasting project that can be used to link
across different model versions

model_version (RECOMMENDED) Unique identifier for a specific forecast
model/workflow version

iteration_id (OPTIONAL) Unique identifier for a specific forecast run. Important
to include in cases where a forecast might be rerun (e.g., real-time
forecast versus reanalysis)

Table 1: Global attributes (metadata) for netCDF forecast files. See Figure 3 for an example

application.

66

Dimension Description

reference_datetime ISO 8601 (ISO 2019) datetime the forecast starts from (a.k.a. issue
time); Only needed if more than one reference_datetime is stored in a
single file. Forecast lead time is thus datetime - reference_datetime. In
a hindcast the reference_datetime will be earlier than the time the
hindcast was actually produced (see pubDate in Section 3). Datetimes
are allowed to be earlier than the reference_datetime if a
reanalysis/reforecast is run before the start of the forecast period. This
variable was called start_time before v0.5 of the EFI standard.

datetime ISO 8601 (ISO 2019) datetime being predicted; follows CF convention
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coor
dinate. This variable was called time before v0.5 of the EFI
convention.

For time-integrated variables (e.g., cumulative net primary
productivity), one should specify the start_datetime and end_datetime
as two variables, instead of the single datetime. If this is not provided
the datetime is assumed to be the MIDPOINT of the integration
period.

depth or height No single standard name for the Z dimension. Where possible, CF
conventions for vertical dimension names and attributes
(https://cfconventions.org/cf-conventions/cf-conventions.html#vertical
-coordinate) should be used.

lon or X Longitude (units = "degrees_east") is the default spatial coordinate.
The alternative use of Y, X for spatial coordinates should conform to
the CF convention and requires additional metadata about grids and
projections.

lat or Y Latitude (degrees_north)

site_id For forecasts that are not on a spatial grid, use of a site dimension that
maps to a more detailed geometry (points, polygons, etc.) is allowable.
In general this would be documented in the external metadata (e.g., a
look-up table that provides lon and lat); however in netCDF this could
be handled by the CF Discrete Sampling Geometry data model.

family For ensembles: “ensemble.” Default value if unspecified

For probability distributions: Name of the statistical distribution
associated with the reported statistics. The “sample” distribution is

67

https://www.zotero.org/google-docs/?4GOdXR
https://www.zotero.org/google-docs/?8rOg1j
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coordinate
http://cfconventions.org/cf-conventions/cf-conventions.html#time-coordinate
https://cfconventions.org/cf-conventions/cf-conventions.html#vertical-coordinate
https://cfconventions.org/cf-conventions/cf-conventions.html#vertical-coordinate

synonymous with “ensemble.”

For summary statistics: “summary.”

If this dimension does not vary, it is permissible to specify family as a
variable attribute if the file format being used supports this (e.g.,
netCDF).

parameter REQUIRED

For ensembles: Integers 1 to Ne (Ne = total size of ensemble) Note: for
backward compatibility this can alternatively be named “ensemble”
but this is planned to be deprecated in future versions.

For named distributions: parameter/statistic being specified (e.g.,
mean, standard deviation)

obs_flag Flag indicating whether observation error has been included in the
prediction. Only REQUIRED if forecasting both the latent and
observed state.

Table 2: Ecological forecast dimensions in the order that should be used to specify variables

(time, space, uncertainty). The only required dimension is parameter; other dimensions can be

dropped if they only have a single value and that value is clearly documented in the metadata.

Global attributes (Table 1) can also optionally be used as outer dimensions if needed.

68

reference_
datetime
<date>

datetime
<date>

depth
<dbl>

family
<chr>

parameter
<int>

obs_flag
<int>

variable
<chr>

prediction
<dbl>

2001-03-04 2001-03-05 1.0 sample 1 1 species_1 0.983

2001-03-04 2001-03-05 1.0 sample 1 1 species_2 1.946

2001-03-04 2001-03-05 3.0 sample 1 1 species_1 0.972

2001-03-04 2001-03-05 3.0 sample 1 1 species_2 1.948

2001-03-04 2001-03-05 5.0 sample 1 1 species_1 0.985

2001-03-04 2001-03-05 5.0 sample 1 1 species_2 1.954

2001-03-04 2001-03-05 1.0 sample 2 1 species_1 0.974

2001-03-04 2001-03-05 1.0 sample 2 1 species_2 1.950

2001-03-04 2001-03-05 3.0 sample 2 1 species_1 0.956

2001-03-04 2001-03-05 3.0 sample 2 1 species_2 1.956

2001-03-04 2001-03-05 5.0 sample 2 1 species_1 0.958

2001-03-04 2001-03-05 5.0 sample 2 1 species_2 1.957

Table 3: Ensemble CSV format for Lotka-Volterra example (Section 1.1), where parameter

designates ensemble number. Only 12 of 3600 rows are shown.

69

reference_
datetime
<date>

datetime
<date>

depth
<dbl>

family
<chr>

parameter
<chr>

obs_flag
<int>

variable
<chr>

prediction
<dbl>

2001-03-04 2001-03-04 1.0 normal mu 1 species_1 0.756

2001-03-04 2001-03-04 1.0 normal sigma 1 species_1 0.174

2001-03-04 2001-03-04 1.0 normal mu 1 species_2 0.250

2001-03-04 2001-03-04 1.0 normal sigma 1 species_2 0.013

2001-03-04 2001-03-04 1.0 normal mu 2 species_1 0.756

2001-03-04 2001-03-04 1.0 normal sigma 2 species_1 0.174

2001-03-04 2001-03-04 1.0 normal mu 2 species_2 0.250

2001-03-04 2001-03-04 1.0 normal sigma 2 species_2 0.013

2001-03-04 2001-03-04 3.0 normal mu 1 species_1 0.982

2001-03-04 2001-03-04 3.0 normal sigma 1 species_1 0.347

Table 4: Lotka-Volterra example forecast (Section 1.1) written in distributional CSV format with

a Normal distribution family. The “summary” format, which does not imply a distributional

assumption, would be analogous to this but with family = “summary” and parameters “mean”

and “sd” (See Table S2). Only 10 of 720 rows shown.

70

Variable Description

data_assimilation [RECOMMENDED] Did data assimilation occur (1) or not (0) at that
time step, location, etc.

da_qc [OPTIONAL] Was the data assimilation successful (0) or not (1 or error
code)

forecast [OPTIONAL] Was this timestep a forecast (1) or a hindcast (0)

log_weight [OPTIONAL] Weight assigned to each ensemble member, natural log
scale

Table 5: Additional ecological forecast netCDF variables (beyond the forecast variables

themselves).

71

Tag Description

<initial_conditions> Uncertainty in the initialization of state variables (Y). Initial
condition uncertainty will be a common feature of any dynamic model,
where the future state depends on the current state, such as population
models, process-based biogeochemical pool & flux models, and classic
time-series analysis. For time series models with multiple lags or
dynamic models with memory, the initial conditions may cover multiple
timepoints. Initial condition uncertainty will be absent from many
statistical and machine learning models. Initial condition uncertainty
might be directly informed by field data, indirectly inferred from other
proxies (e.g., remote sensing), sampled from some (informed or
uninformed) prior distribution, or “spun up” through model simulation.
When spun up, initial condition uncertainty may have strong
interactions with the other uncertainties below.

<drivers> Uncertainty in model drivers, covariates, and exogenous scenarios
(X). Driver/covariate uncertainties may come directly from a data
product, as a reported error estimate or through driver ensembles, or
may be estimated based on sampling theory, calibration/validation
documents, or some other source. In most of these cases these
uncertainties are thought about probabilistically. When making
projections, driver uncertainty may also be associated with scenarios or
decision alternatives. These alternative drivers are not themselves
probabilistic (they do not have weights or probabilities) and forecast
outputs are conditional on a specific alternative scenario. Examples
include climate scenarios or treatments associated with system inputs
(irrigation, fertilization, etc).

<parameters> Uncertainty in model parameters (). For most ecological processesθ
the parameters (a.k.a. coefficients) in model equations are not physical
constants but need to be estimated from data. Because parameters are
estimated from data, uncertainty will be associated with them.
Parameter uncertainty is usually conditional on model structure and may
be estimated directly from data (e.g., ecological traits) or indirectly
(e.g., optimization or Bayesian calibration) by comparing model outputs
to observations. Parameter uncertainty tends to decline asymptotically
with sample size.

<random_effects> Unexplained variability and heterogeneity in model parameters ().α
Hierarchical models, random effect models, and meta transfer learning
approaches all attempt to acknowledge that the ‘best’ model parameters
may change across space, time, individual, or other measurement unit.

72

This variability can be estimated and partitioned into different sources
but is (as of yet) not explained within the model’s internal structure.
Unlike parameter uncertainty, this variability in parameters does not
decline with sample size. Example: variability/heterogeneity in
ecological traits such as carbon-to-nitrogen ratios.

<obs_error> Uncertainty in the observations of the output variables (g). Note that
many statistical modeling approaches do not formally partition errors in
observations from errors in the modeling process, but simply lump these
into a residual error. We make the pragmatic distinction that errors that
do not directly propagate into the future be recorded as observation
errors. Observation errors now may indeed affect the initial condition
uncertainty in the next forecast, but we consider this to be indirect.

<process_error> Dynamic uncertainty in the process model () attributable to bothε
model misspecification (a.k.a. structural error) and stochasticity.
Pragmatically, this is the portion of the residual error from one timestep
to the next that is not attributable to any of the other uncertainties listed
above, and which typically propagates into the future. Philosophically,
process error (as defined here) convolves uncertainty that is part of the
natural process itself (i.e., stochasticity), human ignorance about the
true process (e.g., model structure), and errors associated with
numerical approximation. Deconvolving these is both pragmatically and
philosophically very challenging, but teams wishing to do so can
alternatively use the <stochastic_error> and <structural_error> elements
instead of the <process_error> tag.

<stochastic_error> [OPTIONAL] irreducible uncertainty that is associated with
natural stochastic processes (e.g., demographic stochasticity,
disturbance)

<structural_error> [OPTIONAL] uncertainty associated with human ignorance about
the true process (e.g., model structure) and numerical
approximations.

Table 6: Uncertainty classes

73

10. Figures

Figure 1: EFI standards from the stage of the individual forecast to the synthesis of multiple

forecasts.

Figure 2: Example ensemble forecast (n=10 ensemble members) for two species at one depth.

The “true” latent state of each ensemble member is represented by the lines, while the

observation error is represented by the points.

Figure 3: netCDF header for our example forecast (Section 1.1), illustrating how dimensions,

variables, and attributes are structured.

Figure 4: Example high-level structure of an EML file.

Figure 5: Example Extensible Markup Language (XML) for the uncertainty classes

74

Figure 1

75

Figure 2

76

netcdf logistic-forecast-ensemble-multi-variable-space-long {
dimensions:

datetime = 30 ;
depth = 3 ;
parameter = 10 ;
obs_flag = 2 ;

variables:
double datetime(datetime) ;

datetime:units = "days since 2001-03-04" ;
datetime:long_name = "datetime" ;

double depth(depth) ;
depth:units = "meters" ;
depth:long_name = "Depth from surface" ;

int parameter(parameter) ;
parameter:long_name = "ensemble member" ;

int obs_flag(obs_flag) ;
obs_flag:long_name = "observation error flag" ;

float species_1(datetime, depth, parameter, obs_flag) ;
species_1:units = "number of individuals" ;
species_1:long_name = "<scientific name of species 1>" ;

float species_2(datetime, depth, parameter, obs_flag) ;
species_2:units = "number of individuals" ;
species_2:long_name = "<scientific name of species 2>" ;

float data_assimilation(datetime) ;
data_assimilation:units = "integer" ;
data_assimilation:long_name = "EFI standard data assimilation code" ;

// global attributes:
:model_name = "LogisticDemo" ;
:model_version = "v0.5" ;
:iteration_id = "20010304T060000" ;

}

Figure 3

77

<?xml version="1.0" encoding="UTF-8"?>
<eml:eml>
<dataset>

<title>
<pubDate>
<intellectualRights>
….

</dataset>
<additionalMetadata>

….
</additionalMetadata>

</eml:eml>

Figure 4

78

<initial_conditions>
<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>2</complexity>
<propagation>

<type>ensemble</type>
<size>10</size>

</propagation>
</initial_conditions>
<drivers>

<present>FALSE</present>
</drivers>
<parameters>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>6</complexity>

</parameters>
<random_effects>

<present>FALSE</present>
</random_effects>
<obs_error>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>1</complexity>
<covariance>FALSE</covariance>

<obs_error>
<process_error>

<present>TRUE</present>
<data_driven>TRUE</data_driven>
<complexity>1</complexity>
<covariance>FALSE</covariance>
<propagation>

<type>ensemble</type>
<size>10</size>

</propagation>
</process_error>

Figure 5

79

11. Supporting Information

family name Parameter 1 Parameter 2 Parameter 3

bernoulli prob

beta shape1 shape2

binomial size prob

burr shape1 shape2 rate

categorical prob outcomes

cauchy location scale

chisq df ncp

degenerate x

exponential rate

f df1 df2 ncp

gamma shape rate

geometric prob

gumbel alpha scale

hypergeometric m n k

inflated dist prob x

inverse_exponential rate

inverse_gamma shape rate scale

inverse_gaussian mean shape

logarithmic prob

logistic location scale

lognormal mu sigma

80

missing length

mixture <family name> weights

multinomial size prob

multivariate_normal mu sigma

negative_binomial size prob

normal mu sigma

pareto shape scale

percentile x percentile

poisson lambda

poisson_inverse_ga
mma

mean shape

sample x

studentized_range nmeans df nranges

student_t df mu sigma

transformed dist transform inverse

truncated dist lower upper

uniform min max

weibull shape scale

wrap dist

Table S1: Valid family and parameter names for EFI probabilistic output based on the R
distributional package, https://pkg.mitchelloharawild.com/distributional/ (O’Hara-Wild et al. 2022)

81

https://pkg.mitchelloharawild.com/distributional/
https://www.zotero.org/google-docs/?MwUnaj

parameter Description

mean Arithmetic mean

median 50% quantile

sd Predictive standard deviation, accounts for observation errors

se Uncertainty about the latent variable (standard error)

variance* Predictive variance

precision* Predictive precision (1/variance)

cov Covariance

pred_interv_XX.
X

Predictive interval for specific quantile XX.X; values below 10 require a
leading 0. Interval accounts for observation errors and is generally
preferred over conf_interv. Recommended defaults are 02.5 and 97.5 (i.e.,
a 95% interval)

conf_interv_XX.
X

Confidence interval for specific quantile XX.X. Represents uncertainty
about latent variables without accounting for observation uncertainty, but
is otherwise analogous to pred_interv.

Table S2: Standard names for the parameter column when the family is “summary.” Note: (*) sd

is preferred over variance or precision because sd will have the same units as the variable itself,

whereas variances and precisions will have different units than those reported in the metadata.

11.1 Base EML

As noted above, the EFI metadata convention builds on the EML metadata standard. This section

highlights the core component of the base EML standard that the EFI convention makes required

or recommended. Many optional elements also exist as part of the EML schema

(https://eml.ecoinformatics.org/schema/).

82

https://eml.ecoinformatics.org/schema/

The following components all exist within the <dataset> tag, which exists at the highest

level in the EML file (Figure 4). This includes basic contact information, details on internal file

structure (variable names, units, etc.), and spatial, temporal, and taxonomic coverage.

<title> [REQUIRED]

● Brief, high-level description (text).

<pubDate> [REQUIRED]

● Publication date of the forecast. For true forecasts this is not necessarily identical to

<reference_datetime> due to latency in a forecast system. For hindcasts the pubDate can

be long after the reference_datetime.

<intellectualRights> or <licensed> [REQUIRED]

● Usage and licensing information. <intellectualRights> can be text, but we recommend

providing the URL of a standard license, e.g., https://opensource.org/licenses/MIT.

● <licensed> is more detailed and consists of the following subelements:

○ <licenseName> e.g., Creative Commons Attribution 4.0 International,

○ <url> e.g., https://spdx.org/licenses/CC-BY-4.0.html,

○ <identifier> e.g., CC-BY-4.0.

See https://eml.ecoinformatics.org/whats-new-in-eml-2-2-0.html#dataset-license for more

information.

83

https://opensource.org/licenses/MIT
https://eml.ecoinformatics.org/whats-new-in-eml-2-2-0.html#dataset-license

<creator> [REQUIRED]

● <individualName> provides the names of who to contact (more than one allowed). It is

composed of the following subelements:

○ <givenName>

○ <surName>

● <electronicMailAddress>

● <userID> [RECOMMENDED] EFI recommends setting the attribute userID to an

ORCID (https://orcid.org/) using the format: <userId

directory="https://orcid.org">0000-0002-1992-6378</userId>.

● [OPTIONAL] Additional optional elements include <organizationName>, <address>,

<phone>, and <onlineURL>. See

https://eml.ecoinformatics.org/schema/eml-resource_xsd.html#ResourceGroup_creator

for more information.

<coverage> [REQUIRED]

Describes the extent of a forecast in space, time, and taxonomy. Can be defined using the R EML

package (Boettiger et al. 2022) EML::set_coverage function and minimally should include at

least the following elements:

● <temporalCoverage>

○ <beginDate> and <endDate> should be in ISO 8601 standard

○ Temporal grain (timestep) of the forecast is not documented in <coverage> and

thus needs to be in <additionalMetadata><timestep>

84

https://eml.ecoinformatics.org/schema/eml-resource_xsd.html#ResourceGroup_creator
https://www.zotero.org/google-docs/?YS7zsw

● <geographicCoverage>

○ <geographicDescription> provides a short text description of the spatial domain

○ <boundingCoordinates> provides a lat/lon bounding box around the forecast

region. This box should be consistent with any spatial dimensions in the forecast

output file itself. Those dimensions, not the metadata, should provide the detailed

spatial information for anything other than point-scale forecasts. Points can be

entered with the same values for both, latitude as east and

westBoundingCoordinate and ongitude as north and southBoundingCoordinate

■ <westBoundingCoordinate>

■ <eastBoundingCoordinate>

■ <northBoundingCoordinate>

■ <southBoundingCoordinate>

● <taxonomicCoverage> [required only if the forecast is for taxonomic groups]

○ EML::set_coverage’s sci_names argument will read a string, list, or data frame of

scientific names (i.e., Genus species).

○ Additional elements are available in the schema to describe the specific

taxonomic system used. See

https://eml.ecoinformatics.org/schema/eml-coverage_xsd.html#TaxonomicCovera

ge for more information.

11.1.1 Entities (file formats)

85

https://eml.ecoinformatics.org/schema/eml-coverage_xsd.html#TaxonomicCoverage
https://eml.ecoinformatics.org/schema/eml-coverage_xsd.html#TaxonomicCoverage

The heart of the <dataset> is the “entity” module, which is used to document the file formats.

The one required “entity” is used to document the forecast output file. This section is simplified

because there are only two options currently supported (CSV and netCDF), as documented in

Section 1, and extensions of the EFI convention to other file formats would have very similar

metadata to these two. Optionally, additional entity records can be used to document the drivers,

initial conditions, parameters, data assimilation constraints, etc.

Forecast output entity: [REQUIRED]

● The EML entities can have several different Types, such as dataTable, spatialRaster,

spatialVector, and otherEntity. These end up as high-level XML elements within the

metadata. For EFI standard outputs the entity type should be:

○ <dataTable> for CSV or

○ <otherEntity> for netCDF.

● <entityName> = “forecast”

● <physical> = describes characteristics of a specific forecast file (name, size, etc.). These

are most easily set using utilities such as R’s EML::set_physical(filename) function,

which will directly extract the required metadata from the file itself.

● <attributeList> = Documents the file format in terms of variable names, units, formats,

etc. See

https://eml.ecoinformatics.org/eml-schema.html#the-eml-attribute-module---attribute-lev

el-information-within-dataset-entities for more information. The attributeList is most

86

https://eml.ecoinformatics.org/eml-schema.html#the-eml-attribute-module---attribute-level-information-within-dataset-entities
https://eml.ecoinformatics.org/eml-schema.html#the-eml-attribute-module---attribute-level-information-within-dataset-entities

easily set using utilities such as R’s EML::set_attributes function, which reads a table

with the following columns (see Table S3 for an example):

○ attributeName

■ Should start with the DIMENSION variables (datetime, Z, Y, X,

uncertainty) in the output file, following the order and standard definitions

in Table 2.

■ Next, users should document their variable names, as used in the files

themselves, for the variables being forecast. In netCDF each variable is its

own object within the file. The tabular CSV is organized in a long format,

where the variables are in the “variables” column and the values are in the

“predictions” column. It is recommended that variable names be CF

compliant.

■ Finally, users should include any indicator variables used:

data_assimilation, da_qc, forecast, and log_weight.

○ attributeDefinition

■ Because models may be storing a mix of information in their output files

(states, parameters, dimensions, flags, etc.) the EFI standard REQUIRES

that attribute definitions provide both a variable type and definition. These

are stored together in the attributeDefinition by using square and curly

braces to delineate the two: [variable_type]{variable_definition}. See

Table S3 for examples.

87

■ [variable_type] - should be in square braces and come before the variable

definition. Can take on one of the following values, per the output

standard (Section 1) and uncertainty classes (Table 6)

● dimension

● variable = output variable

● diagnostic = variable output purely for diagnostic purposes

● observation = data that is or could be compared to an output

variable

● flag

● initial_condition

● driver

● parameter

● random_effect

● obs_error

● process_error

■ {variable_definition} - Short but precise definition of each attributeName.

Should be in curly braces {} and come after the variable_type

■ If a single attribute falls within more than one variable_type, variable

types can be comma-delimited within the square braces.

■ For those parsing attributeDefinitions, the following regexp should

separate the two: "^ *\\[(.*?)\\] *\\{(.*)\\} *$"

○ unit

88

■ Unit of each attributeName. Note EML currently uses a different unit

convention than UDUNITS and UDUNITS do not pass EML’s validation

checks. Therefore one should use EML’s customUnits field to specify

variable units and ignore EML's standardUnits field altogether.

○ Additional optional columns include: missingValueCode (e.g., “NA”, “-9999”),

formatString (required for dateTime data), numberType (e.g., “real” versus

“integer”), etc. See the EML attribute schema

(https://eml.ecoinformatics.org/schema/eml-attribute_xsd.html) or R

EML::set_attributes function for more details.

● Other optional components of the entity (e.g., abstract, methods) are documented in the

EML entity schema (https://eml.ecoinformatics.org/schema/eml-entity_xsd.html) and the

R EML package (and the eml$dataTable and eml$otherEntity functions in particular).

The R EML vignette Creating EML

(https://cran.r-project.org/web/packages/EML/vignettes/creating-EML.html) may be

helpful to users.

attributeName attributeDefinition unit formatString numberType
datetime [dimension]{datetime} year YYYY-MM-

DD
NA

depth [dimension]{depth in
reservoir}

meter NA real

ensemble [dimension]{index of
ensemble member}

dimensionle
ss

NA integer

obs_flag [dimension]{observation
error}

dimensionle
ss

NA integer

89

https://eml.ecoinformatics.org/schema/eml-attribute_xsd.html
https://eml.ecoinformatics.org/schema/eml-entity_xsd.html
https://cran.r-project.org/web/packages/EML/vignettes/creating-EML.html

species_1 [variable]{Pop. density of
species 1}

numberPer
MeterSquar
ed

NA real

species_2 [variable]{Pop. density of
species 2}

numberPer
MeterSquar
ed

NA real

data_assimilation [flag]{whether time step
assimilated data}

dimensionle
ss

NA integer

Table S3: Example attribute table passed to R’s EML::set_attributes.

The remaining optional entities have the same structure (entityName, physical,

attributeList). In many cases an individual model may mix multiple types of variables within and

across files, in which case merging or splitting some of the following optional entities is allowed.

In these cases users are encouraged to name entities in ways that make it easiest to understand

the outputs and find information. Including variable_type information on attributeLists within

entities is thus critical to making this information machine parsable.

Initial conditions entity [OPTIONAL]

● <entityName> = “initial_conditions”

● Provides a listing of initial condition variables and file format

● Number of variables should match <initial_conditions><complexity>

● Typically, initial_conditions is a subset of the variables in the forecast

● If <assimilation> is used, you can optionally provide matching <attributeName> records

to indicate which initial conditional variables are being iteratively updated.

Covariates/drivers entity [OPTIONAL]

90

● <entityName> = “drivers”

● Provides a listing of driver variables and file format

● Number of variables should match <drivers><complexity>

Parameters & Random Effects entities: [OPTIONAL]

● <entityName> = “parameters” and/or “random_effects”

● parameters provides a listing of parameter variables and/or file format, which should

match <parameters><complexity>

○ When parameter uncertainty is being propagated via ensembles, one dimension of

the parameter file should match ensembles.

○ When forecasting using models that also have parameters that change over

space/time/etc (e.g., random effects), parameter files should provide the values of

the parameters used for these different dimensions (e.g., a time dimension on the

parameter values implies a temporal random effect). We recommend using the

same dimensions, in the same order, as are in the output file netCDF and CSV

formats, but acknowledge that models store their parameters in many different

ways. If a dimension is present in the forecast output, but not in the parameters,

that implies parameters do not vary in that dimension.

● random_effects provides a listing of parameter random effect covariance matrices

○ Dimension of covariance matrices should match <random_effects><complexity>

○ File format should identify which parameters are random and how they are being

indexed (time, location, species, individual, etc).

91

○ As of this convention version (2023), we acknowledge this section needs more

detail and examples, especially for how to store autocorrelated effects and basis

function approximations.

Process error entity [OPTIONAL]

● <entityName> = “process_error”

● Provides process error covariance matrix

● Dimension should match <process_error><complexity>

Data assimilation constraint entities [OPTIONAL, one per data source]

● <entityName> is user defined.

● Provides information about data used to constrain the model during data assimilation;

documented the same as any data source

● variable_types are expected to be predominantly observation and obs_error

11.2 additionalMetadata REQUIRED elements

<metadata_standard_version>

Version number of the EFI forecast convention used. Parsing/interpreting metadata

correctly is important for cases where variables are added or changed.

Example: 0.5

92

<timestep>

Forecast output timestep (a.k.a. grain) and units (ISO8601 and UDUNITS compliant).

Example: 1 day

<horizon>

Total length of the forecast (or hindcast) in time. Should be consistent with

<temporalCoverage>’s <beginDate> and <endDate>. For a “free run” this would be the

total length of the model run. For an iterative forecast or hindcast/reanalysis, it would

be the length of each individual run. The horizon will generally be the same or longer

than the time between assimilation steps (e.g., run a 16-day forecast but update it after

one day). Must provide both a positive number and units (ISO8601 and UDUNITS

compliant).

Example: 16 days

<reference_datetime>

Datetime indicating the start of the forecast. Only REQUIRED if not already included in

the output file. See dimensions (Table 2) for more information. Typically will be the same

as the base EML <temporalCoverage><beginDate>.

Example: 2020-08-02T12:00:00Z

<iteration_id>

93

Identifier unique to this specific forecast. Only REQUIRED if not already included in the

output file. See global attributes (Table 1). Allowable for this to be the same as the base

EML <packageId> and/or the <reference_datetime>.

<model_name>

Identifier unique to an overall project, which is intended to allow connections to be made

across different versions of a model/workflow or among models in a multi-model

forecast. Only REQUIRED if not already included in the output file. Allowable for this to

be the same as the <model_description><name> or <model_description><repository>.

See global attributes (Table 1).

Example: https://github.com/PecanProject/pecan/

<model_description>

<model_version>

Identifier unique to a specific version/snapshot of model/workflow code, such as a

DOI, tagged code release, or version control hash. Only REQUIRED if not already

included in the output file. See global attributes (Table 1).

Example: https://github.com/PecanProject/sipnet/releases/tag/r136

<name>

Name or short description of the model. More extensive model documentation can be

provided using the base eml-methods or eml-software modules.

Example: SIPNET

94

https://github.com/PecanProject/pecan/releases/tag/v1.7.1
https://github.com/PecanProject/sipnet/releases/tag/r136

<type>

Statistical, process-based, machine-learning, or other. In specifying these classes we

acknowledge that these choices are subjective and overlapping, as different

disciplines often classify the same modeling approaches differently, but encourage

users to use their best judgment.

Example: process-based

<repository>

URL or DOI link to the forecast code repository. Allowable to be the same as the

model_name. OPTIONAL if no such repository exists, but highly encouraged under

FAIR principles (Wilkinson et al. 2016).

Example: https://github.com/PecanProject/sipnet

95

https://www.zotero.org/google-docs/?FjPJb0
https://github.com/PecanProject/sipnet

