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Abstract
Traits are notoriously challenging to measure at a desirably large spatial extent with

traditional field methods, which limits the discoveries that forest ecologists can make with these

data. There is a ripe opportunity for uncrewed aerial systems (UAS) to contribute to ecology

through forest inventory trait mapping. UAS can help overcome the challenge of scale by

collecting data at a larger spatial extent with comparable resolution. With the proliferation of

large-scale spatially explicit analyses, using UAS for forest trait mapping is synergistic with the

direction that the field of forest ecology is headed, and thus an essential method for forest

ecology toolkits. Here we provide evidence that  forest traits are increasingly used as the metrics

of focus in forest ecology, review what forest inventory traits and attributes can be derived from

UAS-based data, and dive into a case example of how researchers derive a particular trait, carbon

stock, from UAS-based data. Our results highlight the underutilization and infancy of UAS in

forest ecology. From our review of the carbon stock literature, we found a different method of

calculating carbon stock from UAS data in every paper, each with their own hurdles and caveats

in estimating plant-based carbon stock. UAS can push forest ecology and the concomitant field
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of spatial ecology into a future with better temporal and spatial resolution of data collected on an

evermore affordable budget.
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Introduction
The use of small-scale data can limit discovery in the field of forest ecology. Researchers

make inferences at the population-, community-, or ecosystem-level from forest inventory

datasets; however, data collection is often constrained spatially and temporally by traditional

field survey methods. Major technological innovations, like open source programming languages

and computers with high processing power, enabled the development of cutting-edge statistical

and theoretical methods to maximize return on messy or incomplete datasets (Knuth, 2003),

(Maltenfort, 2015). Remote sensing technologies offer more comprehensive data collection and

have recently been modernized through miniaturization of cameras and sensors, though this

innovation has yet to realize its potential in forest ecology. Advances in uncrewed aerial systems

(UAS) allow users to gather data at relevant spatial and temporal resolutions and with

unprecedented efficiency compared to using traditional field-based methods with comparable

effort and resources. UAS collect data with fine enough spatial resolution to measure trees at a

scale relevant to their biology, while simultaneously covering a spatial extent large enough to

measure landscapes. These spatially explicit data from UAS will push spatial ecology forward

(Anderson & Gaston, 2013) (Box 1).

There are ripe opportunities for UAS to contribute to ecology through forest inventory

trait mapping. Measuring forest traits allows for continuous comparison across ecosystems and

https://www.zotero.org/google-docs/?JaMQ72
https://www.zotero.org/google-docs/?s4WPE9
https://www.zotero.org/google-docs/?iBSXKd


for appropriate incorporation of forest dynamics into Earth system models (e.g., global climate

models) (Scheiter et al. 2013, van Bodegom et al. 2014, Reich et al. 2014). However, traits are

notoriously challenging to measure at a large enough spatial scale with traditional field methods

(Violle et al., 2014), a challenge that UAS can help overcome by collecting data at a larger

spatial extent with comparable resolution. UAS act as a link between field collections and

airborne- and satellite-based imagery by scaling up ground measurements of traits to larger

landscapes and by unmixing spatially coarse airborne- and satellite-based imagery for more

accurate trait mapping to regional and global scales (Box 1). As anthropogenic influences

continue to alter forests, flexible and efficient technologies like UAS are needed to track success

in management practices and changes in forest ecosystem stability (Mori et al., 2017). With the

proliferation of large-scale spatially explicit analyses, using UAS for forest trait mapping is

synergistic with the direction the field of forest ecology is headed, and thus an essential method

for forest ecology toolkits.

Here we provide evidence that forest traits are increasingly used as metrics of focus in

forest ecology, review what forest inventory traits and attributes can be derived from UAS-based

data, and dive into a case example of how researchers derive a particular trait, carbon stock, from

UAS-based data. In this venture, we provide examples of and spur ideas for the multitude of

ways that UAS can be used to estimate forest inventory traits. While the up-front expense of and

expertise required to collect and process UAS data hold back many forest ecologists from using

UAS, we aspire to lower the barrier of entry for such researchers who may lack a community of

support for using UAS (Box 2).
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Why is measuring plant traits important?
Forest ecologists measure traits and attributes of trees to characterize their habitats and

understand change through time. A trait is a morphological, anatomical, biochemical,

physiological, or phenological feature of individuals or their component organs or tissues (Violle

et al., 2007), like aboveground biomass (AGB), diameter at breast height (DBH), or absorbed

photosynthetically active radiation (PAR). An attribute is similar to or a proxy for a trait, but not

a trait itself, like count of individuals, which is an attribute of a population, or a vegetation index

(VI) like normalized difference vegetation index (NDVI), which is a spectral indicator of healthy

vegetation. A challenge ecologists face today is collecting sufficient data to enable forecasting of

ecosystem-level responses to environmental changes and to compare these changes across the

globe (Violle et al., 2014). For example, an understanding of how fine-scale spatial variation in

plant traits correlates with environmental variables that have high spatial turnover or correlates

even with landscape-scale factors (e.g., elevation, slope, moisture gradients) would open the door

to ecologists asking new questions with actionable inferences for policy.

Since traits and attributes (hereafter, referred to simply as traits, for brevity) can be

measured continuously across ecosystems, they can better predict ecosystem functioning and

create a more robust theoretical baseline than species-level parameters which are limited to each

specific geography (Cornelissen et al. 2003, Cadotte et al. 2011, Pérez-Harguindeguy et al. 2013,

Violle et al. 2014). Scientists collecting UAS-based trait data can promote open and reusable

science by sharing their data on public plant trait databases such as TRY, which integrates plant

trait data from several hundreds of trait datasets in one consistent format (Kattge et al., 2011). In

a classic example of trait-based remote sensing in conservation, Asner et al. (2017) derived a set

of non-correlated, functional traits of rainforest canopies using instrumentation on a crewed

aircraft, which were directly useful for conservation in Peru (Kapos, 2017). This exemplifies a

https://www.zotero.org/google-docs/?nGvhb8
https://www.zotero.org/google-docs/?nGvhb8
https://www.zotero.org/google-docs/?i0olXt
https://www.zotero.org/google-docs/?kolOPS
https://www.zotero.org/google-docs/?ovgOh7
https://www.zotero.org/google-docs/?zxZrj7
https://www.zotero.org/google-docs/?fwtTdY
https://www.zotero.org/google-docs/?FykHUt
https://www.zotero.org/google-docs/?l5YPvs
https://www.zotero.org/google-docs/?yax6r5


recent paradigm shift to functional biogeography, which relates the functional structure of

ecosystems to ecosystem features. The shift from species-based to functional biogeography in

forest ecology calls for tools like UAS to collect spectral and structural forest properties for

measurement of small-scale plant traits continuously across regions (Violle et al., 2014,

Schneider et al. 2017).

Why UAS over other forms of data collection for measuring forest traits?
The fine spatial resolution, moderate spatial extent, and temporal flexibility of UAS

surveys set UAS apart from other methods of ecological survey (Box 1). Anderson and Gaston

(2013) review the benefits that UAS bring to ecology, including making scale-appropriate

measurements of forests that enable ecologists to relate structure to function. The fine detail of

UAS-based measurements allow detection of textural heterogeneity that aid in estimating forest

traits, like leaf area index (LAI), chlorophyll content, and functional group (Laliberte & Rango

2009, Lu et al. 2018). Forest traits used as parameters in dynamic global vegetation models

(DGVMs), like biomass, leaf mass per area, stem-specific density, and seed mass, are important

components of climate change models (Scheiter et al. 2013, van Bodegom et al. 2014, Reich et

al. 2014). Stahl et al. (2014) used seed mass, woody density, and plant height to predict tree

species range shifts in a changing climate. Such traits can be more accurately estimated with

UAS than with other remote sensing sources due to the fine spatial resolution of UAS imagery

(Houborg et al., 2015).

Biodiversity is commonly described as a driver of ecosystem function; however, forest

structure, which UAS can measure precisely and accurately, has been considered a better

predictor of ecosystem function than even biodiversity (LaRue et al., 2019). For example, forest

gap shape metrics were used to identify a strong dependency between disturbance patterns and
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understory plant diversity in light-limited forests (Getzin et al., 2012). UAS can measure fine

spatial detail of forest canopy structure, like canopy height models (CHMs), gap sizes, or

understory composition, which can lead to better estimates of ecosystem function over a larger

spatial scale than traditional field surveys can capture with equal effort.

UAS-based measurements can supplement field measurements (Mohan et al., 2017) (Box

1). Camera sensors on UAS collect spectral information that can be used to calculate VIs that are

proxies for the chemical composition of vegetation (Anderson & Gaston, 2013) (Box 2).

Minimal field sampling spanning the variance of data can be used to calibrate accurate estimates

of canopy foliar chemical traits using airborne remote sensing (Asner et al. 2015). Saarinen et al.

(2018) derived biodiversity indicators in boreal forests using spectral and structural features from

UAS-based imagery. They found that dead wood biomass and species richness were

underestimated whereas structural variability indicators were the most accurately estimated, the

latter which is challenging to measure using traditional field measurements and relatively

straight-forward to measure with UAS (Box 3). Conclusions drawn using traditional field data

are limited in scale relative to those made with remote sensing data while efforts for the research

team are comparable.

UAS remote sensing fills a critical gap between field-based inventories and airborne or

satellite remote sensing of forests, linking scales rather than competing (Pádua et al., 2017).

Although open source airborne and satellite imagery has revolutionized our understanding of

global natural phenomena, it has coarse spatial and temporal resolution, is altered by the

atmosphere and, in most cases, is dependent on perfect weather. On the other end of the

spectrum, traditional field-based methods of mapping plant traits are essential for

ground-truthing and are important for familiarizing oneself with their study system, but can be
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money-, time-, and labor-intensive. By capturing intermediate spectral and structural

heterogeneity across a landscape repeatedly and reliably, UAS act as a complementary link

between these scales (Box 1). The fine spatial resolution, moderate spatial extent, and collection

regularity offered by UAS surveys have already made UAS an important part of forest inventory

monitoring (Wallace et al., 2016). Goodbody et al. (2017) describe a helpful case study in which

they estimated tree height and volume derived from airborne lidar data and UAS RGB imagery

(Box 3) and find that measurements from UAS RGB imagery, the less common of the two

collection methods for forest surveys, generate accurate forest inventory measurements for

sustainable forest management. UAS can accelerate findings in forest ecology by measuring

functional traits in areas where land-use history or field surveys exist in order to measure human

impacts on ecosystems and to better relate biodiversity to ecosystem functioning (Kapos 2017,

Schneider et al. 2017). In such cases, ground-based data calibrate stand-level models from UAS,

which can be scaled up to satellite or airborne imagery to make predictions at regional levels,

allowing traits to be more accurately predicted across a continuous spatial extent. This need for

UAS to extend field-collected data is part of the impetus for this review. In this work,  we

describe how forest ecologists can use UAS to measure traits in their study systems in novel

ways.

Forest Inventory Trait Review
Here, we illustrate which traits have been derived from UAS data. We queried Web of

Science (WoS) for plant traits measured by UAS (Supporting Information). The aim of our

search was to identify which forest inventory traits are already being measured by UAS and for

how long. First, we did a broad search to compile a list of which forest inventory traits have been

quantified in the literature. Next, we searched each forest inventory trait individually for studies
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that described the trait as being estimated from UAS data. We expanded each of these queries

from just UAS to adding ‘remote sensing’ generally to contextualize how recent and

underutilized UAS are in remote sensing of forest traits. The UAS search results are a subset of

the results from the UAS and remote sensing search. The reader must keep in mind that the query

results summarized in Figure 1 contain papers with matching forest trait terms, but a subset of

the returned papers may have theses less relevant to this review than others. We next describe a

deep dive into one trait, carbon stock, for which we rigorously filtered the Web of Science results

to consider only papers which quantify carbon stock estimates.

Forest inventory traits that can be derived from UAS data - our bread ‘n butter
Our results highlight the underutilization and infancy of UAS in forest ecology. This

presents a need for illustrating the utility of this novel and growing field, which this review

demonstrates. For the query containing terms related only to UAS, we found an average of only

58 papers per forest inventory trait, compared to 1395 papers in the search containing remote

sensing terms (Figure 1). No forest inventory trait had more publications for the UAS search

compared to the remote sensing search. The most recent forest inventory trait to enter the remote

sensing literature was plant magnesium content in 2004, whereas traits continued to be published

for the first time up to the year that this review was done in 2019 (e.g. photosynthetic pigments).

The average publication year for the UAS-only search was 2011, compared to 1990 in the search

containing remote sensing terms (Figure 1).  Photosynthetic pigments and plant calcium had only

one result under the UAS search (Figure 1), which points to ample opportunities to measure

certain forest traits that are under-studied with UAS. Since UAS are a new technology, it makes

sense that there are fewer and more recent studies of forest traits using UAS, but when we

compare the average rate of publication since the first year published for each trait, we find 5



papers per year for UAS searches compared to 39 for remote sensing. These summary statistics

point out that there continues to be a slow rate of uptake for UAS-based studies in the remote

sensing literature, which demonstrates that there is room to push UAS surveys of forest

inventory traits along to catch up to other types of remote sensing. However, we see that a new

forest inventory trait has been published using UAS methods nearly every year for the last two

decades, which demonstrates a solid record of innovation for UAS in forest ecology.

The kinds of forest inventory traits gathered from the literature were varied. To help

interpret the WoS results, we organized the forest inventory traits into the following categories

(count of traits in parentheses): biochemical (6), biodiversity (1), morphological (12),

phenological (3), physiological (8), and population (1) (Figure 1, Supporting Information). The

singular traits in a category are species richness in biodiversity and count of individuals in

population. Some of the earliest traits surveyed by UAS were physiological, namely absorbed

PAR, NDVI, stomatal conductance, water content/stress, leaf chlorophyll, and water use, which

were published in the 2000’s. Similarly, physiological traits were published early on in the

remote sensing literature, too, with the five named traits being published by 1992. Biochemical

traits are more recent in the UAS publication record, with plant potassium, phosphorous,

magnesium, and calcium published for the first time in the last five years. Plant nitrogen (2008)

and the earliest published UAS trait, carbon stock (1998), are exceptions. Physiological and

morphological traits are among the most bountifully published trait categories both UAS and

general remote sensing literature. Land cover classification is far and away the most published in

the remote sensing literature with 10170 results, ahead of NDVI in second with 5976 results. The

traits with over 100 publications in the UAS search include land cover classification (154) and

NDVI (237 - the most published for UAS), as well as others that yielded 2000 results in the



remote sensing: include canopy height (203 UAS, 2053 remote sensing), water content/stress

(170, 2706), LAI (212, 3478), leaf chlorophyll (175, 5281), and carbon stock (118, 5501). The

traits which had the fewest references returned in the UAS-only search were: plant magnesium

(2), plant photosynthetic efficiency (2), photosynthetic pigments (1), and plant calcium (1);

whereas the traits with the fewest references in the remote sensing search were: forest gap size

(46), leaf mass per area (46), budburst (31), plant calcium (28), and plant magnesium (16).

Phenological traits were among the least published for both searches, which includes budburst,

leaf flushing, and senescence. Web of Science queries and select references for papers where

UAS measured forest inventory traits in Figure 1 are listed in the supplementary section

(Supporting Information).

Carbon deep dive
Here we take a deep dive into an example of a single trait, carbon stock, that researchers

estimate from UAS data for forest trait mapping. By exploring one trait more thoroughly, we can

get a better idea of the various approaches and challenges there are in quantifying a forest trait

from UAS data. We selected this trait for our focus because it has the longest publication record

in UAS literature.

Having fine-scale measurements of forest traits like carbon stock is imperative for

building accurate climate models or DGVMs, tools necessary for proper forest conservation and

policy decision-making. Historically, forest conservation planning has often been based on

individual species distributions or estimates of ecosystem services (Kapos, 2017). Planning for

conservation programs, like countries’ efforts to reduce emissions from deforestation and forest

degradation (REDD+) and other climate mitigation programs, can benefit greatly from accurate

and spatially continuous mapping of forest traits, like carbon stock, for land-use planning (Kapos
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2017). UAS-based mapping can capture parameters that go into carbon stock calculation like

canopy height, LAI, canopy cover, and species identification, and improve such measurements

influencing policy by creating more highly resolved maps of functional traits, continuous across

space. The work of Asner et al. (2017) in measuring traits of Peruvian forest canopy using

airborne remote sensing had direct policy impact on Peru’s conservation plans. Forest

conservation planning from UAS measurements is a natural next step. While UAS cannot reach

the spatial extent of airborne remote sensing, UAS can provide more precise measurements that

can be scaled-up to coarser resolution remote sensing. This scaling can inform regional or global

models, while providing a tractable approach for collecting remote sensing data for end users for

which airborne collection would be out of scope. Quantifying carbon stock is important for a

number of ecological and economic applications: identifying ecological carbon sinks and sources

through time, tracking carbon emissions, studying impacts of land use change, and measuring

agricultural productivity. Carbon stock is the second most published forest inventory trait in

remote sensing and one of the most published using UAS (Figure 1). It has the third longest

publication record in remote sensing and the longest using UAS (Figure 1).

We queried the Web of Science, searching for studies that measured carbon stock with

UAS. We combed through the roughly 150 results and found only nine where carbon stock

volume was actually estimated from UAS-derived data (Table 1). Most of the papers alluded to

the utility of estimating carbon stock with their UAS data, as a future direction perhaps, but did

not complete this task. Due to this small number, we did not limit the studies to forest inventories

and allowed for other vegetation types like lucerne, dryland vegetation, and bog (Table 1).

The nine studies measuring carbon stock spanned four continents. Eight studies surveyed

diverse, naturally occurring communities, while one of the nine studied a planted monoculture
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(Wehrhan et al., 2016). Only one study used lidar (McClelland II et al., 2018), while the rest used

RGB or multispectral imagery, which exemplifies the hurdle of monetary cost for drone-based

lidar (Deering & Stoker, 2014).

Measuring carbon stock directly is challenging and requires chemical analysis and an

understanding of the distribution of carbon stored throughout a plant. When using remote sensing

methods like UAS to estimate carbon stock, calculating biomass is a common first step. All

articles but one followed this method, calculating carbon stock using allometric equations from

biomass estimates (Table 1). The divergent study estimated carbon loss by comparing the digital

elevation models (DEM) pre- and post-degradation (gully formation) of peatland and using a

cited carbon density at the site as a reference (Scholefield et al., 2019).

Methodological approaches for estimating carbon stock range from simple to

sophisticated. Cunliffe et al. (2016) and Wehrhan et al. (2016) simply used a linear coefficient

derived from the literature to convert biomass to carbon and used no validation method (Table 1).

Dandois & Ellis (2013) assessed accuracy of AGB estimation, but not of carbon estimation.

Messinger et al. (2016) and Swinfield et al. (2019) calculated RMSE by comparing drone-based

SfM estimations of carbon to those of airborne- and drone-based LiDAR measurements,

respectively. McClelland II et al. (2018) reported 24.07 Mg CO2 RMSE for their above ground

carbon estimation. On the more sophisticated end of the spectrum were Jayathunga et al. (2018)

and Li et al. (2019). Jayathunga et al. (2018) used GLMMs to calculate carbon stock, integrating

species-specific factors like wood density and biomass expansion for the conversion of volume.

Their carbon estimations had 17.4% rRMSE for UAV-SfM estimates considering canopy cover

and 18.9% without considering canopy cover. Li et al. (2019) derived VI’s texture features,

height metrics, and species classifications from their RGB imagery used these as predictors in
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three regression models (i.e., random forest, artificial neural network, and support vector

regression). The random forest model yielded the most accurate results with 0.81 R2, 20.46 Mg

C ha−1, and 20%  rRMSE (Table 1). These methods for calculating carbon stock from

UAS-based measurements are still being refined.

Discussion

The literature reviewed covers a variety of forest inventory traits, both spectrally- and

structurally-derived. Of the categories we organized the forest inventory traits into,

morphological and physiological traits make up most of the earliest traits studied using

UAS-derived data. Carbon stock, land cover, LAI, absorbed PAR, and NDVI are common forest

traits and proxies used to understand stand-level productivity, structure, and function. Such traits

are useful in studying biodiversity and ecosystem function in forests. The most recent traits

studied using UAS-derived data are largely biochemical (e.g., plant potassium, magnesium, and

phosphorus), which are challenging to quantify due to the labor and expense of ground-truthing

measurements in a laboratory, and are not as commonly used in understanding community

dynamics. Other recent appearances in the literature include traits that require measurement of

fluorescence (e.g. photosynthetic efficiency) or that can be challenging for a UAS to view (e.g.

forest canopy can occlude stem basal area). However, there are still traits that have been

measured elsewhere in the remote sensing literature, but yet barely by UAS, such as

photosynthetic pigments and plant calcium. These traits present opportunities for  scientists to

borrow methods from the remote sensing literature to estimate those traits with UAS data. Still,

some forest traits have yet to be measured by remote sensing at all. For example, understanding

how much carbon trees store below-ground is also important for a holistic understanding of how

much carbon a forest stores, but UAS are not yet able to measure this, albeit below-ground



carbon is challenging to measure even with more hands-on field methods. Our results reported

that the average rate of publication since the first year of publication for each trait was 5 papers

per year for UAS searches compared to 39 for remote sensing. This may be explained by a lag in

adoption of using UAS in forest ecology research, inconsistency in terminology as UAS has

gained traction, and/or the lack of UAS data standardization and public availability.

While more traits are being measured by UAS, we also see expansion of new ways to

measure a given trait from UAS-based data. Given the number of sensors to choose from, the

variety of flight parameters to select in flying a mission, and various ways to post-process the

data, there are many ways to arrive at a trait estimation. We see a variety of traits can be

measured using different sensors, but even the same trait can be measured in different ways

depending on the scientific question at-hand. In Table 2, we highlight a few citations from our

review of forest inventory traits to illustrate which sensors that can be used and combined in

measuring forest traits to address a variety of scientific objectives. For forest researchers with

agroforestry applications, (Pádua et al., 2017) review contemporary UAS methods and advise

users in on UAS selection for their work. From our review of the carbon stock literature, we

found a different method of calculating carbon stock in every paper, each with their own hurdles

and caveats in estimating plant-based carbon stock (Table 1). For example, one paper used

segmentation to delineate individual trees (Li et al., 2019), while most used an area-based (e.g.

stand-level) approach. We also recognize that there is not yet an agreement for the most

appropriate statistical approaches in deriving a trait from UAS data and cross-validating these

estimations, even though such a relation is important in comparing studies that estimate the same

trait. One recommendation is to test the estimation accuracy of various statistical approaches in

order to justify the best one to use in measuring traits (Capolupo et al., 2015). If more forest
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researchers followed a single model in quantifying forest carbon stock, results across studies

could be more easily compared and these results could more simply be used to inform global

climate models. This calls for forest ecologists to be transparent with the choices they make in

collecting and processing the data so that benchmark comparisons can be made between methods

(Capolupo et al. 2015, Hoffmann et al. 2015, Wallace et al. 2016, Yue, et al. 2018a, Yue et al.

2018b). There needs to be a conversation comparing and refining various forest trait estimation

methods from UAS data to amplify their existing utility.

Problems & Challenges

While UAS are becoming a tool to revolutionize spatial ecology, challenges in equipment

and licensing maintenance, data quality control and replication, and workflow standardization

are still being refined in forest ecology (Anderson & Gaston, 2013). In order to fly a drone, a

user must understand local regulations  (e.g., U.S. Federal Aviation Administration’s (FAA)

airspace restrictions) and UAS licensing rules. Once licensing and legalities are figured out,

technicalities for data quality assurance and quality control must be addressed (Box 2).

Researchers face camera calibration and data replication challenges.(Dandois & Ellis, 2013)

summarize factors that influence data quality obtained by post-processing  remote sensing data.

Flight parameters like altitude, speed, and image overlap are often not reported with UAS-based

results, but determine data quality and influence interpretation of results (Baxter & Hamilton,

2018). Sensor calibration techniques are inconsistent across applications, but light exposure on a

given day strongly influences image classification accuracy (Lehmann et al. 2015). Changing

light conditions also cast shadows and interfere with contrast between trees, which can cover up

important species-specific information (Nevalainen et al., 2017). Thus, it is recommended to fly
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at local solar noon in sunny conditions or during overcast conditions (Lehmann et al. 2015).

Since shadow pixels deteriorate the average spectra of vegetation, (Näsi et al., 2015)) avoid this

by selecting the 6 brightest pixels within a tree boundary and achieve proper separation of crown

color classes to identify tree health.

Occluded or understory trees and overlapping crowns also make tree identification or

crown segmentation harder. (Wallace et al., 2016) found that UAV-based lidar and SfM

overestimated tree height compared to field measurements in a broadleaf eucalyptus forest, but

LiDAR had better canopy penetration than SfM in complex forest structure. Identifying

individual coniferous trees usually involves finding the local maxima in a CHM, whereas

identifying individual deciduous trees in the same way can lead to different branches on a tree

being identified separately (Baena et al., 2017). As images are collected during the UAS flight,

higher overlap between subsequent images leads to more comprehensive forest mapping during

post-processing. (Michez et al., 2018) found more accurate biomass predictions from a model

that used images from two UAV flights at different times within a season compared to a model

that used images from a single UAV flight. Even aligning high-resolution spectral data with field

validation data requires some expert knowledge and additional inquiry. For example, (Scholl et

al., 2020) use airborne data to explore how different methods of delineating the crown polygon

from which to sample spectra affects tree species classification.

While great strides have been made in troubleshooting UAS methods to measure more

forest traits or to measure them more accurately, there is still more to accomplish. Forest

inventory traits we cannot or currently have trouble measuring include belowground biomass,

wood density, and tree age, as well as distinguishing vertical distribution of various traits, like

chemical composition. Estimating measurement error for remote sensing methods requires
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ground-truthed data, like GCPs in estimating spatial error or leaf tissue samples for chemical

analysis for estimating chlorophyll content from multispectral imagery. Despite the broad

reaches of UAS spatially, it can take many days for a multirotor UAS to survey a forest stand in

entirety with high image overlap. Launching coordinated fleets of UAS to survey a forest could

address this shortcoming in spatial extent (Merino et al., 2012).

Frontier & future directions
Using UAS to study forest inventory traits is still a wild west, in which forest ecologists

are continually discovering the capabilities of UAS-derived data. Integrating remotely sensed

plant functional traits, environmental databases, and DGVMs will help elucidate mechanisms

behind functional diversity and ecosystem function (Schneider et al., 2017). Another frontier in

studying forest inventory traits is combining UAS flights and autonomous ground vehicles

equipped with lidar to better explore the top and bottom of a forest canopy (Jaakkola et al.,

2017). Despite the promise of using UAS in forest ecology, considerations must be made in

using these new methods. The use of UAS are best applied by supplementing existing aerial-,

space-, and ground-based technologies rather than replacing them (Dash et al., 2017). Sensors on

UAVs will need continual innovations to expand their spectral range and specificity to better

monitor forest activities such as insect infestations (Näsi et al. 2015, Dash et al., 2017),

hydrological traits (Anderegg et al., 2018), and biotic and abiotic causes of tree dieback

(Lehmann et al. 2015).

There is a need for community-level knowledge-sharing to push UAS-based ecology to

being more accessible. For example, there are not standard metadata required to publish with

UAS surveys, but certain metadata are needed in order to make a study reproducible. Many of

the most usable post-processing photogrammetry software still are proprietary. There is not yet a
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commonly agreed-upon storage service that has abilities appropriate to the size of UAS data and

their associated data products to save UAS data openly for public access. Getting started

incorporating UAS methods into the study of forest inventory traits can be as simple as getting

plugged into similar groups developing their own drone ecology programs. The High Latitude

Drone Ecology Network and Intermountain Drone Ecology Network are examples of such

grassroots groups looking to share and refine UAS protocol within a community. The Index

DataBase is a useful online resource for matching remote sensing spectral indices to forest

inventory traits.

UAS can push forest ecology and the concomitant field of spatial ecology into a future

with better temporal and spatial resolution of data collected on an evermore affordable budget.

Bringing UAS into the toolkits of forest ecologists is a big break from the traditional methods of

forest inventories, but essential for collecting measurements at a scale appropriate for questions

regarding ecosystem-level processes or community-level dynamics. Beyond forest applications,

UAS imagery is a goldmine for extracting various traits, making them invaluable records for

long-term ecological studies that can be revisited for future scientific questions. With the

expansion of UAS use in ecology, global trait mapping will be possible at centimeter scales,

pushing ecological forecasting and global climate models to be more accurate and reliable.

Data archive
All data and code for this article are available via GitHub:
https://github.com/annaspiers/uas_foresttraits_review
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Box 1. The myriad benefits of UAS

The benefits of UAS are abundant and together make them a valuable ecological surveying tool for forest
monitoring. UAS are affordable; can link across data scales; allow for frequent monitoring across large spatial
extents; are not constrained by cloud cover; and help eliminate sampling bias.

● UAS save money and time. UAS platforms are cheaper than launching a satellite into space, renting an
aircraft and pilot, or employing a team of expert technicians to do a forest inventory. Goodbody et al. (2017)
point out that collecting airborne data is economically inefficient for small areas, making it unusable for
operational forest inventory surveying. Their ease of use and large spatial coverage allow UAS to be
deployed quickly and with automated missions which facilitates updating inventories regularly, as Marques
et al. (2019) leveraged in monitoring chestnut trees. This feature make it optimal for phenological studies,
where measuring plants multiple times within a growing season is necessary for the scientific question
(Dandois & Ellis 2013).

● UAS operate as a critical link across scales. Their spatial resolution is small enough for ground data to
effectively validate UAS measurements, and their spatial extent is large enough to scale-up to coarser
aircraft and space-based measurements. By linking across scales, UAS allow a better comparison of error
across scales and more accurate trait predictions across landscapes. UAS sensors gather higher point density
than airborne or space-based sensors, which is important for capturing centimeter- or millimeter-scale detail,
with multi-/hyperspectral and RGB imagery, respectively (Näsi et al. 2015, Lehmann et al. 2015, Wallace
2016). In forestry, this means UAS can measure traits of individual trees or stands and even branch-level
detail. Due to poor prediction accuracy of species-specific diameter distributions, enabling tree-level
modeling allows more accurate inventories of forest growth (Nevalainen et al. 2017).

● UAS are opening doors to measure sites that have been challenging to access or disregarded
otherwise. Whereas satellite and airborne images need to undergo a quality control step to mask out cloud
cover, UAS can fly at low altitude below cloud cover. This is particularly important in areas where overcast
conditions are normal (Koh & Wich 2012, Dash 2017). Nonetheless, UAS images must be corrected for
radiometric non-uniformity due to unstable illumination throughout a mission just like in other types of
image-based remote sensing (Näsi 2015). There is a bias in ecological surveys towards species and biota
that are accessible, so the integration of UAS is issuing in an era of more comprehensive global mapping,
which is important for accurate ecological forecasting. (Schneider 2017). Due to their ease of navigation and
ability to fly autonomously, UAS can survey difficult-to-access areas where sampling has not been possible
(e.g. avalanche-prone mountainsides).



Box 2. Overview of Nuts & Bolts of Forest Trait Mapping

Many decisions go into selecting what UAS and associated software are best for your scientific questions. Here,
we will touch on some specific considerations for mapping forest traits.
● Licensing. Legal and logistical restrictions on UAS flight vary highly across countries and localities. In the

United States, one may fly a drone as a hobbyist with minimal training and documentation, though there are
certain benefits of becoming licensed. See the FAA’s website for current licensing regulation. Some
academic institutions, like the University of Colorado Boulder, maintain an FAA certificate of waiver or
authorization (COA) that researchers may be licensed under, in addition to being covered by university
insurance.

● UAS sensors & platforms. Reviews of UAS sensors and platforms exist already that can help orient a
researcher starting to use UAS (Tang and Shao 2015, Pajares 2015, Goodbody et al. 2017). Multi-rotor
drones are useful in surveying forests given their fine maneuverability to fly through canopy gaps and given
their ability to fly slow, which is important for photogrammetry.

● Flight planning. For forest surveying, an automated flight plan should be followed rather than flying
manually, in order to collect evenly-spaced images over a pre-planned AOI. Most autopilot software
programs work only with certain UAS platforms. Examples include: ArduPilot, Pixhawk, DIY Drones,
MapPilot. Take into consideration radiometric and geometric corrections you plan to make in
post-processing for correcting image distortions and georeferencing (Näsi et al. 2015, Adão et al. 2017). The
vertical structure of forests can interfere with signal when collecting GNSS coordinates from the ground.

● Post-processing. Spectral and structural data products extracted from UAS imagery include reflectance,
point cloud, orthomosaic, digital terrain model (DTM), and canopy height model (CHM). Open source
processing tools like CloudCompare, LAStools, and the lidR R package allow users to manipulate and edit
point clouds.

● Deriving forest traits from UAS data.
■ Data fusion: UAS data combined with other data sources to derive plant traits. Non-forest examples

include: crop water use efficiency (Thorp et al., 2018), crop LAI and biomass (Yue, Feng, Yang, et
al., 2018), and oilseed rape flower number (Wan et al., 2018).

■ Crown segmentation: Delineating trees is more challenging in forests than for a stand-alone tree.
■ Machine learning: Random forests can predict traits such as DBH, basal area, AGB, crown height,

crown perimeter, and more (Jaakkola et al., 2017).
■ Vegetation indices: Spectral transformation of bands can quantify tree health traits. For example,

pine beetle infestations increase near-infrared light and decrease visible light compared to
reflectance of healthy pine trees, which is quantified as NDVI (Näsi et al., 2015).
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Box 3.  lidar versus SfM

Forest structural traits are derived from lidar point clouds or from high resolution structure-from-motion (SfM)
point clouds. Lidar gathers the vertical profile of vegetation by shooting laser beams into the canopy and
measuring the number and strength of returns. Lidar provides accurate estimates of forest vertical structure with
similar precision to ground-based measurements over a larger range, better than SfM can provide (Wallace 2016,
Goodbody et al. 2017). However, building SfM point clouds is more affordable than lidar because it requires only
an RGB camera and post-processing photogrammetric software. First, digital images are taken over the area of
interest (AOI) with high overlap, then SfM computer vision algorithms stitch the images together to create a 3D
point cloud of the AOI. Deriving canopies from RGB images affordably is one of the greatest features of UAS
that make them an amazing ecological tool. Furukawa & Hernández (2015) describe what goes on under the
hood of algorithms used in SfM and stereo reconstruction workflows and software. Examples of SfM software
programs include: Ecosynth (Dandois & Ellis, 2013), OpenDroneMap,  IMAGINE Photogrammetry,
Pix4Dmapper, and Agisoft MetaShape. The US Geologic Survey (USGS) National UAS Project Office has a
detailed post-processing workflow for generating a point cloud using SfM (USGS National UAS Project Office,
n.d.).

While lidar and SfM have been found to be comparable methods for measuring structural traits, there are
trade-offs. Capturing understory structure is challenging in dense forests using SfM (Wolf 2000, Wallace 2016,
Jayathunga 2018). This introduces error into ground and topography estimates, so an external digital terrain
model (DTM) or digital elevation model (DEM) is necessary to calculate accurate canopy traits (Dandois and
Ellis 2013, Näsi et al. 2015, Ota et al. 2015, Wallace et al. 2016, Goodbody et al. 2017, Jayathunga et al. 2018).
Wallace (2016) found that lidar also captured greater canopy cover than SfM due to there being less overlap in
images at the canopy edge and thus having sparser point density. On the other hand, SfM provides higher point
density and has a wider field of view (FOV) so can provide wider spatial coverage than airborne lidar (White et
al. 2013), although higher point density comes with a higher computational cost in post-processing (Wallace et al.,
2016).





Table 1. Metadata extracted from the nine studies we found that estimated carbon stock from UAS-derived data. Swinfield et al. 2019 compared 
measurements from two kinds of UAS, so occupy two rows. AGB = aboveground biomass, DBH = diameter at breast height, C = carbon, 
ACD = aboveground carbon density, BA = basal area, V = volume, ρ = wood density, H = tree height

Paper Spatial extent 
(ha)

Location Coordinate 
system

Sensor type Sensor model UAV type UAV model Monoculture vs. 
Diverse

GSD (cm) Ground control 
software

Flying height 
AGL (m)

Image overlap 
(with/across)

Flight pattern Terrain 
following?

Photogrammetri
c software

Segmentation? Allometric 
equation used to 
calculate carbon

Validation 
methods

Trait estimation 
accuracy 
(RMSE or SD)

Dandois & Ellis 
2013

18.75 USA (Maryland) WGS84 UTM 
Zone 18N 
horizontal

RGB Canon SD4000 multirotor HiSystems 
GmbH 
Mikrokopter 
Hexakopter

Diverse 
(deciduous 
forest)

NA NA 350 NA NA NA Agisoft 
PhotoScan (v0.
8.4 build 1289)

No AGB = exp( 
-2.0127 + 2.4342 
* ln(DBH) )
carbon density = 
0.5 * AGB

Comparison to 
field 
measurements

Carbon 
estimation 
accuracy not 
assessed directly. 
AGB estimation 
accuracy 94-112 
(Mg ha− 1) 
RMSE

Wehrhan et al. 
2016

6 Germany ETRS 89 UTM 
33

Multispectral Tetracam Mini-
MCA 12

fixed-wing Carolo P360 Monoculture 
(lucerne)

10 Ground control 
software: 
MAVCDesk

163 50%/60% lawnmower NA Agisoft 
PhotoScan (v1.2)

No C export = .44 * 
(linear 
relationship 
between fresh 
and dry 
phytomass)

NA NA

Messinger et al. 
2016

516 Peruvian Amazon NA RGB Canon S110 fixed-wing Linn Aerospace 
Kestrel

Diverse (tropical 
rainforest)

6.2 – 7.7 3DRobotics 
Pixhawk

200-250 75-85%/50% grid NA Agisoft 
PhotoScan 
Professional

No EACD = aTCHb1 
* BAb2 * ρBAb3

where EACD is 
Estimated 
Aboveground 
Carbon Density, 
top-of-canopy 
height (TCH) is 
top of canopy 
height, BA is the 
regional average 
basal area, ρBA 
is the regional 
average basal 
area-weighted 
wood density, 
and α, b1, b2, and 
b3 are 
coefficients 
estimated from 
the data

Comparison to 
airborne LiDAR 
measurments

At 0.5 ha grain 
size, the mean 
ACD for the area 
flown was 78.64 
± 10.52 
Mg∙C∙ha−1 with 
SFM and 78.86 ± 
9.26 Mg∙C∙ha−1 
using LiDAR (R2 
= 0.80, 4.8 
Mg∙C∙ha−1 
RMSE)

Cunliffe et al. 
2016

3.5 USA (New 
Mexico)

NA RGB Canon S110 multirotor 3D Robotics Y6 
hexacopter

Diverse (dryland 
vegetation)

0.4 - 0.7 Open Source 
Mission Planner 
(V1.3)

15-20 NA grid NA Agisoft 
PhotoScan (v1.
1.0)

No Biomass to 
carbon volume 
conversion 
coefficients taken 
from other 
sources 

grass C = 0.45 * 
(grass biomass)
shrub C = 0.48 * 
(shrub biomass)
juniper C = 0.50 
* (juniper 
biomass)

NA NA

McClelland et al. 
2018

1.12 USA (Virginia, 
North Carolina)

NA LiDAR Velodyne VLP-
16

multirotor DJI Matrice M-
600 Pro

Diverse 
(deciduous 
forest)

NA NA 60-90 NA grid Yes none No AGLC = -112.15 
+ 4.87*Ht25ile + 
0.0087*Int70ile

where AGLC is 
aboveground live 
carbon, Ht25ile is 
the 25th 
percentile of 
height, and 
lnt70ile is the 
70th percentile of 
intensity, etc.

Comparison to 
field 
measurements

RMSE = 24.07 
Mg CO2
RSE = 27.12%
R2 = 0.72
Adj. R2 = 0.68

Jayathunga et al. 
2018

33.75 Japan JGD2000 Japan–
19 zone XII

RGB Sony NEX–5 
16.1

fixed-wing Trimble UX5 Diverse (pan–
mixed conifer–
broadleaf forest)

14.1 NA 500 95%/80% NA NA Agisoft 
PhotoScan 
Professional (v1.
3.2)

No CST = SIGMA_j
([V_j x D_j x 
BEF_j] x (1+R_j) 
x CF)

where CST is the 
carbon stock in 
living biomass 
(Mg C ha–1); V 
is the 
merchantable 
volume (m3  ha–
1); D is the wood 
density (t–d.m. 
m–3); BEF is the 
biomass 
expansion factor 
for the 
conversion of 
volume; R is the 
root–to–shoot 
ratio; CF is the 
carbon fraction of 
dry matter (Mg C 
t–d.m.–1); and j 
is the tree species

Comparison to 
field 
measurements

R2 = 0.72 = 14.3 Mg C ha–1 RMSE
rRMSE = 17.4%

https://www.sciencedirect.com/science/article/pii/S0034425713001326
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Scholefield et al 
2019

0.24 England OSGB 36 RGB Panasonic Lumix 
DMC-LX7

fixed-wing QuestUAV 300™ Diverse (bog) 4.5 Skycircuits 122 NA NA NA Agisoft 
PhotoScan 
Professional (v1.
4.2)

No Using a cut–fill, 
hypsometric 
model of the 
eroded gully, 
carbon loss was 
calculated using 
carbon density 
measurements

No validation 
data collected

NA

Li et al. 2019 320 China NA RGB Sony RX1RM2 multirotor ZR-66B Diverse 
(mangrove forest)

2 Misson Planner 100 74%/65% NA NA Pix4Dmapper Yes log(stem 
biomass) = a*log
(DBH2H) + b

where a and b are 
species-specific 
values (see table 
1 for values). 
Allometric eqns 
calculated for 
stem, branch, and 
leaf

A 10-fold cross-
validation was 
used to compare 
machine learning 
algorithm's 
estimations of 
AGC.  

best model 
(random forest) 
yielded:
R2 = 0.81
RMSE = 20.46 
Mg C ha−1
relative RMSE 
(rRMSE) = 0.20
MAE = 14.82 Mg 
C ha−1
relative MAE 
(rMAE) = 0.14

Swinfield et al. 
2019

82 Indonesia 
(Kapas)

NA RGB Canon S110 multirotor Tarot Ironman 
650

Diverse (tropical 
rainforest)

NA NA 140 NA NA NA Agisoft 
PhotoScan (v1.
2.4)

No ACD = 0.567 * 
H^0.554 * A1.
081 * ρ0.186

where ACD is 
aboveground 
carbon density, ρ 
is the wood 
density, 
calculated as ρ=0.
385H0.097, and 
A is the basal 
area, calculated 
as A=1.12H

drone-based 
LiDAR assumed 
as unbiased 
benchmark

27.2 tonnes/ha 
RMSE between 
LiDAR and SfM 
ACD estimates

Swinfield et al. 
2019

48 Indonesia (Bato) NA Multispectral Parrot Sequoia (same as above) 3DR Solo (same as above) NA NA 120 NA NA NA (same as above) (same as above) (same as above) drone-based SfM 
compared to 
drone-based 
LiDAR 
measurements

(same as above)

https://journals.sagepub.com/doi/full/10.1177/0309133319841300#_i2
https://journals.sagepub.com/doi/full/10.1177/0309133319841300#_i2
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Table 2. Selection of papers from forest inventory trait review to demonstrate the variety of traits that may be measured by sensor(s) to address different scientific objectives.

Scientific objective Citation Trait(s) measured RGB Multispectral Hyperspectral Thermal LiDAR Comments
Identify 
relationships 
between 
disturbance and 
diversity

Getzin et al. 
(2012)

understory floristic 
diversity

Surveyed biodiversity 
through canopy gaps.
Deciduous⁄Coniferous 
forests in Germany.

Identify 
correlations 
between 
phenology and 
spectral and 
structural traits

Klosterman and 
Richardson (2017)

green chromatic 
coordinate, red 
chromatic 
coordinate, and 
several other VI's

Deciduous forest in 
Massachusetts, USA

Assess pruning 
effects on tree 
structure and 
texture

Johansen et al. 
(2018)

crown delineation, 
crown shape 
metrics, several 
VI's

Lychee orchard in 
Australia.

Map leaf traits that 
influence primary 
productivity and 
nutrient cycling

Thomson et al. 
(2018)

Leaf economic 
spectrum: a 
composite trait of 
leaf nitrogen, leaf 
phosphorus, and 
leaf mass per area

Tropical forest in West 
Africa.

Methods 
comparison for 
measuring forest 
structural metrics

Wallace et al. 
(2016)

terrain height, 
canopy 
horizontal/vertical 
distrubutions, stem 
location, crown 
area

Comparison between 
airborne LiDAR and 
UAS-based RGB 
imagery (Box 3).
Eucalyptus forest in 
Australia.

Use forest traits to 
map genetic 
variation

Blonder et al. 
(2020) ploidy level

Quaking apen forest in 
Colorado, USA.

Santini et al. 
(2019)

canopy 
temperature, 
vegetation cover, 
and several VIs

The first study of its kind 
to screen for genetic 
variation in functional 
traits of a mature forest. 
Pinus halepensis 
common garden in Spain. 
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