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Abstract 
1. Assessing species’ risk of extinction is a vital first step in setting conservation 

priorities. However, assessment endeavours like the IUCN Red List of Threatened 
Species still have significant gaps in their coverage of some taxonomic groups. 
Automated assessment (AA) methods are gaining popularity to rapidly fill these 
gaps, taking advantage of improvements in computing and digitally available 
information. However, implicit choices made when developing and reporting 
automated assessment methods could prevent their successful adoption or, even 
worse, their predictions could lead to poor allocation of conservation resources. 

2. We systematically explored how the choice of data cleaning, taxonomic group, 
training sample, and automation method affected predicted threat status. We used 
occurrence records from GBIF to generate assessments for three distinct taxonomic 
groups using four different automated assessment methods. We measured each 
method’s performance and coverage after applying increasingly stringent cleaning 
to the input occurrence data. We used these results to build evidence-based 
guidelines for developing and reporting automated assessments. 

3. Automatically cleaned data from GBIF resulted in comparable performance to 
occurrence records cleaned manually by an expert. However, all types of data 
cleaning removed species and limited the coverage of automated assessments. This 
limitation was more severe for some groups of species than others. Overall, machine 
learning-based methods performed well on all taxonomic groups, even with 
minimal data cleaning. 

4. We recommend using a machine learning-based method on minimally cleaned data 
to get the best compromise between performance and species coverage. However, 
our results demonstrate that the optimal data cleaning, training sample, and 
automation method depends on the focal group of species. Therefore, we 
recommend evaluating new AA methods across multiple groups and providing 
additional context with extinction risk predictions for users to make informed 
decisions. 
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1 Introduction 

Identifying and documenting species at risk of extinction is critical in setting priorities and 
acting to protect biodiversity. The IUCN Red List of Threatened Species (IUCN Red List), the 
most widely accepted framework for assessing species’ global extinction risk, covers the 
entirety of some groups (e.g. birds) but only ~15% of vascular plant species (IUCN, 2021a). 
Such gaps in extinction risk knowledge may lead to inefficient or inappropriate 
conservation resource allocation. Automated assessment (AA) methods can help close this 
assessment gap (Nic Lughadha et al., 2020). However, systematic exploration of methods is 
necessary for their effective application. 

Growing recognition of the imperative to accelerate extinction risk assessments (Albani 
Rocchetti et al., 2020; Bachman et al., 2019), advances in digitisation of natural history 
collections (Paton et al., 2020), and widening availability of biodiversity data have 
stimulated development of AA methods. Early examples of method development focused 
on relatively small groups: Krupnick et al. (2009) calibrated a rule-based method on 1,192 
Hawaiian plants, Bland et al. (2015) compared how different machine learning algorithms 
predicted the conservation status of 637 terrestrial mammals, and Darrah et al. (2017) 
explored the use of coarse-scale distribution data to predict conservation status for 6,439 
bulbous monocots. 

Subsequent studies applied automated methods to larger datasets, including a continental-
scale preliminary assessment of 22,036 species of tropical African plants (Stévart et al., 
2019), an automated assessment of 13,190 orchid species (Zizka et al., 2020), and 
identification of global conservation priorities using automated assessments for over 
150,000 land plants (Pelletier et al., 2018). These studies recognise limitations in their 
approaches while, nonetheless, suggesting their new method can inform conservation 
prioritisation in specific situations. For example, Stevart et al. (2019) propose areas of High 
Conservation Value, and Pelletier et al. (2018) propose global “geographic regions with the 
highest need of conservation efforts.” However, complete information required for 
potential users to evaluate these methods’ performance, and the resulting priorities, is not 
consistently reported (Walker et al., 2020). 

Given these high-stakes applications of AA methods, thorough consideration of their 
benefits and limitations seems prudent. Potential misinterpretation (Wearn et al., 2019) of 
AA methods could be avoided if developers fully explored and reported the implicit choices 
made when producing an AA method. Similarly, conservation biologists wishing to adopt 
automated methods need clear guidelines about which methods to choose and how best to 
use them. 

Specifically, four questions central to adoption and successful use of AA methods are: 



1. How clean must occurrence data be? Issue with the quality of occurrence record 
data from online databases are well known (Meyer et al., 2016; Panter et al., 2020; 
Paton et al., 2020). Species occurrence records are therefore thoroughly checked 
and geo-referenced during Red List assessments, requiring significant time 
investment. AA methods typically use automated cleaning on digitally available 
occurrence records to make this step more time-efficient, but overly-strict cleaning 
could limit benefits of automated assessments. 

2. How does the study group affect data cleaning and AA performance? Research 
interests and data availability often determine the group of species used to develop 
or apply an AA method. Studies reporting AA method performance typically apply 
them to taxonomically or geographically-defined groups (Bland et al., 2015; Stévart 
et al., 2019; Zizka et al., 2020). However, different factors influence the number and 
quality of occurrence records available for particular species. For example, 
temperate species tend to have more occurrence records available than tropical 
species. Therefore, AA method choice may interact with occurrence record cleaning 
to make different methods more appropriate for particular species groups. 

3. Which sample of assessments is most effective for training and evaluating AA 
methods? A sample of species with published IUCN Red List assessments is needed 
to measure AA method performance and train machine-learning-based methods. To 
maximise sample size, studies usually use all assessed species in the group of 
interest. However, given the historically non-systematic choice of species for 
assessment (Nic Lughadha et al., 2020), assessed species may not represent 
diversity within a group. Furthermore, numbers of species assessed in each Red List 
category are imbalanced, potentially causing problems for machine-learning 
models. These issues raise questions about whether a representative sample of 
assessed species is preferable and if strategies such as downsampling should be 
used to correct imbalances in training data. 

4. When should one AA method be used over another? Proposed AA methods fall 
into two groups: methods that use pre-determined thresholds and heuristics to 
mimic the IUCN Red List assessment process and methods that use machine 
learning to determine thresholds from previously assessed species data. Both 
groups can deliver predictions with a high correspondence to manual IUCN Red List 
assessments, but each offers distinct advantages. Pre-determined rules can make 
their decisions easier to interpret and troubleshoot than some popular machine 
learning techniques, such as random forests or neural networks. Alternatively, 
machine learning methods may be more robust to unclean data. The desired balance 
between predictive accuracy, ease of use, and interpretability may change 
depending on data available, the group of species being assessed, and the intended 
users. 

In this report, we systematically investigate the effect of data cleaning, study and sample 
group choice, and AA method by applying four different automated methods to generate 
preliminary assessments for three groups of flowering plants with distinct occurrence 
record profiles (e.g. observations vs vouchered data, collected by generalists or specialists). 



We compare performance of these methods on digitally available occurrence data following 
different levels of automated cleaning and a database of manually cleaned occurrences. We 
also examine how choices concerning training data and downsampling affect the 
performance of machine learning methods. In doing so, we develop evidence-based 
recommendations for using AA methods and highlight important unanswered questions. 
While we focus on applying AA methods to plants, these guidelines are applicable to other 
under-assessed groups, such as arthropods. 

2 Methods 

2.1 Data compilation 

We chose three distinct species groups to evaluate the effects and performance of choices 
in the automated assessment process. We selected these groups based on their geographic 
and taxonomic differences and their different collection histories. These groups were: 

1. The widespread genus Myrcia (~750 spp; family Myrtaceae). Myrcia species are 
notoriously difficult to identify, so provide an example where records held by digital 
resources, like GBIF, may contain significant taxonomic errors. After 
decades/centuries of taxonomic impediment, molecular analysis and collaborative 
systematic study are enabling a monographic approach. Access to a monographer’s 
database of Myrcia specimens allow us to compare manual and automatic data 
collection and cleaning. 

2. All species in the family Orchidaceae (orchids). This large family (~30,000 spp) has 
a small proportion of species assessed, presenting a real-world example where 
rapid preliminary assessments could help focus resources on potentially threatened 
species. Furthermore, Orchidaceae is the focus of a previous study (Zizka et al., 
2019), allowing direct comparison of results. 

3. All species in the family Leguminosae (Fabaceae, legumes). Like orchids, the 
legumes are a large family (~22,000 spp), comprising a significant amount of 
worldwide angiosperm diversity. Unlike Myrtaceae, legumes are relatively well 
understood taxonomically and well-documented (e.g. Lewis et al. 2005). Legumes 
are a focal group of the Sampled Red List Index (SRLI), allowing us to compare the 
effect of training and evaluating AA methods on the sample of legumes used for the 
SRLI and all assessed legumes on the Red List. 

We obtained checklists of accepted species for all three groups from the World Checklist of 
Vascular Plants (WCVP, 2021). The taxonomy of Myrcia occasionally differs due to ongoing 
revisionary study (e.g., Lima-Santos et al., unpublished data). 

2.1.1 Species assessments 

We downloaded published assessments for the three species groups from the IUCN Red 
List of Threatened Species (IUCN, 2021b; hereafter Red List) and supplemented the Myrcia 
data set with 23 as yet unpublished assessments carried out by Kew’s Plant Assessment 



Unit. We matched assessment names to WCVP taxonomy using the Kew Names Matching 
Service (KNMS). We chose KNMS over other taxon name resolution tools because it 
provides a simple interface for directly matching names to WCVP. We manually resolved 
unmatched names and updated accepted names of assessments matched to homotypic 
synonyms. We removed all assessments matched to non-homotypic synonyms, as the 
assessment might not apply to the new species concept. We also removed unmatchable 
assessments or those that matched species outside our accepted species lists. 

2.1.2 Occurrence records 

We downloaded occurrence records from GBIF for the entire families to which our groups 
belong. As with Red List assessments, we matched taxon names of these occurrence 
records to the WCVP taxonomy. However, the number of unmatched names made manual 
resolution infeasible, so we used a more automated matching process (see Supplementary 
Materials). 

For Myrcia, we retrieved occurrence records from a monographer’s database prepared for 
Myrcia s.l. (E. Lucas, unpublished data). All databased specimens were fully or partially 
verified by an expert. Specimen georeferences were checked or added as part of the 
monographic process. We passed the occurrence records from this database through the 
same name matching process as the GBIF occurrence records to catch any that did not 
match the accepted name in WCVP. 

2.2 Occurrence record cleaning 

To address our study’s first question, we passed each set of occurrences through 
automated cleaning steps. These steps took two approaches: filtering records lacking 
voucher specimens or representing duplicates and removing records based on their 
coordinates. 

Table 1: A description of each filtering and coordinate cleaning step. Filtering steps were applied 
separately, while coordinate cleaning steps were applied consecutively (i.e. step C was applied to a 
dataset already cleaned by step B). 

Step Description 

1 No filtering of occurrence records 

2 Keep only records based on preserved specimens 

3 Keep one of every record at exactly the same coordinates for each species 

4 Apply both filter step 2 and 3 

A No geography-based cleaning 

B Remove occurrence records with coordinates at (0, 0) 

C Remove occurrence records in the sea, at equal longitude and latitude, at country 
centroids, and at identified institutions 

D Remove occurrence records outside each species native range as listed in POWO 



We applied filters to test whether removing occurrences based on anything other than 
preserved specimens or removing duplicated occurrences affected extinction risk 
prediction. The combination of these filters led to four different filter levels (Table 1). 

We chose our coordinate cleaning steps based on the approaches of other automated 
assessment (AA) methods studies (e.g., Bachman et al., 2020). We applied each step 
sequentially to give increasing levels of coordinate cleaning (Table 1). 

We passed all occurrence data sets, except the Myrcia monographic database occurrences, 
through all permutations of these filtering and cleaning steps. These steps produced 16 
occurrence records sets for each species group, plus an additional set of occurrences from 
the Myrcia monographic database. 

2.3 Predicting threat status 

We generated extinction risk predictions for species groups based on sets of predictors 
calculated from each of the 16 cleaned occurrence data sets, as well as the monographic 
data set for Myrcia. We chose to calculate these predictors (Table 2) for all species with at 
least one occurrence record in the cleaned occurrence data set. See Supplementary 
Methods for a full description of predictor preparation. 

We made predictions with four different AA to explore trade-offs between predictive 
performance, ease of use, and interpretability: 

1. A threshold-based method, using the IUCN threshold for the extent of occurrence 
(EOO) of threatened species, i.e. <20,000 km2 (IUCN, 2012). The single, fixed 
threshold made this easy to use and interpret. 

2. A decision tree with a single split (a decision stump) on species’ EOO. This simple 
machine learning model requires slightly more expertise than the IUCN threshold 
but remains readily interpretable. 

3. A decision tree using predictors including EOO and measures of species’ 
environment and exposure to threats (Table 2). More splits and predictors than the 
decision stump make this method harder to use and understand. However, we 
limited the maximum number of splits to 5 to ensure ready interpretation. 

4. A random forest model using the same set of predictors as the decision tree. This 
method is hardest to interpret and use but has shown good performance in previous 
studies predicting extinction risk (Bland et al., 2015; Darrah et al., 2017; Nic 
Lughadha, Walker, et al., 2019; Pelletier et al., 2018). 

We chose to predict if a species is threatened, to reduce imbalance between classes. 
Following the IUCN definition, we grouped the Critically Endangered, Endangered, and 
Vulnerable categories into our threatened class (IUCN, 2012) and grouped the Near 
Threatened and Least Concern categories into our non-threatened class. We treated Data 
Deficient species as unassessed, generating predictions for them from our AA methods. We 
excluded Extinct and Extinct in the Wild species from our study. 



Table 2: Predictors used in AA methods and their calculation. Unless otherwise stated, all values were 
extracted from the location of individual occurrence records. See Table S1 for data sources. 

Predictor Calculation 

Extent of occurrence 
(EOO) 

Minimum convex polygon 

Latitude of range 
centroid 

Centroid of occurrence records 

Human population 
density (HPD) 

Minimum value 

Human footprint index 
(HFI) 

Mean value 

Forest loss Mean of proportion of pixels with forest loss from a 5km radius 
buffer around occurrence records 

Elevation Maximum value 

Precipitation in the 
driest quarter 

Mean value 

Average annual 
temperature 

Mean value 

2.3.1 Method evaluation 

As the number of species with assessments for each taxonomic group was limited, we used 
5-fold cross-validation repeated 10 times to train and evaluate our decision stump, 
decision tree, and random forest models. We used 100 bootstrap resamples of the data 
with assessments to evaluate our threshold-based method. We used the true skill statistic 
(TSS) as a balanced measure of performance to evaluate all methods, as well as accuracy, 
sensitivity, and specificity (see Supplementary Methods for definitions). We also calculated 
the coverage of each cleaned occurrence dataset as the proportion of each species group for 
which a prediction could be made, i.e. the proportion of species with at least one 
occurrence record. 

2.4 Training and evaluation sample choice 

We examined three aspects of the training and evaluation sample: representativeness, size, 
and balance of threatened to non-threatened species. We addressed representativeness by 
comparing our AA methods’ performance on all assessed legumes to their performance on 
legumes assessed for the SRLI, a sample designed to be representative of taxonomic and 
geographic legume diversity. 

We evaluated the effect of sample size when training our three machine-learning-based AA 
methods by splitting our datasets into 5 cross-validation folds, training our models on 
subsamples of the training data, and measuring subsequent performance on the validation 
sets. We increased subsample size from 50 to 175 species in increments of 25. We also 
evaluated each model’s performance with a training set combining all three datasets. 



We assessed the effect of sample balance on our three machine-learning-based AA methods 
by downsampling training sets to balance the number of threatened and non-threatened 
species, as Pelletier et al. (2018) did for their random forest models. 

2.5 Method interpretation 

We compared the interpretability of our machine-learning-based methods by inspecting 
the classification boundary of our decision stump model and a flow chart of splits from our 
decision tree model. We calculated SHapely Additive exPlanations (SHAPs) to interpret our 
random forest model. These values estimate each predictor’s contribution to a prediction 
(Lundberg & Lee, 2017) and can be aggregated to provide the importance and partial 
dependence of each predictor, as well as individual explanations. We limited this 
comparison to models trained on the orchid dataset with minimally cleaned data (filtering 
step 1 and coordinate cleaning step A) because orchids have proven more challenging to 
predict accurately than other plant groups (Nic Lughadha, Staggemeier, et al., 2019). 

For additional context, following Zizka et al. (2020), we fit logistic regression models to 
predictions for assessed species from all AA methods, of the form: 

𝑙𝑜𝑔(
�̂�𝑖

1 − 𝑝�̂�
) = 𝛼 + 𝛽𝑙𝑜𝑔10(𝑁) 

where 𝑝�̂� is the estimated probability a prediction is correct and 𝑁 is the number of 
occurrence records for a species. 

2.6 Software 

We performed our study using the R statistical computing language (R Core Team, 2020). 
Packages are detailed in the Supplementary Methods. 

3 Results 

3.1 How clean must occurrence data be? 

All methods performed well across every filtering and cleaning step, with TSS remaining 
above 0.25. Variation in TSS across CV folds suggests no clear change in performance with 
occurrence data cleaning (Fig. S1). 

Performance improvement was largest for the IUCN threshold method from coordinate 
cleaning step A to D for all datasets except Orchids (Fig. 2). Mean TSS increased from 0.43 
to 0.60 for Myrcia, 0.41 to 0.58 for SRLI legumes, and 0.53 to 0.61 for all legumes. Filtering 
steps 2, 3, and 4 had a negligible impact on performance. 

Performance of all methods was slightly poorer on the Myrcia monographic database than 
GBIF data with full coordinate cleaning. The random forest model’s performance was 
worse on data from the monographic database (TSS = 0.59) than on minimally cleaned 
GBIF data (0.66). 



3.2 How does the study group affect data cleaning and AA method 

performance? 

After name-matching the GBIF occurrence records with coordinates (step 1A), the Myrcia 
dataset was the smallest at 48,262 records covering 654 accepted species. The orchid 
dataset was the next largest, with 4,282,221 records for 18,012 accepted species, followed 
by the legumes with 14,573,494 records covering 18,467 accepted species. 

3.2.1 Data cleaning 

Almost all Myrcia records were from preserved specimens (93.9%), while corresponding 
proportions were much smaller for the orchid (14.3%) and legume (15.2%) datasets. 
Therefore, filtering step 2 (keeping preserved specimens only) removed most orchid and 
legume occurrence records but very few Myrcia records. Filtering step 3 (removing records 
at duplicated coordinates) profoundly affected each dataset’s number of occurrences, 
reducing the Myrcia dataset to 31,298 unique occurrences (64.9%), orchids to 1,912,129 
(44.7%), and legumes to 8,415,070 (57.7%). 

The coordinate cleaning steps removed fewer records than the filtering steps. Coordinate 
cleaning step C removed most records from the orchid dataset (7.2%), while step D 
removed most records from the Myrcia (7.6%) and legume datasets (16.4%). Applying all 
filtering and coordinate cleaning steps removed 42.9% of Myrcia occurrences, 91.1% of 
legume occurrences, and 91.2% of orchid occurrences. The monographic database 
comprised 10,823 Myrcia occurrences, less than half number in the automatically cleaned 
dataset. 

3.2.2 Species coverage 

Filtering (steps 2 to 4) and cleaning (steps B to D) reduced the number of species available 
to train and evaluate AA methods, and limited the total proportion of species covered by 
automated predictions (Fig. 1). Before matching to GBIF occurrence records, the Myrcia 
dataset comprised 769 species, with non-Data Deficient (DD) Red List assessments for 254 
(33.0%). The orchid dataset comprised 30,479 species, 1,457 with non-DD assessments 
(4.8%), and the legume dataset comprised 22,123 species, 3,740 with assessments 
(16.9%), 844 of which assessd for the SRLI. AA method predictions would increase the 
proportion of species with an evidence-based assessment of extinction risk to, at most, 
85.0% of Myrcia species, 83.5% of legumes, and 60.8% of orchids. 



 

Figure 1: Number of species in each dataset with at least one occurrence record after applying each 
filtering and cleaning step. Dark red bars show the number of species with non-Data Deficient IUCN 
Red List assessments, used to train and evaluate AA methods. 

All filtering and cleaning steps removed few species from the Myrcia dataset, except step D, 
which removed 35 species. Step 2 removed many species from the legumes (246) and 
orchids (529) because most of their records were not based on preserved specimens. Steps 
C and D both removed the most species — step C removed 325 legume and 612 orchid 
species, while step D removed a further 386 legume and 635 orchid species. 

Applying all filtering and cleaning steps left 606 Myrcia species, 17,491 legumes, and 
16,825 orchids to use in the AA methods. Therefore, filtering and cleaning limited 
prediction coverage to 78.8% of Myrcia species, 79.1% of legume species, and 55.2% of 
orchid species. Removing these species also reduced the number of species available to 
train and evaluate the AA methods to 241 Myrcia species, 3,581 legumes, and 1,145 
orchids. The monographic database covered 547 Myrcia species (71.1% of accepted Myrcia 
species), 228 of which were available to train and evaluate AA methods. 

3.2.3 Performance 

The IUCN threshold and decision stump methods performed worst on the orchid dataset, 
even with full coordinate cleaning (0.32 and 0.29, respectively; Fig. 2). In contrast, the TSS 
of both methods improved after full coordinate cleaning for the Myrcia dataset (IUCN 
threshold: 0.43 to 0.60; decision stump: 0.53 to 0.64). A smaller improvement was achieved 
on the legume dataset (IUCN threshold: 0.53 to 0.61; decision stump: 0.64 to 0.68). 



 

Figure 2: Performance of automated assessment methods on datasets of Myrcia, orchid, and legume 
species after automated occurrence record filtering and coordinate cleaning. Results for Myrcia 
include a dataset of expert cleaned occurrences. For the legume datasets, methods were trained and 
evaluated on all legume assessments on the IUCN Red List, and assessments carried out on a random 
sample of legume diversity as part of the Sampled Red List Index (SRLI). 

The TSS was higher for the orchid dataset with the decision tree and random forest models, 
even with minimal coordinate cleaning (decision tree: 0.49; random forest: 0.56). However, 
the TSS of corresponding models trained on the Myrcia (decision tree: 0.55; random forest: 
0.69) and legume (decision tree: 0.65; random forest: 0.68) datasets was still higher. 

3.3 Which sample of assessments is most effective for training and 

evaluating AA methods? 

The SRLI legume assessments had a low proportion of threatened assessments (11.8%). 
Although all three machine-learning-based methods’ accuracy was above 85% on this 
training set (Fig. 3A), models trained on the SRLI assessments suffered from very low 
sensitivity (decision stump: 0.09; decision tree: 0.35; random forest: 0.26). Downsampling 
improved sensitivity for all machine-learning-based models trained on SRLI assessments 



(decision stump: 0.80; decision tree: 0.75; random forest: 0.77), thereby increasing the TSS 
but slightly reducing accuracy (Fig. 3A). Downsampling caused little to no improvement 
when trained on all legumes, or the Myrcia and orchid training sets (Fig. S3), where the 
imbalance between classes was lower (20.5%, 40.9%, and 52.6% threatened, respectively). 

 

Figure 3: Exploration of AA method training and evaluation sample choice, comprising (A) the effect of 
downsampling on different performance metrics when AA methods were trained and evaluated on a 
representative sample of legume species used for the Sampled Red List Index (SRLI), (B) change in 
machine-learning-based AA method performance as they are trained on successively larger subsets of 
all legumes assessed on the IUCN Red List and those used for the SRLI, and (C) difference in proportion 
of unassessed species predicted threatened when AA methods are trained and evaluated on individual 
datasets and on one combined dataset. Bars on (A) and (C) represent the 95% confidence interval of 
the cross-validated estimates. 

Even with downsampling, all AA methods performed worse when trained on the SRLI 
legume assessments than all assessed legumes (Fig. 3A, Fig. S3). Training the three 
machine-learning-based methods on successively larger subsets of the two groups of 
legume assessments (Fig. 3B) indicated that this difference in TSS persisted regardless of 
training set size. 

Training machine-learning-based models on all groups combined caused little or no 
improvement in our evaluation metrics (Fig. S4), but did result in lower sensitivity for 
Myrcia species. This difference in sensitivity corresponded to a lower predicted level of 
threat in unassessed Myrcia species when datasets were pooled (Fig. 3C). 



3.4 When should one AA method be used over another? 

All AA methods investigated achieved high predictive accuracy, regardless of the amount of 
cleaning applied to occurrence records (Fig. S5A). The highest accuracies were achieved on 
the Myrcia and legume datasets (78% - 89%), while accuracy on the orchid dataset was 
lower (61% - 79%). However, methods were often better at correctly predicting non-
threatened species than threatened ones. The IUCN threshold method had the most marked 
imbalance across all datasets (Fig. S5B-C). Of the three AA methods investigated, our 
random forest model consistently had the highest TSS (Fig. 2). 

Logistic regressions fit to predictions for assessed species demonstrated that the accuracy 
of all models had some dependence on the number of occurrence records (Fig. S6; Table 
S2). This dependence was highest for IUCN threshold method applied to Legumes (𝛽 =
3.41, 95% CI=[3.04, 3.97]) 

We explored different methods to interpret our machine learning models’ behaviour using 
the orchid dataset. We summarised the decision stump model by extracting the learned 
EOO threshold. The average threshold across all CV folds was 30,848 km2, higher than the 
IUCN threshold of 20,000 km2, but the 95% confidence interval was wide and ranged from 
2,833 km2 to 73,290 km2 (Fig. 4A). 

We interpreted our decision tree model by inspecting the tree learned from one of the CV 
folds (Fig. 4B). This revealed that most threatened species (44% of all species in the 
training set) were classified based on a minimum human population density above 7.5 
persons/km2 and precipitation in the driest quarter below 35.3 mm. However, it also 
showed that this step only classified 79% of these species correctly. 

As a global explanation, we calculated predictor importance for our orchid random forest 
model as mean absolute SHAP for each predictor across all test predictions (Fig. 4C). The 
three most important predictors for the orchid dataset were minimum HPD (mean absolute 
SHAP = 0.103), EOO (mean absolute SHAP = 0.101), and precipitation in the driest quarter 
(mean absolute SHAP = 0.086). To check for consistency, we also calculated the 
permutation predictor importance for all datasets (Fig. S7). The ranking of predictors for 
the orchid dataset was the same as the ranking from SHAP values; however, permutation 
importance indicated EOO as by far the most important predictor for the legume and 
Myrcia datasets. 

We used the contribution of each predictor to each test prediction to plot a SHAP-based 
partial dependence plot (Fig. 4D). This plot revealed our orchid model was behaving as 
expected. More populated areas (higher minimum HPD) increased predicted probability of 
threat. In contrast, more precipitation in the driest quarter or larger ranges (higher EOO) 
reduced predicted probability of threat. 



 

Figure 4: Methods for interpreting machine-learning-based automated assessment methods. The 
decision stump model can be readily interpreted by (A) inspecting the classification boundary, with a 
95% confidence interval estimated by cross-validation. The decision tree provides (B) a simple flow-
chart displaying splits in the tree and final decisions as leaves, labelled with the classification 
probability and percent of species cover by each leaf. We used SHapely Additive exPlanations (SHAPs) 
to interpret the behaviour of our random forest model. These values estimate the contribution of each 
predictor in the model to individual predictions. They can be aggregated to give (C) the overall 
importance of each predictor and (D) an indication of how the contribution of each predictor varies 
with that predictors value. Explanations of individual predictions can be displayed as (E) force plots to 
provide contextual information for a single prediction. All interpretations were made for models 
trained on the orchid dataset with minimal automated cleaning (step 1A). The individual explanation 
is for the species Tridactyle phaeocephala. 

We examined the contribution of each predictor to a single prediction, for Tridactyle 
phaeocephala, as an example of an individual explanation. The SHAP force plot (Fig. 4E) 
indicates that low precipitation in the driest quarter (60.9 mm), small EOO (3,995 km2), 
and relatively high human population density (36.1 persons / km2) all pushed the 
probability of being threatened up to 0.89 from the average predicted probability of 0.49. 
However, this species is assessed as Least Concern on the IUCN Red List because, despite 
having a low EOO, there are no identified threats. The discrepancy between this species’ 



predicted and assessed extinction risk suggests that more detailed threat predictors or 
information about protected areas should be incorporated into our model. 

4 Discussion 

High-stakes applications of AA methods in conservation make it essential that developers 
thoroughly explore implementation choices and that users can make informed decisions 
about best methods for their problem. Our study systematically investigated key AA 
method choices to build upon previous work and provide evidence-based guidelines for 
their use. 

4.1 How clean must occurrence data be? 

Given the well-documented issues with digitally available occurrence records (Maldonado 
et al., 2015; Meyer et al., 2016; Zizka et al., 2019), it may seem reasonable to assume that 
AA methods will always perform better with carefully cleaned and georeferenced data. For 
example, Panter et al. (2020) obtained more reliable preliminary assessments for species in 
Bolivia after manually cleaning GBIF data. 

Our results show that, despite these issues, AA methods using automatically cleaned data 
from GBIF give comparable or better performance than with hand-cleaned and 
georeferenced data. While we based our comparison on a relatively small set of around 200 
species in the genus Myrcia, the high accuracy of other AA methods reported in the 
literature supports our findings (Nic Lughadha, Walker, et al., 2019; Stévart et al., 2019; 
Zizka et al., 2020). 

Data cleaning was necessary to achieve good performance from the IUCN threshold method 
with Myrcia and legume species. However, we found that data cleaning made little 
difference to the performance of the IUCN threshold method with orchid species. Similarly, 
Zizka et al. (2020) found that accuracy of another threshold-based AA method (ConR) on 
orchids did not improve with data cleaning. Therefore, we expect the optimal level of 
cleaning for threshold-based AA methods to depend on the study group. 

Machine learning methods investigated were less sensitive to data cleanliness, suggesting 
they can make good-quality automated assessments with minimal cleaning. Ability to use 
minimally cleaned data is important because we found a trade-off between using a highly 
cleaned set of occurrences records and generating predictions for as many species as 
possible. While all methods performed best with full automated cleaning, species removed 
by cleaning limited coverage of our predictions to 80.7% of Myrcia, 77.4% of legume, and 
54.6% of orchid species. Other attempts at large-scale predictions of plant extinction risk 
have been similarly limited (Pelletier et al., 2018; Zizka et al., 2020). 

However, whatever the chosen level of cleaning, a large proportion of plant species have 
few or no digitally available occurrence records. These species are mostly rare, range-
restricted, and therefore likely to be threatened. This problem was most acute for orchds, 
where we could make predictions for at most 60.2% of species. 



One solution, explored by Darrah et al. (2017), uses coarse-scale distribution data instead 
of occurrence records. While coarse-scale distribution data is available for almost all 
species (POWO, 2019), many predictors used in AA methods are heterogeneous across 
larger areas. This approach, therefore, needs testing more broadly. Nonetheless, a means of 
handling species lacking digitally available occurrence records is urgently needed. 
Otherwise, we risk ignoring many of the most threatened species when using AA methods, 
thereby underestimating the number or proportion of threatened species globally or in 
comparative analyses to inform conservation prioritisation. 

4.2 How does chosen study group affect data cleaning and AA method 

performance? 

Differences in performance between AA methods and automated cleaning steps in our 
study illustrate the importance of carefully choosing the protocol to fit a particular group of 
species. Furthermore, the full impact of a methodological choice, such as how occurrence 
records are cleaned, may not be apparent when assessed on a single taxonomic or 
geographic group, even one as large as the whole orchid family. 

Our findings are consistent with those of Zizka et al. (2020), who compared the effect of a 
wide range of automated cleaning steps on occurrence records across distinct taxonomic 
groups. They found that although automated cleaning removed 45% of all occurrence 
records, the loss from any individual dataset varied between 29.7% and 90.3%. Given the 
interaction between these cleaning differences and method performance, we recommend 
that those developing/testing AA methods choose multiple groups with distinct 
characteristics, to identify the optimal protocol for each group and improve trust in 
findings. 

4.3 Which sample of assessments is most effective for training and 

evaluating AA methods? 

Using a machine-learning-based AA method raises the additional question of which sample 
of species is best to use for training. While the tendency might be to use as many species as 
possible, well-known gaps and biases in species selected for assessment may lead to poor 
predictive performance on unassessed species. 

Our results suggest there is little benefit to using a sample of species designed to be 
representative of the diversity of the group of interest. Models trained on all available 
legume assessments outperformed the same model trained only on species assessed as 
part of the SRLI. This discrepancy remained when we trained models on equal-sized 
subsamples of the two sets of assessments, suggesting differences in performance were 
more likely due to the large imbalance between threatened and non-threatened species in 
the SRLI than the datasets’ different sizes. 

Pelletier et al. (2018) downsampled training sets for their random forest models to give 
equal numbers of species in each class. We found that downsampling improved the overall 
performance of all machine-learning-based models trained on the SRLI assessments at a 



small cost to predictive accuracy. However, downsampling made little difference to the 
performance on all other datasets, where the imbalance was lower. 

Similarly, we saw no benefit to performance when we combined the Myrcia, legume, and 
orchid assessments into a single training set. We did, however, see a small drop in the 
ability of all methods to identify threatened Myrcia species and a corresponding decrease in 
the proportion of unassessed Myrcia species predicted as threatened. This decrease may 
cause issues for applications that use sub-groups of these predictions, such as setting 
assessment priorities for particular taxonomic groups. 

4.4 When should one AA method be used over another? 

We found the random forest model was the best performing AA method for all species 
groups at every level of occurrence cleaning. However, all methods performed well and, 
with full automated cleaning of occurrence records, even the simplest IUCN threshold 
method achieved comparable performance. 

Despite their high predictive accuracy, a random forest model may not always be the best 
choice. Other considerations include the expertise and time needed and the fact that the 
model’s complexity makes its behaviour difficult to understand. This opacity makes 
diagnosing problems with the method difficult, so it is hard to know how much to trust 
individual predictions (Wearn et al., 2019). 

Recent developments have made it easier to interpret black-box algorithms like random 
forests or neural networks (Molnar 2019). We used SHapely Additive exPlanations (SHAP; 
Lundberg & Lee, 2017) to gain insight into our random forest orchid model by identifying 
the most important predictors and how the predicted probability of being threatened 
depended on each predictor. Furthermore, we were able to diagnose a possible deficiency 
in our choice of predictors by inspecting an explanation for an individual incorrect 
prediction. 

However, SHAPs require additional computation and expertise that isn’t necessary for 
understanding simpler methods like a decision tree model or the IUCN threshold. 
Nevertheless, given the potentially severe consequences of an incorrect prediction, we 
consider it essential to present additional context for predictions from all AA methods. 
While the exact context needs to be tailored to the intended application and user (Suresh et 
al., 2021), authors should include calculated metrics or predictors and any easily obtained 
fixed or learned thresholds. 

Estimates of uncertainty for the predicted probabilities of being threatened would also be 
valuable. Methods for estimating uncertainty for machine learning models include the 
infinitesimal jackknife (Wager et al., 2014) for random forest predictions and estimating 
uncertainty directly through the modelling algorithm, such as Bayesian Additive 
Regression Trees (Chipman et al., 2012) or Bayesian Neural Networks (Valentin Jospin et 
al., 2020). However, these methods would not necessarily address the most significant 
source of uncertainty for AA methods: the underlying occurrence records. 



Despite growing understanding of the relative importance across whole datasets of issues 
such as imprecise or incorrect coordinates or misidentifications in occurrence records 
(Maldonado et al., 2015; Nic Lughadha, Staggemeier, et al., 2019), the goal of quantifying 
resultant uncertainty for individual extinction risk predictions has yet to be attained 
(Walker et al., 2020). Such prediction-specific uncertainty estimates would be invaluable in 
the context of both threshold and machine-learning based AA methods. 

5 Conclusions 

We have attempted to provide evidence-based answers that lower barriers to successful 
adoption of automated assessment methods. Based on our findings, our answers are: 

1. How clean must occurrence data be? Cleaning level is dependent on the group of 
species examined, but good performance is possible using AA methods on 
occurrence records from digital resources with automated cleaning. We recommend 
using minimal cleaning in conjunction with a machine learning-based AA method for 
the best species coverage. However, if a threshold-based method is preferred, more 
stringent automated cleaning is necessary for best performance. 

2. How does the chosen study group affect data cleaning and AA method 
performance? Performance of AA methods and necessary cleaning levels are 
dependent on the group of species examined. We, therefore, recommend evaluating 
AA methods on species groups with distinct characteristics. When making 
automated assessments, the focal species group is often pre-determined. In these 
cases, we recommend selecting an AA method and cleaning protocol that has 
worked well on a similar group or evaluating different protocols to find the best for 
the specific problem. 

3. Which sample of assessments is most effective for training and evaluating AA 
methods? Our results suggest that it is best to use all assessed species, even when 
well-designed sub-sample is available. Machine-learning-based AA methods can 
make biased predictions when trained on an unbalanced sample of assessments, but 
downsampling is an effective strategy to counteract this. Finally, AA methods may 
perform well on a particular sample of assessments, but poorly on a sub-group 
within that sample. In such cases, it may be better to train individual AA methods on 
these sub-groups. 

4. When should one AA method be used over another? Our random forest model 
consistently achieved the best results across all groups in our study, at all levels of 
data cleaning. However, more straightforward methods attained comparable 
performance in some settings. Ultimately, the most appropriate AA method will 
depend on intended applications and resources available. 

As well as providing answers, our study raised some questions that present possible 
challenges in using AA methods: 



• How should we handle species with no available occurrence records? A large 
proportion of plant species have few or no digitally available occurrence records. 
This deficit limits applicability of AA methods and risks allowing the most 
threatened species to drop out of the assessment pipeline. AA methods must 
incorporate robust rules to handle these species. 

• How do we quantify uncertainty in a single species’ prediction? Presenting AA 
predictions alongside an uncertainty estimates would allow more effective decision 
making and open up new research avenues. While approaches exist for estimating 
uncertainty in machine learning predictions, there may be more value in quantifying 
uncertainty resulting from imprecisions in the underlying occurrence data. 

By following this study’s recommendations and tackling these challenges, conservation 
biologists can increase confidence in adopting AA methods to scale up assessments and 
close coverage gaps. 

Acknowledgments 

All authors would like to acknowledge the hard work and dedication of Kew's Plant 
Assessment Unit team who, in collaboration with regional and taxon specialists at Kew and 
worldwide, assessed the extinction risk of many of the orchid and legume species and most 
of the Myrcia species included in our study. The Plant Assessment Unit was established 
through collaboration between IUCN and the Royal Botanic Gardens Kew within the project 
entitled ‘The IUCN Red List of Threatened Species and Toyota Motor Corporation’. 

Author contributions 

BW, TL, SP, EL, and EN all conceived of the article, contributed to the study design, and 
contributed to the writing. BW carried out the analysis, prepared the figures, and prepared 
the first draft. EL provided data from the monographic database of Myrcia specimens. 

Data availability 

The code used for the analysis in this study is archived on Zenodo, at 
https://doi.org/10.5281/zenodo.4900044. All analysis outputs are archived on Zenodo, at 
https://doi.org/10.5281/zenodo.4899925. 

References 
Albani Rocchetti, G., Armstrong, C. G., Abeli, T., Orsenigo, S., Jasper, C., Joly, S., Bruneau, A., 
Zytaruk, M., & Vamosi, J. C. (2020). Reversing extinction trends: new uses of (old) 
herbarium specimens to accelerate conservation action on threatened species. New 
Phytologist. https://doi.org/10.1111/nph.17133 

https://doi.org/10.5281/zenodo.4900044
https://doi.org/10.5281/zenodo.4899925
https://doi.org/10.1111/nph.17133


Bachman, S. P., Field, R., Reader, T., Raimondo, D., Donaldson, J., Schatz, G. E., & Lughadha, E. 
N. (2019). Progress, challenges and opportunities for Red Listing. Biological Conservation, 
234(March), 45–55. https://doi.org/10.1016/j.biocon.2019.03.002 

Bachman, S. P., Walker, B. E., Barrios, S., Copeland, A., & Moat, J. (2020). Rapid least concern: 
Towards automating red list assessments. Biodiversity Data Journal, 8(1). 
https://doi.org/10.3897/BDJ.8.e47018 

Bland, L. M., Collen, B., Orme, C. D. L., & Bielby, J. (2015). Predicting the conservation status 
of data-deficient species. Conservation Biology, 29(1), 250–259. 
https://doi.org/10.1111/cobi.12372 

Chipman, H. A., George, E. I., & McCulloch, R. E. (2012). BART: Bayesian additive regression 
trees. Annals of Applied Statistics, 6(1), 266–298. https://doi.org/10.1214/09-AOAS285 

Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P., & Trias-Blasi, A. (2017). Using 
coarse-scale species distribution data to predict extinction risk in plants. Diversity and 
Distributions, 23(4), 435–447. https://doi.org/10.1111/ddi.12532 

IUCN. (2012). IUCN Red List categories and criteria, version 3.1, second edition (pp. iv + 32). 
IUCN. https://www.iucnredlist.org/resources/categories-and-criteria 

IUCN. (2021a). Table 1a: Number of species evaluated in relation to the overall number of 
described species, and number of threatened species by major groups of organisms. Red 
List Summary Statistics, July, 1. https://www.iucnredlist.org/resources/summary-
statistics#Figure 2 

IUCN. (2021b). The IUCN Red List of Threatened Species. Version 2021-1. 
https://www.iucnredlist.org/ 

Krupnick, G. A., Kress, W. J., & Wagner, W. L. (2009). Achieving Target 2 of the Global 
Strategy for Plant Conservation: Building a preliminary assessment of vascular plant 
species using data from herbarium specimens. Biodiversity and Conservation, 18(6), 1459–
1474. https://doi.org/10.1007/s10531-008-9494-1 

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. 
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett 
(Eds.), Advances in neural information processing systems (Vol. 30, pp. 4765–4774). Curran 
Associates, Inc. 
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-
Paper.pdf 

Maldonado, C., Molina, C. I., Zizka, A., Persson, C., Taylor, C. M., Albán, J., Chilquillo, E., 
Rønsted, N., & Antonelli, A. (2015). Estimating species diversity and distribution in the era 
of Big Data: To what extent can we trust public databases? Global Ecology and 
Biogeography, 24(8), 973–984. https://doi.org/10.1111/geb.12326 

https://doi.org/10.1016/j.biocon.2019.03.002
https://doi.org/10.3897/BDJ.8.e47018
https://doi.org/10.1111/cobi.12372
https://doi.org/10.1214/09-AOAS285
https://doi.org/10.1111/ddi.12532
https://www.iucnredlist.org/resources/categories-and-criteria
https://www.iucnredlist.org/resources/summary-statistics#Figure 2
https://www.iucnredlist.org/resources/summary-statistics#Figure 2
https://www.iucnredlist.org/
https://doi.org/10.1007/s10531-008-9494-1
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1111/geb.12326


Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in 
global plant occurrence information. Ecology Letters, 19(8), 992–1006. 
https://doi.org/10.1111/ele.12624 

Nic Lughadha, E., Bachman, S. P., Leão, T. C. C., Forest, F., Halley, J. M., Moat, J., Acedo, C., 
Bacon, K. L., Brewer, R. F. A., Gâteblé, G., Gonçalves, S. C., Govaerts, R., Hollingsworth, P. M., 
Krisai‐Greilhuber, I., Lirio, E. J., Moore, P. G. P., Negrão, R., Onana, J. M., Rajaovelona, L. R., … 
Walker, B. E. (2020). Extinction risk and threats to plants and fungi. Plants, People, Planet, 
2(5), 389–408. https://doi.org/10.1002/ppp3.10146 

Nic Lughadha, E., Staggemeier, V. G., Vasconcelos, T. N. C., Walker, B. E., Canteiro, C., & 
Lucas, E. J. (2019). Harnessing the potential of integrated systematics for conservation of 
taxonomically complex, megadiverse plant groups. Conservation Biology, 33(3), 511–522. 
https://doi.org/10.1111/cobi.13289 

Nic Lughadha, E., Walker, B. E., Canteiro, C., Chadburn, H., Davis, A. P., Hargreaves, S., Lucas, 
E. J., Schuiteman, A., Williams, E., Bachman, S. P., Baines, D., Barker, A., Budden, A. P., 
Carretero, J., Clarkson, J. J., Roberts, A., & Rivers, M. C. (2019). The use and misuse of 
herbarium specimens in evaluating plant extinction risks. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 374(1763). https://doi.org/10.1098/rstb.2017.0402 

Panter, C. T., Clegg, R. L., Moat, J., Bachman, S. P., Klitgård, B. B., & White, R. L. (2020). To 
clean or not to clean: Cleaning open‐source data improves extinction risk assessments for 
threatened plant species. Conservation Science and Practice, 2(12), 1–14. 
https://doi.org/10.1111/csp2.311 

Paton, A., Antonelli, A., Carine, M., Forzza, R. C., Davies, N., Demissew, S., Dröge, G., Fulcher, 
T., Grall, A., Holstein, N., Jones, M., Liu, U., Miller, J., Moat, J., Nicolson, N., Ryan, M., Sharrock, 
S., Smith, D., Thiers, B., … Dickie, J. (2020). Plant and fungal collections: Current status, 
future perspectives. Plants, People, Planet, 2(5), 499–514. 
https://doi.org/10.1002/ppp3.10141 

Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J., & Espíndola, A. (2018). Predicting 
plant conservation priorities on a global scale. Proceedings of the National Academy of 
Sciences of the United States of America, 115(51), 13027–13032. 
https://doi.org/10.1073/pnas.1804098115 

POWO. (2019). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 
http://www.plantsoftheworldonline.org 

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing. https://www.r-project.org/ 

Stévart, T., Dauby, G., Lowry, P., Blach-Overgaard, A., Droissart, V., Harris, D. J., Mackinder, 
A. B., Schatz, G. E., Sonké, B., Sosef, M. S. M., Svenning, J. C., Wieringa, J., & Couvreur, T. L. P. 
(2019). A third of the tropical African flora is potentially threatened with extinction. Science 
Advances, 5(11). https://doi.org/10.1126/sciadv.aax9444 

https://doi.org/10.1111/ele.12624
https://doi.org/10.1002/ppp3.10146
https://doi.org/10.1111/cobi.13289
https://doi.org/10.1098/rstb.2017.0402
https://doi.org/10.1111/csp2.311
https://doi.org/10.1002/ppp3.10141
https://doi.org/10.1073/pnas.1804098115
http://www.plantsoftheworldonline.org/
https://www.r-project.org/
https://doi.org/10.1126/sciadv.aax9444


Suresh, H., Gomez, S. R., Nam, K. K., & Satyanarayan, A. (2021). Beyond Expertise and Roles: A 
Framework to Characterize the Stakeholders of Interpretable Machine Learning and their 
Needs. https://doi.org/10.1145/3411764.3445088 

Valentin Jospin, L., Buntine, W., Boussaid, F., Laga, H., & Bennamoun, M. (2020). Hands-on 
Bayesian Neural Networks - a Tutorial for Deep Learning Users. arXiv, 1(1), 1–35. 
http://arxiv.org/abs/2007.06823 

Wager, S., Hastie, T., & Efron, B. (2014). Confidence intervals for random forests: The 
jackknife and the infinitesimal jackknife. Journal of Machine Learning Research, 15, 1625–
1651. http://arxiv.org/abs/1311.4555 

Walker, B. E., Leão, T. C. C., Bachman, S. P., Bolam, F. C., & Nic Lughadha, E. (2020). Caution 
Needed When Predicting Species Threat Status for Conservation Prioritization on a Global 
Scale. Frontiers in Plant Science, 11(April), 1–4. https://doi.org/10.3389/fpls.2020.00520 

WCVP. (2021). World Checklist of Vascular Plants, version 2.0. Facilitated by the Royal 
Botanic Gardens, Kew. https://wcvp.science.kew.org 

Wearn, O. R., Freeman, R., & Jacoby, D. M. P. (2019). Responsible AI for conservation. Nature 
Machine Intelligence, 1(2), 72–73. https://doi.org/10.1038/s42256-019-0022-7 

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., 
Herdean, A., Ariza, M., Scharn, R., Svanteson, S., Wengstrom, N., Zizka, V., & Antonelli, A. 
(2019). CoordinateCleaner: standardized cleaning of occurrence records from biological 
collection databases. Methods in Ecology and Evolution, 10, –7. 
https://doi.org/10.1111/2041-210X.13152 

Zizka, A., Silvestro, D., Vitt, P., & Knight, T. M. (2020). Automated conservation assessment 
of the orchid family with deep learning. Conservation Biology, 1–25. 
https://doi.org/10.1111/cobi.13616 

https://doi.org/10.1145/3411764.3445088
http://arxiv.org/abs/2007.06823
http://arxiv.org/abs/1311.4555
https://doi.org/10.3389/fpls.2020.00520
https://wcvp.science.kew.org/
https://doi.org/10.1038/s42256-019-0022-7
https://doi.org/10.1111/2041-210X.13152
https://doi.org/10.1111/cobi.13616

