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ABSTRACT 11 

Additive genetic variance in fitness is a prerequisite for adaptive evolution, as a trait must be 12 

genetically correlated with fitness to evolve. Despite its relevance, additive genetic variance in 13 

fitness has not often been estimated in nature. Here, we investigate additive genetic variance in 14 

lifetime fitness, as well as its underlying components, in common terns (Sterna hirundo). Using 15 

28 years of data comprising ca. 6000 pedigreed individuals, we find that additive genetic variances 16 

in the Zero-inflated and Poisson components of lifetime fitness were nominally zero, but estimated 17 

with high uncertainty. Similarly, additive genetic variances in adult annual reproductive success 18 

and survival did not differ from zero, but were again associated with high uncertainty. Simulations 19 

suggested that we would be able to detect additive genetic variances as low as 0.05 for the Zero-20 

inflated component of fitness, but not for the Poisson component, although having data for more 21 

generations of birds would lead to an important increase in statistical power. As such, our study 22 

suggests heritable variance in common tern fitness to be rather low if not null, shows how studying 23 

quantitative genetics of fitness in natural populations remains challenging, and highlights the 24 

importance of maintaining long-term individual-based studies of natural populations.  25 
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INTRODUCTION 26 

Fisher’s Fundamental Theorem of Natural Selection postulates that “the rate of increase in fitness 27 

of any organism at any time is equal to its genetic variance in fitness at that time" (Fisher 1930). 28 

As such, additive genetic variance of fitness, being equivalent to the change in mean fitness 29 

resulting from selection, has been considered the single most useful statistic quantifying selection 30 

(Burt 1995). Genetic variation in fitness also is a prerequisite for adaptive evolution, as a trait must 31 

be genetically correlated with fitness to evolve through natural selection (Robertson 1966; Price 32 

1970). Hence, understanding the quantitative genetics of individual variation in fitness is arguably 33 

one of the most important aims in evolutionary ecology (Burt 1995; Ellegren and Sheldon 2008; 34 

Walsh and Blows 2009; Gomulkiewicz and Shaw 2013; Shaw and Shaw 2014; Hendry et al. 2018). 35 

  While additive genetic variance is of indisputable relevance in predicting evolutionary 36 

dynamics of natural populations, other sources of genetic, yet non-additive, variance are also 37 

important. Non-additive genetic variance components such as dominance and epistasis can 38 

strongly influence the mean and variance in fitness (Roff and Emerson 2006; Carroll 2007). 39 

Indeed, epistasis is known to be a key reservoir for additive genetic variance, as it can be readily 40 

converted to additive genetic variance as a result of inbreeding or environmental change (Cheverud 41 

and Routman 1995; Whitlock et al. 1995; Buskirk and Willi 2006), ultimately contributing to the 42 

evolutionary dynamics of fitness. Under scenarios of strong local adaptation and stable conditions, 43 

genetic variance is predicted to be reduced, because stabilizing selection acts to maintain locally 44 

adapted phenotypes and alleles with larger average effect would be driven close to fixation and 45 

thus contribute less to the total genetic variance (Johnson and Barton 2005). However, populations 46 

under directional selection and in variable environments will readily recruit new additive genetic 47 

variance due to recombination (Otto and Lenormand 2002). Altogether, the existence and 48 
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magnitude of genetic variance within populations will greatly differ depending on the existence 49 

and magnitude of local adaptation and/or stabilizing selection, because differences in selection 50 

regime will lead to different likelihoods of evolutionary change. 51 

Considerable debate has surrounded the question of whether additive genetic variation in 52 

fitness should be low or not (e.g., Jones 1987; Burt 1995; Houle et al. (1996), Merilä and Sheldon 53 

1999; Shaw and Shaw 2014), and particularly, under which conditions (e.g., Cheverud and 54 

Routman 1995; Whitlock et al. 1995), however, empirical estimates of additive genetic variance 55 

in fitness from wild populations have so far not shed the much-needed light on this debate. A 56 

recent review of 30 studies on humans, other animals and plants found that there were very few 57 

estimates of additive genetic variance (VA) in fitness (or fitness components) in the wild, and that 58 

those that were available varied substantially, with many estimates close to zero, and few large 59 

estimates (Hendry et al. 2018). To provide some examples: Kruuk et al. (2000) found zero VA in 60 

lifetime fitness in female Scottish red deer (Cervus elaphus), but some evidence for VA in males 61 

(VA males = 0.434, SE = 0.681) (but see Foerster et al. 2007). Additive genetic variance was also 62 

estimated to be zero in both sexes of bighorn sheep (Ovis Canadensis) in Canada (Coltman et al. 63 

2005) and very small in North American red squirrels (Tamiasciurus hudsonicus) (VA ~ 0, 95% = 64 

5.2E-07 - 1.1, McFarlane et al. 2014, see also McFarlane et al. 2015). In birds, Gustafsson (1986) 65 

estimated a zero heritability of lifetime reproductive success in male and female collared 66 

flycatchers (Ficedula albicollis) in Sweden. In a later study from the same population, however, 67 

Merilä and Sheldon (2000) found additive genetic variance in lifetime reproductive success for 68 

females and males to be non-zero (h2= 0.21 ± 0.06 for females and 0.07± 0.06 for males, see also 69 

Brommer et al. (2007)). In female and male British great tits (Parus major), McCleery et al. (2004) 70 

found close-to-zero heritability of lifetime reproductive success (h2= 0.00 ± 0.04 for females and 71 
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0.02± 0.04 for males). Along the same lines, Wheelwright et al. (2014) found a zero heritability 72 

for lifetime reproductive success in female savannah sparrows (Passerculus sandwichensis) in 73 

Canada, while Teplitsky et al. (2009) found non-zero genetic variance in lifetime reproductive 74 

success for females (h2= 0.36 ± 0.29) and zero variance for males in a natural population of red-75 

billed gulls (Laurus novaehollandiae) in New Zealand. Finally, de Villemereuil et al. (2019) 76 

showed that hihis (Notiomystis cincta) in New Zealand had negligible additive genetic variance in 77 

lifetime fitness, while Wolak et al. (2018) found that the song sparrows (Melospiza melodia) of 78 

Mandarte island in Canada harbored substantial additive genetic variance in female and male 79 

fitness (VA female=2.01, 95% CI =0.21, 3.93; VA male=1.72, 95% CI =0.27, 3.39). 80 

Data constraints might partially explain the paucity of studies testing for the heritability of 81 

fitness in the wild and the heterogeneity among estimates of additive genetic variance, although 82 

steadily increasing datasets collected from long-term study populations gradually alleviate the 83 

problem (Clutton-Brock and Sheldon 2010). This increased data availability was recently 84 

accompanied by the development of (i) statistical tools designed to deal with the non-Gaussian 85 

distributions that often characterize fitness data (de Villemereuil et al. 2016; de Villemereuil 2018), 86 

as well as (ii) theoretical frameworks that facilitate the evolutionary inference of quantitative 87 

genetic parameters based on these data distributions (Morrissey and Bonnet 2019). Fitness 88 

components often follow a non-Gaussian error distribution as a result from the temporal sequence 89 

of survival (Binary data) and reproductive events (Poisson data). Modelling them accordingly, by 90 

applying generalized linear models (de Villemereuil et al. 2016; de Villemereuil 2018; Bonnet et 91 

al. 2019), offers an added benefit. Parameter estimates from a model with a Poisson error 92 

distribution fitted to absolute fitness data readily inform about the increase in fitness within a 93 

generation, while back-transformed estimates on the observed data scale inform about the increase 94 
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in fitness between generations (Morrissey and Bonnet 2019). As such, estimates of the additive 95 

genetic variance for absolute fitness on the latent scale data are equivalent to evolvability estimates 96 

(i.e., the additive genetic variance in relative fitness) on the data scale for relative fitness, and, 97 

therefore, provide evidence for Fisher's rate of evolution (Hansen et al. 2011; de Villemereuil et 98 

al. 2016). To date, only four studies have modelled the quantitative genetics of fitness in wild 99 

populations assuming a Poisson (McFarlane et al. 2014, 2015; Wolak et al. 2018) or a Zero-Inflated 100 

Poisson distribution (de Villemereuil et al. 2019).  101 

Here, we present phenotypic and pedigree data obtained from a 28-year individual-based study 102 

on common terns (Sterna hirundo). The common tern is a Nearctic and Palearctic colonially 103 

breeding, serially monogamous and migratory seabird. The study colony is located in the north of 104 

Germany; common terns from this colony spend their winters in western Africa and return to the 105 

breeding colony in early spring to breed or prospect potential breeding locations (Becker and 106 

Ludwigs 2004). Common terns breed annually, both parents incubate and feed the chicks, and 107 

extra-pair paternity is rare (González-Solís et al. 2001; Becker and Ludwigs 2004). Applying a 108 

series of “animal models” to data from almost 6000 pedigreed individuals across five generations, 109 

we investigate additive genetic variance for lifetime fitness (assessed as the total number of 110 

fledglings produced by a locally-born fledgling), and two of its underlying components: annual 111 

reproductive success and annual adult survival.  112 

 113 

METHODS 114 

Study System 115 

Fitness and pedigree data were collected between 1992 and 2019 as part of a long-term study of a 116 

common tern population located at the Banter See on the German North Sea coast (53°36´N, 117 
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08°06´E). The Banter See colony consists of six concrete islands, each of which is surrounded by 118 

a 60-cm wall. Walls are equipped with 44 elevated platforms, each containing an antenna which 119 

reads transponder codes. The individual-based study at the Banter See was initiated in 1992, when 120 

101 adult birds were caught and marked with individually numbered subcutaneously injected 121 

transponders. Since 1992, all locally hatched birds are similarly marked with a transponder shortly 122 

before fledging and the presence and reproductive performance of marked individuals is monitored 123 

following a standard protocol (Becker and Wendeln 1997). As part of this protocol, the colony is 124 

checked for new clutches every 2–3 days throughout the breeding season (Zhang et al. 2015). 125 

Parents are identified using portable antennae placed around each nest for 1–2 days during 126 

incubation, which is shared by both partners. Pairs can rear up to three chicks per brood (mean 127 

successful brood size 0.41 ± 0.65 SD chicks), and can produce replacement clutches after loss of 128 

eggs or chicks. Second clutches are extremely rare (Becker and Zhang 2011).  129 

 130 

Fitness Data 131 

Fitness data have been collected since 1992, with data up to 2019 being available for the analyses 132 

reported here. Our initial data selection included individuals that fledged between 1992 and 2016, 133 

because previous work showed that 97% of fledglings, if they returned, did so within the first 3 134 

years (Vedder and Bouwhuis 2018). Although we cannot directly quantify juvenile dispersal, our 135 

data suggest that that it is relatively infrequent. This is because of (i) a relatively high local return 136 

rate (28% of chicks fledged between 1992 and 2016 recruited at the colony), and (ii) rare reporting 137 

of external recruits (between 1992 and 2016, 32 fledglings from the Banter See were observed a 138 

total of 105 times in other European breeding colonies), although this reporting may not be 139 

extensive. In addition, although we cannot directly observe an individual’s death, we can reliably 140 
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assume it, because adult breeders at the Banter See are highly site-faithful, evidenced by the 141 

resighting probability of individuals that bred at least once being close to one (Szostek and Becker 142 

2012), and 96% of breeders not skipping recording by the antenna system for two or more 143 

consecutive years after first reproduction (Bouwhuis et al. 2015; Zhang et al. 2015). Based on this 144 

knowledge, we removed all birds that were observed in 2018 and/or 2019 and were younger than 145 

11 years old, because (i) they are known to not be, or cannot yet be assumed to be, dead, and (ii) 146 

lifetime fitness of individuals older than 10 years and those dead showed a high correlation (r > 147 

0.8) in our dataset. Hence, we included birds that have completed their life histories (n = 5836), as 148 

well as birds that were still alive but older than 10 years (n = 163) to avoid introducing a cohort 149 

truncation bias by non-randomly removing longer-lived birds (Hadfield 2008; Morrissey et al. 150 

2012). To control for any potential confounding effect, we modelled whether an individual was 151 

considered dead or alive as a fixed effect (see below). 152 

We quantified lifetime fitness as the total number of local fledglings that a locally-hatched 153 

fledgling produced during its lifetime. In total, our data comprise the fitness of 5999 locally-154 

hatched fledglings (Fig. 1A). Lifetime fitness can be decomposed in two major components: 155 

juvenile survival and adult lifetime reproductive success. Juvenile survival captures survival from 156 

fledgling to adulthood (first year of breeding, once birds are adults), whereas adult lifetime 157 

reproductive success captures adult survival and reproductive success across life. These two fitness 158 

components, juvenile survival and adult lifetime reproductive success, correspond to the two 159 

mechanisms captured by the Zero-inflated Poisson distribution of lifetime fitness, and hence, we 160 

did not model them in separate analyses. However, we further decomposed adult lifetime 161 

reproductive success (LRS) into its two components: annual reproductive success (ARS) and 162 

annual adult survival (AAS). ARS was measured as the number of fledglings that an individual 163 
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produced each year between its first year of life and last registration, assigning zeroes for years of 164 

skipped reproduction or registration, and for years prior to recruitment (Fig. 1B); AAS was adult 165 

survival (1/0) to the following breeding season, measured every year from an individual’s first 166 

year of life to last registration. In total, our data comprised 836 individuals with 6873 observations 167 

for ARS and AAS. 168 

 169 

Pedigree 170 

The pedigree was constructed by assigning all fledged offspring to their social parents, then pruned 171 

to remove individuals who were either not phenotyped or not ancestors to phenotyped individuals. 172 

For the purpose of this study, the pedigree comprised 6273 records. The maximum depth was five 173 

generations, the number of paternities and maternities 2509 and 2414, respectively. The numbers 174 

of full, maternal and paternal siblingships were 2566, 10180 and 9718, respectively. This social 175 

pedigree is a good approximation of the genetic pedigree, because common terns exhibit very low 176 

levels of extra-pair paternity (González-Solís et al. 2001). 177 

 178 

Quantitative Genetic Models 179 

We applied an animal model approach that combines the phenotypic information on individual 180 

fitness with information from the social pedigree (Kruuk 2004). As such, we fitted a series of 181 

univariate animal models where fitness, or one of its components, was the response variable.  182 

To model lifetime fitness, we fitted a univariate animal model with a Zero-Inflated Poisson 183 

error distribution. We fitted a Zero-Inflated Poisson distribution to better capture the nature of our 184 

metric of lifetime fitness. Zero-inflation is often the result of two different processes involved in 185 

producing the data, i.e., the process that determines whether an event occurs or not differs from 186 
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the process that determines how many times an event occurs, if it does occur. In this case, a Zero-187 

Inflated Poisson model can explicitly model the two different processes, as opposed to a Poisson 188 

model that assumes only a single process to be generating the data (Korner-Nievergelt et al. 2015). 189 

We fitted random intercepts for individual identity linked to the pairwise relatedness matrix and 190 

for hatch-year (to account for cohort effects; e.g., Vedder and Bouwhuis 2018). Because we 191 

modeled lifetime fitness with a Zero-Inflated over-dispersed Poisson distribution, this model has 192 

a Zero-Inflated and a Poisson component, thereby allowing the estimation of the covariance 193 

between the two components for each random effect. However, a model including additive genetic 194 

and hatch-year correlations between the Zero-Inflated and Poisson components of the trait did not 195 

provide a better fit to the data, hence we do not report such correlations. The main models also did 196 

not control for shared environmental effects between siblings (maternal, paternal, or brood effects) 197 

because we did not have information on parental identity for all individuals (maternal identities = 198 

2382 and paternal identities = 2481; 1271 individuals have both maternal and paternal identities 199 

known), and because most fledglings came from broods where only a single individual had 200 

successfully fledged (3027 broods fledged one chick, 1145 broods two, 226 broods 3, while 4 201 

individuals could not be assigned to a brood). However, we did explore the potential effects of a 202 

shared environment (due to maternal, paternal effects, or brood effects) by running two additional 203 

animal models in which included one or two shared environmental effects as a random effect. We 204 

found that there was no major influence on our estimate of additive genetic variance in fitness, 205 

neither when modelling paternal and maternal effects nor when modelling brood effects, as 206 

expected given that the model presented in the main text showed very low (close to or zero) 207 

estimate of additive genetic variance (see Suppl. Material, Tables S1 and S2). 208 
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As fixed effects, we modelled the trait intercept and whether the individual was alive or 209 

dead (categorical variable with two levels). Additionally, we performed data simulations to 210 

investigate (i) whether we can effectively detect small, but substantial heritabilities and 211 

evolvabilities (sensu de Villemereuil et al. 2019) given our data and pedigree structure, and (ii) the 212 

improvement of our statistical power to detect small additive genetic variances in both components 213 

of lifetime fitness when the dataset and pedigree would increase in size and depth (Supplementary 214 

Material, Figs. S1-S5). 215 

To model ARS, we assumed a Poisson error distribution with a log link function and 216 

checked whether the trait was underdispersed, which was not the case. We fitted random intercepts 217 

for individual identity linked to the pairwise relatedness matrix, individual identity not linked to 218 

the pedigree (to account for permanent environmental effects) and year of observation (to account 219 

for temporal variation across years). As fixed effects, we modelled the trait intercept and age 220 

(continuous trait ranging from 1 to 23 years), as fledgling production is known to linearly increase 221 

with age (Zhang et al. 2015) (but see Supplementary Materials, Table S3, for results of the same 222 

animal model run without age effects). 223 

To model AAS, we assumed a binary error distribution with a logit link function and fixed 224 

the residual variance to one. We fitted random intercepts for individual identity linked to the 225 

pairwise relatedness matrix, individual identity not linked to the pedigree (to account for 226 

permanent environmental effects) and year of observation (to account for temporal variation across 227 

years). As fixed effects, we modelled the trait intercept and age (continuous trait ranging from 1 228 

to 23 years), as AAS is known to linearly decrease with age (Zhang et al. 2015; Vedder et al. 2021) 229 

(but see Supplementary Materials, Table S3, for results of the same model ran without age effects). 230 

All quantitative genetic models were fitted using a Bayesian framework implemented in the 231 
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statistical software R (v. 3.6.1, R Core Team 2019) using the R-packages MCMCglmm (Hadfield 232 

2010) and QGglmm (de Villemereuil et al. 2016). Heritabilities (h2) were conditional on the 233 

variance explained by fixed effects and estimated as the proportion of the total phenotypic variance 234 

explained by the additive genetic variance. Evolvabilities (IA) were estimated by dividing the 235 

additive genetic variance by the squared population mean (Houle 1992; Hansen et al. 2011).  236 

For all models we used parameter-expanded priors (Hadfield 2010). We fitted different 237 

priors for each fitness component (see Supplementary Material). The number of iterations and 238 

thinning intervals were chosen for each model so as to ensure that the minimum MCMC effective 239 

sample size for all parameters was 1000. Burn-in was set to a minimum of 5000 iterations. The 240 

retained effective sample sizes yielded absolute autocorrelation values <0.1 and satisfied 241 

convergence criteria based on the Heidelberger and Welch convergence diagnostic (Heidelberger 242 

and Welch 1981). We drew inferences from the marginal posterior mode and 95% credible 243 

intervals (95% CI). Variance parameters were estimated on latent scales. To facilitate evolutionary 244 

inference (Bonnet et al. 2019; Morrissey and Bonnet 2019), we back-transformed the latent-scale 245 

posterior distributions of the quantitative genetic parameters to the observed data-scale (de 246 

Villemereuil et al. 2016).  247 

 248 

RESULTS 249 

Quantitative Genetics of Lifetime Fitness 250 

Among the 5999 common tern chicks that fledged between 1992 and 2016, lifetime fitness ranged 251 

between 0 and 29 fledglings (Fig. 1A). 5231 (87.19%) fledglings obtained zero fitness, such that 252 

the distribution of fitness was strongly Zero-Inflated (Fig. 1A).  253 

Raw mean fitness was 0.72 ± 2.52 SD fledglings. Although this would indicate the 254 

population to be in overall decline (a mean lifetime breeding success of two fledglings would be 255 



13 
 

required for the population to be stable), population size actually varied dramatically across years 256 

but was not in overall decline (Fig. S6), partially because there was a substantial influx of non-257 

locally hatched breeders that immigrated into the population (ca. 74% ± 1 of breeders was 258 

estimated to be immigrant in any given year between 1992 and 2020). Since we do not capture or 259 

mark immigrants, we can quantify the proportion of immigrants present in our colony in a given 260 

year but we cannot include them in the pedigree or our individual-based models. 261 

Simulations showed that, given our data structure and pedigree, we would not be able to 262 

detect what might be considered a small, but substantial signal for the Zero-inflated component of 263 

lifetime fitness: we generated a Zero-inflated component of fitness with an additive genetic 264 

variance  of 0.01, and found that the average posterior mode was similar to the simulated value of 265 

VA (average = 0.012 across the 100 simulations, Fig. S1), but that the lower 95% CI limit was 266 

nominally zero in most of the simulations (95% CI = 0 – 0.023, Fig. S1). When we simulated larger 267 

values of additive genetic variance (i.e., VA = 0.05 or 0.1), our simulations showed that we would 268 

be able to detect those variance values (average = 0.053 and 95% CI = 0.028 – 0.083 across the 269 

100 simulations for a simulated value of 0.05, and average = 0.102 and 95% CI = 0.064 – 0.145 270 

for a simulated value of 0.1, Figs. S3 and S4).  271 

Our quantitative genetic analysis of empirical data suggested that the additive genetic 272 

variance in the Zero-Inflated component of fitness was not different from zero, as the posterior 273 

mode of the additive genetic variance was very close to, and the lower 95% CI limit leaning 274 

towards, zero (Table 1, Fig. 2A-C). Taken together, our combination of analyses of empirical and 275 

simulated data therefore suggested there to be low (lower than 0.05) to null additive genetic 276 

variance in the Zero-inflated component of lifetime fitness, but that we lack power to determine 277 

with higher precision whether such variance is nominally zero or non-zero but very small. 278 
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The results for the Poisson component of lifetime fitness are less straightforward. 279 

Simulations showed that, given our data structure and pedigree, we would not be able to detect 280 

either small, but substantial or larger signals for the Poisson component of fitness: we generated a 281 

Poisson-component of fitness with a series of evolvability values (IA = 0.00, 0.01, 0.05 and 0.1), 282 

and found that the lower 95% CI limit was leaning towards zero in all cases (Fig. S1-4). Our 283 

analysis of the empirical data suggested the additive genetic variance of the Poisson component to 284 

not differ from zero, given that the associated lower 95% CI limits of VA, h2 and IA converged 285 

towards zero (Table 1, Fig. 2D-F). Altogether, the combination of empirical analyses and data 286 

simulations showed that we lack power to determine where the additive genetic variance in the 287 

Poisson component of lifetime fitness falls within a rather large range of values (between “larger 288 

than 0.1” and zero). 289 

Finally, data simulations of a larger dataset with a deeper pedigree structure indicated that 290 

increasing our study to include four more generations of pedigreed individuals would lead to an 291 

important increase in statistical power, so that we would be able to detect additive genetic variances 292 

of at least 0.05 in both components of lifetime fitness. Estimated values of additive genetic 293 

variance were of similar magnitude to that of the simulated value (average posterior mode of 0.05 294 

across the 100 simulations for both components of lifetime fitness), with associated 95% CI not 295 

leaning towards zero in any of the cases (95% CI = 0.031- 0.064 for Zero-Inflated component, and 296 

95% CI = 0.009 -0.197 for Poisson component, Fig. S5). 297 

 298 

Quantitative Genetics of Annual Fitness Components 299 

We investigated the Annual Reproductive Success and Annual Adult Survival of 793 fledglings 300 

that survived to adulthood and bred in our population (Table 2). Raw mean annual reproductive 301 



15 
 

success was 0.70 ± 0.81 SD with a maximum of three fledglings (Fig. 1B). The posterior 302 

distribution of VA for ARS converged toward zero (Table 2, Fig. 4A-C), suggesting that VA is not 303 

different from zero. Raw mean annual adult survival probability was 0.85 ± 0.36 SD. The posterior 304 

modes of all quantitative genetic parameters for AAS were very close to zero (Table 2, Fig. 3A-305 

C), with the lower 95% CI limit of all parameter estimates converging towards zero, again 306 

suggesting that VA in AAS is not different from zero. 307 

 308 

DISCUSSION 309 

The most direct measure of the adaptive potential of a population is its standing additive genetic 310 

variance in fitness (Fisher 1930). Here, we estimated additive genetic variances in lifetime fitness 311 

and two of its key components in a wild colony of common terns. On the one hand, our empirical 312 

findings indicated no evidence for substantial (or different than zero) additive genetic variance in 313 

lifetime fitness, annual adult survival or annual reproductive success in this population. On the 314 

other hand, data simulations demonstrated an overall lack of statistical power to detect small, but 315 

substantial signals (i.e., VA = 0.01), although statistical power differed between the two 316 

components of lifetime fitness: we would have power to detect slightly larger signals (additive 317 

genetic variances of, at least, 0.05) for the Zero-inflated, but not Poisson, component of fitness. As 318 

such, our work demonstrated that estimating additive genetic variance in fitness still is very 319 

difficult in wild populations, partly due to the expected low values of genetic variation in fitness 320 

in populations locally adapted or under stabilizing selection, and partly due to the challenges 321 

associated with collecting sufficient phenotypic and pedigreed data. 322 

 323 

Quantitative Genetics of Lifetime Fitness 324 
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In this study, we aimed at providing much-needed empirical estimates for key quantitative genetic 325 

parameters that have rarely been estimated in the wild, and did so by applying non-Gaussian 326 

models to estimate variation in fitness (Bonnet et al. 2019; Morrissey and Bonnet 2019). 327 

Quantitative genetic parameters drawn from Poisson models can be readily interpreted in terms of 328 

evolutionary significance without back-transformation. When traits follow a log-link function, 329 

estimates of additive genetic variance for absolute fitness on the latent scale are equivalent to 330 

evolvability estimates directly on the data scale for relative fitness, and therefore, they provide 331 

evidence for Fisher's rate of evolution (Hansen et al. 2011; de Villemereuil et al. 2016; Morrissey 332 

and Bonnet 2019).  333 

There have been around 30 studies testing for additive genetic variance in fitness in the 334 

wild (see Introduction), with, to our knowledge, only four using non-Gaussian animal models 335 

(McFarlane et al. 2014, 2015; Wolak et al. 2018; de Villemereuil et al. 2019), and only one testing 336 

for variance components of fitness using a Zero-Inflated Poisson distribution (de Villemereuil et 337 

al. 2019). Our estimate of the additive genetic variance for the Zero-inflated component of 338 

common tern lifetime fitness on the observed data-scale was nominally zero, with the lower 95% 339 

CI limit leaning towards zero (posterior mode VA data-scale = 0.004, 95% CI = 0 - 0.008, Table 1), 340 

similarly to results for the hihi (de Villemereuil et al. 2019) (posterior mode VA data-scale ~ 0, 95% 341 

CI = 1.4 x 10-11 - 0.0038). For the Poisson component, de Villemereuil et al. (2019) found a 342 

posterior mode of 0.0078 (95% CI = 2.3 x 10-10 - 5.7). Our posterior mode estimate was overall 343 

larger (posterior mode VA data-scale = 2.29, Table 1) but associated with high uncertainty (95% CI = 344 

0.002 - 12.3), such that the estimates from both studies remain qualitatively similar. 345 

Given that our estimates of additive genetic variance in fitness showed very low or 346 

nominally zero values, our study implies that the adaptive potential of this natural population of 347 
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common terns will be extremely limited, although the actual potential remains partially unknown 348 

as our estimates were associated with high uncertainty. Moreover, it is important to note that we 349 

could only investigate the evolutionary potential of local recruits, as we did not have phenotypic 350 

and pedigree data to investigate the evolutionary potential of the total colony. This was because 351 

the studied population had a substantial influx of immigrants that recruited at the colony but those 352 

immigrants remained unknown across the years. 353 

 354 

Quantitative Genetics of Fitness Components 355 

Additive genetic variance in lifetime fitness can theoretically be decomposed into the additive 356 

genetic variances in its underlying components. The two primary components of our measure of 357 

lifetime fitness are juvenile survival and adult lifetime reproductive success. Our zero-inflation in 358 

lifetime fitness is mainly due to low juvenile survival (i.e., 74% of fledglings did not locally 359 

recruit), while the Poisson process generating the observed fitness distribution is mostly capturing 360 

adult lifetime reproductive success. If we compare our nominally zero additive genetic variance in 361 

the Zero-inflated component of lifetime fitness (Table 1) with estimates from other studies that 362 

tested for additive genetic variance in juvenile survival, we observe some differences. For instance, 363 

the study of Wolak et al. (2018) on the song sparrow population of Mandarte Island reported 364 

evidence for non-zero VA for juvenile survival. The natural history of common terns and song 365 

sparrows differs in many ways, yet one reason for this disparity could be a difference in emigration 366 

rates, since the Mandarte population is isolated with very little juvenile emigration (Reid et al. 367 

2021).  368 

Adult lifetime reproductive success is the sum of annual reproductive events across the life 369 

of an individual, and hence, can be decomposed into annual reproductive success and annual adult 370 
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survival. Given the lack of substantial additive genetic variance for adult annual survival or annual 371 

reproductive success (Table 2), the decomposition of adult lifetime reproductive success into its 372 

components was not very insightful in identifying what was the most likely mechanism underlying 373 

genetic variation in adult lifetime reproductive success. This finding again contrasts with one from 374 

Mandarte’s song sparrows, where quantitative genetic analyses demonstrated moderate levels of 375 

VA in ARS (especially for males) and close to zero VA in AAS, indicating that heritable ARS was 376 

the primary component of heritable adult LRS in that population (Wolak et al. 2018).  377 

 378 

Limitations of studying quantitative genetics of fitness in the wild 379 

Despite the fundamental relevance of additive genetic variance in fitness in the context of 380 

understanding adaptation and evolutionary potential, Hendry et al. (2018) found that there were 381 

very few estimates of additive genetic variance for fitness in the wild, and that those available 382 

estimates were heterogeneous, with many estimates close to zero, and very few large estimates 383 

(e.g., Gustafsson 1986; Kruuk et al. 2000; Merilä and Sheldon 2000; Coltman et al. 2005; 384 

McFarlane et al. 2014). 385 

Data constraints might partially explain the paucity of studies testing for the heritability of 386 

fitness in the wild. Animal models are data-hungry and rely on high quality pedigree information. 387 

Researchers therefore are faced with the challenge of collecting hard-to-quantify lifetime fitness 388 

data from an unbiased sample of the population (i.e., avoiding a “missing fraction” bias) that 389 

comprises a sufficiently large number of individuals of known relatedness (Burt 1995; Merilä and 390 

Sheldon 1999; Hendry et al. 2018). In addition, even when a large dataset and pedigree are 391 

available, additive genetic variance in fitness is often expected to be low, for instance, when 392 

populations are locally adapted or under stabilizing selection, such that the power to detect small, 393 
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close to zero, additive genetic variation in fitness may be low as well. Non-zero but non-significant 394 

estimates and zero estimates might simply represent bounded estimates (i.e., when the estimated 395 

parameters are very close to zero, i.e., the lower limit of the distribution, models often fail to 396 

estimate very low values with higher precision). As pointed out by Burt (1995): “it is very difficult 397 

to get an estimate that is statistically distinguishable from zero, and the sample sizes required to 398 

do so might easily lead to despair”. In light of the multiple constraints posed by data requirements 399 

and expected low values, negative results with respect to additive genetic variation in fitness 400 

should be taken and discussed with care. Simulations aimed at determining the statistical power of 401 

a given dataset and pedigree structure will help to distinguish a true negative result from a zero 402 

parameter estimated with high uncertainty (e.g., de Villemereuil et al. 2019). Overall, the field of 403 

quantitative genetics in the wild needs more and better estimates stemming from a broad 404 

taxonomic range, and to systematically associate those empirical estimates with simulations to 405 

assess the power of the dataset. 406 

Additionally, our knowledge of the genetic architecture of fitness and fitness components 407 

is currently still limited. Extending our genomic understanding of variation in fitness in wild 408 

populations will bring important insights into how natural selection maintains genetic variation 409 

underpinning fitness, and overall will help to better predict the evolutionary dynamics of natural 410 

populations (Merilä and Sheldon 1999; Mackay 2001; Huang and Mackay 2016). Despite the clear 411 

benefits, genomic research based on quantitative trait loci (QTL) approaches or genome-wide 412 

association studies on quantitative fitness-related traits applied to natural populations has been a 413 

challenge (Slate 2004; Slate et al. 2010; Jensen et al. 2014). This initial paucity in genomic studies 414 

on quantitative traits in pedigreed natural populations was partially due to the low power to detect 415 

QTL, for instance because studies suffered from low-density linkage maps and/or relatively few 416 
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genotyped individuals. Nowadays, the use of powerful next-generation genomic techniques, 417 

however, allows to increase the power in such studies. 418 

A better understanding of the genetic architecture of fitness will also provide added 419 

benefits, as, for instance, it would allow a deeper understanding of the genetic underpinnings of 420 

complex traits such as fitness which might be subjected to different pleiotropic effects (Mackay 421 

2001). Indeed, antagonistic pleiotropy is often assumed to underlie the commonly-observed 422 

negative phenotypic correlation between the two main fitness components of lifetime fitness: 423 

survival and reproductive success (also observed in the terns: Vedder et al., 2021). The 424 

implications of antagonistic pleiotropy for the study of genetic variance in fitness are manifold, 425 

varying according to the direction, magnitude and symmetry of the different allele effects. For 426 

instance, in a simple scenario where (i) the alleles with positive effects on reproductive output 427 

would have negative effects on survival, (ii) the effects on both fitness components are reciprocal 428 

and (iii) symmetrical, the genetic variance in survival and reproduction would be approximately 429 

the same, but the genetic variance in lifetime fitness would be very low.  430 

 431 

Conclusion 432 

Our quantitative genetic study of fitness in a wild population of common terns reported low to zero 433 

estimates of additive genetic variance in lifetime fitness and two underlying components, which 434 

were at the same time associated with high uncertainty. Those analyses, however, were 435 

overshadowed by a lack of statistical power to detect additive genetic variation in fitness more 436 

accurately and precisely. The continuation of long-term individual-based studies should be 437 

safeguarded (also see Clutton-Brock and Sheldon 2010), such that the maturation of long-term 438 

studies will offer improved opportunities for testing genetic variation in natural populations, 439 
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which, thanks to the recent development of appropriate statistical and theoretical frameworks (de 440 

Villemereuil et al. 2016; Bonnet et al. 2019; Morrissey and Bonnet 2019), will help to improve 441 

our understanding of the genetics of fitness in the wild. Ultimately, a robust quantification of the 442 

standing additive genetic variation for fitness will inform us about the rate of adaptation of 443 

populations between and within generations, and allow a better understanding of their viability in 444 

the face of the deleterious environmental effects that current climate and global changes pose.  445 
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FIGURES 602 

Figure 1. Phenotypic distributions of A) lifetime fitness measured as the total number of fledglings 603 

a locally-hatched fledgling produced in its lifetime (with the inset showing the distribution for non-604 

zero fitness in more detail), and B) annual reproductive success, measured as the number of 605 

fledglings an adult breeder produced in a year.  606 
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Figure 2. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 608 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 609 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of the Zero–610 

Inflated component of lifetime fitness, and the D) additive genetic variance (VA), E) heritability 611 

(h2) and F) evolvability (IA) of the Poisson component of lifetime fitness. Distributions are reported 612 

on the observed data scale. 613 

 614 

 

 

 

 

 



31 
 

Figure 3. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 615 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 616 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of annual adult 617 

survival (AAS). Distributions are reported on the observed data scale. 618 
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Figure 4. Posterior MCMC samples (bars), kernel density estimation (solid black line), posterior 630 

mean (red dotted line), 95% Credible Intervals (black dashed lines) and prior (solid blue line) for 631 

the A) additive genetic variance (VA), B) heritability (h2) and C) evolvability (IA) of annual 632 

reproductive success (ARS). Distributions are reported on the observed data scale. 633 
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TABLES 636 

Table 1. Posterior modes and 95% Credible Intervals (in brackets) for observed data-scale variance estimates from quantitative genetic 637 

analyses of lifetime fitness. 638 

Model 

component 

Number of 

individuals 
Pop. Mean VP VA h2 IA 

Zero-inflated  

5999 

0.854 

(0.777,0.908) 

0.119 

(0.083,0.173) 

0.00401 

(0,0.008) 

0.031 

(0.003,0.059) 

0.006 

 (0,0.012) 

Poisson 
5.71 

(3.86,10.2) 

17.2 

(20.4,549) 

2.29 

(0.002,12.3) 

0.0232 

(0,0.126) 

0.0878  

(0,0.242) 

 

The results are shown for the Zero-inflated and Poisson components of the model. All statistics (Pop. Mean, population mean; VP, 639 

phenotypic variance; VA, additive genetic variance; h2, heritability; IA, evolvability) presented in the table are reported on the observed 640 

data-scale. 641 
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Table 2. Posterior modes and 95% Credible Intervals (in brackets) for observed data-scale variance estimates from quantitative genetic 642 

analyses of annual reproductive success (ARS) and annual adult survival (AAS). 643 

Fitness 

component 

Sample 

size 

Number of 

individuals 
Pop. Mean VP VA h2 IA 

ASS 

6873 836 

0.940003  

(0.855951,0.97266) 

0.056445 

(0.028845,0.125507) 

0.000006         

(0,0.00093) 

0.000095        

(0,0.011505) 

0.000006        

(0,0.001173) 

ARS 0.142 (0.108,0.236) 0.157 (0.115,0.365) 
0.000 

(0,0.003) 
0.000 (0,0.012) 

0.000 

(0,0.094) 

 

All statistics (Pop. Mean, population mean; VP, phenotypic variance; VA, additive genetic variance; h2, heritability; IA, evolvability) 644 

presented in the table are reported on the observed data scale. 645 


