| 1  | Integrating natural and sexual selection                                                          |
|----|---------------------------------------------------------------------------------------------------|
| 2  | across the biphasic life cycle                                                                    |
| 3  |                                                                                                   |
| 4  | Craig F. Purchase <sup>1,2</sup> , Jonathan P. Evans <sup>2</sup> and Julissa Roncal <sup>1</sup> |
| 5  | Twitter: @CraigPurchase @1jonevans @RoncalJulissa                                                 |
| 6  |                                                                                                   |
| 7  | <sup>1</sup> Department of Biology, Memorial University of Newfoundland. St. John's,              |
| 8  | Newfoundland & Labrador, A1B 3X9, Canada.                                                         |
| 9  |                                                                                                   |
| 10 | <sup>2</sup> Centre for Evolutionary Biology, School of Biological Sciences, the University of    |
| 11 | Western Australia. Crawley, Western Australia, 6009, Australia.                                   |
| 12 |                                                                                                   |
| 13 | Corresponding author: Purchase, C.F. ( <u>cfpurchase@mun.ca</u> )                                 |
| 14 |                                                                                                   |
| 15 | Keywords                                                                                          |
| 16 | sperm competition, pollen competition, transgenerational effects, cryptic female choice,          |
| 17 | haploid selection, mate choice                                                                    |
| 18 |                                                                                                   |
| 19 | Abstract                                                                                          |
| 20 | An alternation between diploid and haploid phases is universal among sexual eukaryotes.           |
| 21 | Across this biphasic cycle, natural selection and sexual selection occur in both phases.          |

22 Together, these four stages of selection act on the phenotypes of individuals and 23 influence the evolutionary trajectories of populations, but are rarely studied holistically. 24 Here, we provide a conceptual framework that transcends taxonomic groups, and unifies 25 the entire selection landscape within and across the diploid and haploid phases. Our 26 synthesis produces six direct links among four selection stages, and from this we define 27 four types of parental effect. We argue that knowledge of the complex and intertwined 28 opportunities for selection within biphasic life cycles will offer clearer insights into key 29 ecological and evolutionary processes, with benefits to applied science.

30

# **1. Selection in the biphasic life cycle**

32 Sexual eukaryotes share the common feature of a biphasic life cycle, which 33 includes both diploid and haploid phases that are separated by meiosis (diploid to 34 haploid), and fertilization, syngamy and the formation of a zygote (haploid to diploid). 35 Three categories of biphasic life cycle (figure 1a-c) are distinguished by the presence or 36 absence of mitosis in each phase [1-3] – see electronic supplementary material for 37 definitions, and comprise tremendous variation in the relative lengths of the component 38 parts [4]. In diplontic cycles (e.g., animals) there is no haploid mitosis and the haploid 39 phase is limited to gametes (figure 1a), while haplontic organisms (e.g., most green 40 algae) have no diploid mitosis and the diploid phase occurs only as a zygote (figure 1b). 41 In haplodiplontic species (e.g., land plants) mitosis occurs in both phases (figure 1c). 42 Across taxa, different start points, complexity, and terminology used to describe life 43 cycles [3] influence the definitions (see supplementary material) of what is an individual, adult, parent and generation. This complicates generalization across cycles, but the mainpoints of our review are applicable to all.

46 Selection acts on phenotypes [5], which are the product of the genotype and the 47 environmental inputs on development. Natural selection [6] is the differential survival 48 and reproduction of genotypes due to differences in phenotype, while sexual selection [7] 49 is differential reproductive success due to competition with members of the same sex 50 (intra-sexual selection), or choice by members of the opposite sex (inter-sex selection). 51 Both can occur before and after mating (see figure 1). Importantly, gene expression is not 52 necessary in both diploid and haploid phases for selection to occur in both phases, as cells 53 under selection in one phase may have been produced by the genome of the other phase. 54 Selection occurs across four broad stages within biphasic life cycles, but generalizing is 55 challenging because of the inherent variation in terminology used among life cycle types 56 (see Fusco and Minelli [3] for discussion of some of these issues). Our synthesis of 57 general interpretations is given in figure 1a-c and in the text below.

58 In the diploid phase of diplontic and haplodiplontic taxa, natural selection can be 59 interpreted (figure 1a,c; Stage 1) as zygote-adult survival, or 'who lives to mate', and the 60 ability to produce and release gametes or spores. For haplontic cycles (figure 1b) there is 61 no diploid mitosis, but zygote survival before meiosis still applies, as does the ability to 62 produce spores. In diplontic and some haplodiplontic species (e.g., insect pollinated 63 angiosperms), sexual selection can be conceptualized (figure 1a,c; Stage 2) as 'who gets 64 to mate' of those capable [8]. As there is no obvious intra-sex competition or inter-sex 65 choice, sexual selection in the diploid phase may not [see 8–11] apply to haplontic taxa 66 (figure 1b), haplodiplontic (figure 1c) bryophytes, and ferns.

| 67 | In the haploid phase, natural selection can be conceptualized readily in haplontic           |
|----|----------------------------------------------------------------------------------------------|
| 68 | and haplodiplontic taxa (figure 1b-c, Stage 3), where it involves the survival of the        |
| 69 | haplont or gametophyte and traits that determine the success of gametes outside of the       |
| 70 | context of competition from gametes of the same sex (e.g., sperm swimming ability in         |
| 71 | algae, bryophytes, ferns, but not in seeds plants). In diplontic cycles (figure 1a, Stage 3) |
| 72 | there is no mitosis, and little or no gene expression, in the haploid phase, but natural     |
| 73 | selection will still target gamete phenotypes (even if coded by the diploid genome) that     |
| 74 | affect their functional capacity to fertilize opposite sex gametes independent of            |
| 75 | competition from gametes of the same sex (e.g., the capacity of sperm to function under      |
| 76 | different abiotic conditions [see 12]).                                                      |
| 77 | Sexual selection targeting haploid cells (figure 1a-c, Stage 4) is thought to be             |
| 78 | ancestral to that in the diploid phase [13,14]. It influences 'which functioning gametes     |
| 79 | fertilize in the presence of gametes from the same sex' and occurs intra-sex in the form of  |
| 80 | diplontic sperm competition [14,15] and egg competition [see 16], haplodiplontic pollen      |
| 81 | competition [17] and sperm competition, and haplontic gamete competition [18,19 -            |
| 82 | refers to gametes not labeled as sperm/egg]. It also occurs inter-sex with cryptic female    |
| 83 | choice, a process described mostly for animals whereby females bias the outcome of           |
| 84 | male-male sperm competition via a range of morphological, physiological and behavioral       |
| 85 | mechanisms [20]. The extent of a similar process in other taxa is less clear, but examples   |
| 86 | where plant female organs contribute to differential success of pollen (e.g., via pistil     |
| 87 | length, or selective ovule abortion) are known [21–23]. In yeast, sex pheromones not only    |
| 88 | help locate mates but can also affect final mate selection by choosing the strongest         |

signallers [24]. In bryophytes, sex-specific chemical secretions attract microarthropods
that transport sperm to other individuals [25].

91 Together, these four stages of selection act on and determine the phenotypes of 92 individuals, and influence the evolutionary trajectories of populations. Despite the clear 93 interrelationships among these stages, they are seldom studied together. In order to 94 promote a more holistic understanding of how selection targets phenotypes across these 95 stages, we use this review to synthesize contemporary research that reveals the interplay 96 between natural and sexual selection across the biphasic life cycle of sexual eukaryotes, 97 which is supported by the framework outlined in figure 2. We define selection links as 98 being either within-phase, where natural and sexual selection are acting jointly (e.g., 99 antagonistically) on the same 'individuals', or across-phases when experiences of an 100 individual in one phase affects selection in the subsequent phase. This review specifically 101 focuses on highlighting the selection stages and described links, and we illustrate each 102 component with some examples across sexually reproducing lineages.

103

## 104 **2. Interactive links (trade-offs) within-phase**

#### 105 **2(a) Interaction between natural and sexual selection in the diploid**

106 phase (Link A)

Within the diploid phase, the interaction (figure 2, Link A) between natural
selection – typically conceptualized as survival (figure 1a-c, Stage 1), and sexual
selection – breeding opportunities (figure 1a-c, Stage 2) was even considered by Darwin
[6,7], who referred to the 'inconvenience' of elaborate tail feathers in many male birds,
and how their full development must be checked by natural selection. When viewed

112 exclusively through the lens of natural selection, such traits are almost impossible to 113 explain, but sexual selection illuminates a balance between the opposing forces [26]. The 114 interplay between natural and sexual selection in the diploid phase is now widely 115 recognized as a central evolutionary process. In animals, for example, individuals with 116 elaborated secondary sexual characteristics associated with mate choice (e.g. songs, 117 colours, or structures), are often more prone to predation, as seen in dragonflies [27], 118 lizards [28] and birds [29]. In angiosperms, abiotic factors exert selective pressure that 119 can affect the outcome of sex expression in flowers and sex ratios in populations [30,31], 120 imposing trade-offs with other plant functions like growth and defense. Investment in 121 antiherbivore defenses can alter selection on plant reproductive traits, such as petal 122 morphology and inflorescence structure, which are known to attract pollinators [32], and 123 thus who gets to mate. This link does not appear to apply to haplontic and some 124 haplodiplontic taxa, as there is no sexual selection in the diploid phase.

125

#### 126 (2b) Interaction between natural and sexual selection in the haploid

#### 127 phase (Link B)

Within the haploid phase, interactions (figure 2, Link B) between natural (figure 129 1a-c, Stage 3) and sexual (figure 1a-c, Stage 4) selection are more poorly documented, 130 and are rarely framed as a trade-off as is common in the diploid phase. Despite very little 131 work on them, haplontic organisms could provide key insight into this link by revealing 132 many of the same trade-offs as in diplontic species. For example, when subject to 133 nitrogen starvation, green algae induce gamete production, and who reproduces depends 134 on the liberation of female gamete pheromones that attract male gametes [19]. Heat shock

or drought can also trigger the production of sex pheromones in algae, which can be
species- or even strain-specific, avoiding interspecific hybridization [19].

137 In seed plants, the effects of abiotic factors, such as temperature and humidity, on 138 pollen tube germination and growth are well known [33], although their influence on 139 pollen competition has yet to be determined. The presence of apertures in pollen provides 140 a selective advantage as they facilitate water and gas exchange. However, a trade-off 141 between pollen survival and germination has been proposed, where more pollen apertures 142 is expected to accelerate pollen germination on the stigma (higher competitive ability), 143 but has a negative impact on pollen survival since pollen mortality increases with 144 increased aperture number [34].

145 In animals, if sperm quantity is primarily targeted by selection at Stage 4 (which 146 functioning gametes fertilize) while sperm quality is also important for Stage 3 (gamete 147 performance outside of the context of competition from gametes of the same sex), then a 148 trade-off between sperm quality and quantity [35] could represent a conceptual 149 interaction of Link B (figure 2). Similarly, a trade-off would also exist if an adult 150 adjusted its gametes to perform better under acclimated abiotic conditions (see next 151 Section) but this had implications for sexual selection in the form of sperm competition 152 or cryptic female choice. We are unaware of studies the have explicitly tested for such 153 patterns, although some provide hints. For example, Purchase and Moreau [36] found that 154 responses of sperm swimming performance to changing river pH varies among male 155 trout, such that predictions of winners of sperm competition are altered by the abiotic 156 environment. Likewise, in sea urchins, fertilization success of different males changes in 157 different ways depending on ocean pH [37]. In neither study, however, were sperm

competitions actually performed. The topic is ripe for targeted experimentation, and
should incorporate various environmental stressors, such as temperature [see 38].

# **3. One-way bridging links across-phases**

162 The four selection stages (figure 1a-c) are the main drivers of adaptive evolution. 163 For illustration, a male bird that does not survive to adulthood (Stage 1), or survives but 164 does not acquire a mate (Stage 2), contributes no gametes to selection in the next phase, 165 and no direct descendants in the next generation (which is two phases ahead). He also 166 will leave no descendants if he does mate but his sperm are incapable of fertilizing an egg 167 (Stage 3) or winning paternity while under sperm competition (Stage 4). However, 168 selection stages that target phenotypes expressed during the diploid and haploid phases 169 do not operate in isolation, and the 'experiences' (e.g., diet, perceived predation risk, 170 stress, etc.) of the specific individuals that contribute to the subsequent phase may impact 171 selection in it. Below, we define four such links that operate from one phase to the next in 172 biphasic cycles. These are conceptually similar to what West-Eberhard [5] refers to as 173 'bridging phenotypes' (Box 1), and Ritchie and Marshall [39] call 'phenotypic links'. 174 Impacts perpetuating further in time (e.g., parental effects) are considered briefly in Box 175 2 and are reviewed in more detail elsewhere [e.g., 40]. 176

#### 177 (3a) Links from the diploid to haploid phase

As we have noted, haplontic species have no diploid mitosis, and we are unaware of any work considering how surviving zygote 'experiences' before meiosis might impact the haploid phase. In diplontic and haplodiplontic cycles, links from the diploid to

haploid phase may cause adaptive or maladaptive influences on selection in the haploid
phase. Adaptive responses include the ability to alter the phenotypic expression of the
haploid phase to ensure optimal performance under the environmental conditions that are
likely to be encountered. However, trade-offs between phases are relevant in this context,
because if an individual invests more energy into survival or acquiring mates in the
diploid phase (amount of relative energy expenditure being an 'experience') there would
be less energy available to contribute to gametes or spores in the next phase [e.g., 41].

#### 189 (3ai) Effect of diploid experiences on natural selection in the haploid

#### 190 phase – Link C

191 Much of the available information on how diploid adults influence selection 192 during the haploid phase (i.e. the haploid cells they produce) is in the context of natural 193 selection on animal gametes (figure 2, Link C). For example, in ascidians, females have 194 the capacity to adjust egg size according to variation in spawning densities, which can 195 have important implications for the development of zygotes due to the prevalence of 196 lethal polyspermy at high sperm concentrations [42]. Larger eggs may allow for an 197 increase in sperm-egg collision rates under sperm limitation, while smaller eggs reduce 198 the probability of polyspermy at high sperm concentrations.

In animals it is difficult to separate egg functionality from that of embryos, but sperm performance can be measured with relative ease. Sperm quality parameters take many forms [reviewed by 43], such as swimming ability, and a considerable body of research shows that environmental conditions experienced by adult males can influence the quality of their sperm. In humans, factors such as high sugar diets [44], contaminants

[e.g., 45], and oxidative stress [e.g., 46] reduce the quality of sperm. However, many
studies have demonstrated that adjustments to sperm can be adaptive. For example, in
external fertilizers, adult male acclimation to salinity [47,48] and temperature [49] fine
tunes sperm performance to subsequent spawning conditions. This is important because
abiotic factors influence sperm performance, and sperm cells only swim optimally under
certain conditions [see 12]. These and related topics have been treated in part within other
reviews [40,43,50,51].

211 Similar processes operate in algae and land plants. In brown algae decreased 212 salinity experienced by the diploid adult compromises sperm performance [see ref 52, 213 where the term dysfunction is used], drastically reducing fertilization success. 214 Development and function of plant gametophytes (most notably in males) are influenced 215 by environmental conditions of the adult sporophyte. Examples in cereals include an 216 interrupted germline development (lack of functional pollen) in response to drought, or 217 alterations in photoperiod and temperature [53,54]. In grasses the biochemical 218 composition of pollen changes in response to parental temperature and nutrients [55], 219 while increased nutrients results in poorer quality pollen (but higher quantity) in juniper 220 [56]. Squash plants infected with mutualistic mycorrhizae produce larger pollen grains 221 than uninfected plants [57].

222

# 223 (3aii) Effect of diploid experiences on sexual selection in the haploid

224 phase – Link D

Parental experiences in the diploid phase can also have profound consequences
for selection occurring at Stage 4 (Link D in figure 2). For instance, studies spanning

227 numerous animal species have manipulated the social environment experienced by 228 breeding adults and shown that males can facultatively adjust ejaculate characteristics 229 according to the level of sperm competition predicted under the new conditions [58-62]. 230 Remarkedly, this response can occur quite rapidly [61–64]. 231 Sexual selection at Stage 4 is also clearly influenced by environmental conditions 232 experienced by flowering plants in the diploid phase. Low soil quality can generate 233 variability in the ability of female recipients to sort among pollen from competing donors 234 [65]. Soil fertility may increase pollen size and quality [55,66], which in turn produce 235 higher siring success because larger pollen contains more energy reserves facilitating 236 faster germination and pollen tube growth rates [67,68]. Adverse abiotic conditions 237 experienced by parent plants can reduce pollen competitive ability against heterospecific 238 pollen [69]. Other species interacting with plants in the diploid phase may also impact 239 selection at Stage 4. For example, pollen from virus-infected squash are less likely to 240 achieve fertilization than pollen from resistant plants when both pollen types compete 241 within a style [70], and herbivory during the diploid phase can reduce pollen production 242 [71].

243

#### 244 (3b) Links from the haploid to diploid phase

How haploid experiences influence the diploid phase of the life cycle is poorly understood. These are conceptually similar (but reversed) to concepts outlined in Section 3a. They can occur if free-living haplonts or gametophytes alter energy allocation to specific gametes (animal alteration of egg size is diploid experience, not haploid), or in species with any type of life cycle if there are epigenetic changes to fertilizing gametes

| 250 | that affect subsequent embryos. Many experimental studies show changes in embryo              |
|-----|-----------------------------------------------------------------------------------------------|
| 251 | development as a result of alterations in the haploid phase. However, it is very difficult to |
| 252 | separate mechanisms into what constitutes a Link across-phases, from those which              |
| 253 | simply meet definitions of selection at Stages 3 or 4, the mechanisms not being mutually      |
| 254 | exclusive [see review by 72]. In animals and most plants, each sperm produced by diploid      |
| 255 | parents carries unique genetic information. Thus, even if there is only a single male         |
| 256 | donor, offspring effects could result from either which sperm fertilized or what happened     |
| 257 | to the fertilizing sperm. Mosses provide an experimental solution to this problem, as all     |
| 258 | sperm produced by haploid parents are genetically identical [73].                             |
| 259 | Some recent literature on haploid selection in animal sperm [74–76] is focused on             |
| 260 | within-ejaculate selection (i.e. selection that favours sperm phenotypes that are             |
| 261 | attributable to variation encoded by the haploid genome), although this phenomenon,           |
| 262 | along with among-ejaculate sperm competition, falls under selection in the haploid phase      |
| 263 | (figure 1a-c, Stages 3-4) and does not constitute links across-phases. Haploid selection in   |
| 264 | predominately diploid organisms [74] is given more consideration in Box 3.                    |
| 265 |                                                                                               |
|     |                                                                                               |

#### 266 (3bi) Effect of haploid experiences on natural selection in the diploid

#### 267 phase – Link E

Haploid experiences may alter characteristics of the subsequent phase in a manner that influences the likelihood of zygote survival (Link E in figure 2). For haplontic cycles, this could be dramatic given the dominant phase is haploid, but it is difficult to identify whether haploid selection has occurred as opposed to phenotypic adjustment (see above). In green algae, UV induced mutations of maturation genes during the haploid

273 phase results in increased zygote mortality due to failure to form a normal cell wall [77]. 274 As a result of haploid mitosis in haplodiplontic cycles, including pollen tube and ovule 275 development in angiosperms, we can expect that gametophyte experiences will affect 276 plant sporophytes [33,78]. Such experiences could include environmental maternal 277 gametophyte effects, pollen-pistil interactions, and non-random seed abortion, among 278 others. Changes to the diploid phase include modification of seed size, germination 279 success and seedling vigour, but whether mechanisms can be attributed to either haploid 280 selection (e.g., within-donor pollen competition) or phenotypic adjustment attributable to 281 haploid experiences are not clearly discernible [reviewed in 78], and needs future work. 282 Although animals are thought to have no or limited haploid gene expression, 283 haploid experiences can still alter selection in the diploid phase. Sperm transmit more 284 than just genetic material to eggs, and 'sperm factors' [see 51] such as proteins, might be 285 modified by sperm experience. In an externally spawning marine polychaete, Ritchie and 286 Marshall [39] used a split-ejaculate and split-brood design to manipulate the salinity that 287 sperm were exposed to prior to fertilization, and the conditions of subsequent incubation. 288 They found that larval survival was highest when developmental conditions matched that 289 of the sperm treatment, and suggest epigenetic factors as the most likely cause. Other 290 examples of haploid conditions influencing embryo development in animals are readily 291 available (e.g., [79] and are covered in wider reviews [40,80]), but clearly distinguishing 292 the mechanism of haploid experiences (figure 2, Link E) from selection (figure 1, Stages 293 3-4) in these studies is seemingly impossible.

294

# 295 (3bii) Effect of haploid experiences on sexual selection in the diploid 296 phase – Link F

In principle, haploid experiences may also alter diploid development in a way that influences pre-mating sexual selection (Stage 2), although we are unaware of any study addressing this question (figure 2, Link F). The potential certainly exists, if for example, changes brought about under Link E perpetuate into adulthood and influence secondary sexual characteristics. Another possibility is if diploid sex ratios are influenced by haploid conditions [81].

303

# **4. Concluding remarks and future directions**

305 The complex and often intertwined opportunities for selection within the biphasic 306 life cycle create major challenges for researchers attempting to understand key ecological 307 and evolutionary problems in sexual eukaryotes. Toxicological research [82] provides a 308 useful illustration. For example, in experiments examining the effect of marine oil spills 309 on fish reproduction, Beirão et al. [83] exposed fish embryos directly to contaminants. 310 Such work, and that using juvenile/adult exposure to such contaminants, commonly 311 examines resulting changes on traits related to natural selection on the diploid phase 312 (figure 1a, Stage 1), but rarely if ever considers sexual selection at Stage 2, or the 313 interaction of Link A (figure 2). Other work focuses on effects on reproductive output. 314 Beirão et al. [84] group these studies into two types, the first having "indirect effects", 315 where the adult is exposed and gametes are examined (in context of our Link C – we are 316 unaware of any work on Link D, figure 2). Other situations have "direct effects" where in 317 external fertilizers the gametes themselves are exposed to contaminants, which can then

be used to examine natural selection at Stage 3 [84], but has not been investigated in
context of sexual selection at Stage 4 (figure 1a), or Links B, E or F (figure 2). The
problem of cascading effects (figure 2, Box 1) caused by exposure to contaminants thus
becomes evident.

322 We argue that considering all stages and all links among stages are of 323 fundamental importance to both understanding evolutionary processes and conducting 324 applied science. Our synthesis produces six possible direct links among four selection 325 stages within a cycle (figure 2). Using these links, we define four types of parental effect 326 (Box 2). It is evident from our literature search that research on selection in general, but 327 the links in particular, is available mostly for animals and seed plants, and to a much 328 lesser extent for bryophytes, algae, and fungi (or at minimum such publications are not 329 framed in the same context and are thus harder to find). What more, for example, could 330 be learned from studies focusing on haplontic species? There is also a clear dearth of 331 studies that tease apart mechanisms of haploid experience (Link E) versus selection in the 332 haploid phase (Stages 3, 4) on diploid development, and our review highlights the need 333 for targeted research on this topic. Future studies that incorporate selection in both phases 334 and identify component parts may provide significant advancement on many fronts. 335 Some key outstanding questions are:

What are the consequences of drawing conclusions about selection from isolated
 snap-shots of processes that are fundamentally intertwined? To help address this, can
 studies be practically undertaken that measure cascading impacts across all stages of
 selection?

| 340 | • | Trade-offs are a tenet of life history theory but what are the scope and consequences  |
|-----|---|----------------------------------------------------------------------------------------|
| 341 |   | of antagonistic selection between the phases? Fined tuned adaptation is hindered by    |
| 342 |   | trade-offs between natural and sexual selection within a phase. Nevertheless, the      |
| 343 |   | extent to which adaptations that improve performance in one phase trade-off against    |
| 344 |   | those in the other is largely unknown. Similarly, for diploid dominant species, how    |
| 345 |   | does gene expression in the haploid phase influence the diploid phase?                 |
| 346 | • | How important are haploid effects ("gametal effects") to the diploid phase? We have    |
| 347 |   | very little understanding of how natural and sexual selection interact in the haploid  |
| 348 |   | phase (Link B), or how haploid experiences influence sexual selection in the diploid   |
| 349 |   | phase (Link F), or the underlying mechanisms linking haploid experiences to            |
| 350 |   | offspring development (Link E).                                                        |
| 351 | • | What is the potential of haploid selection for human food and health? For instance, to |
| 352 |   | what extent can we use artificial gametophyte selection to improve crop production?    |
| 353 |   | Female gametophyte selection needs further exploration in particular, because of its   |
| 354 |   | significant contribution to the tissue nurturing the embryo. What is the true level of |
| 355 |   | haploid gene expression in animals and can this be exploited, for instance in assisted |
| 356 |   | fertilization programs in livestock and humans?                                        |
|     |   |                                                                                        |

# 358 Acknowledgements

359 C.F.P. first proposed the concepts presented here to the Ecology and Evolution

360 Discussion Group at Memorial University of Newfoundland, who along with Geoff

361 Parker, provided helpful improvements and encouraged him to publish. Refinements and

362 elaborations of ideas for this manuscript were made during his Visiting Professorship at

- 363 the University of Western Australia (UWA) in 2019. This sabbatical opportunity was
- 364 funded by the Institute of Advanced Studies and the Forrest Research Foundation at
- 365 UWA, the Natural Sciences and Engineering Research Council of Canada, and Memorial
- 366 University of Newfoundland.
- 367

#### 368 **References**

- Mable, B.K. and Otto, S.P. (1998) The evolution of life cycles with haploid and
   diploid phases. *Bioessays* 20, 453–462
- Umen, J. and Coelho, S. (2019) Algal sex determination and the evolution of
  anisogamy. *Annu. Rev. Microbiol.* 73, 267–291
- 373 3 Fusco, G. and Minelli, A. (2019) *The biology of reproduction*, Cambridge University
   374 Press.
- 375 4 Rescan, M. *et al.* (2016) Interactions between genetic and ecological effects on
  376 the evolution of life cycles. *Am. Nat.* 187, 19–34
- West-Eberhard, M.J. (2003) *Developmental plasticity and evolution*, Oxford
  University Press.
- 379 6 Darwin, C. (1859) *On the origin of species by means of natural selection*, Murray.
- 380 7 Darwin, C. (1871) *The descent of man, and selection in relation to sex*, Murray.
- 381 8 Andersson, M.B. (1994) *Sexual selection*, Princeton University Press.
- 382 9 Zavada, M.S. and Taylor, T.N. (1986) The role of self-incompatibility and sexual
  383 selection in the gymnosperm-angiosperm transition: a hypothesis. *Am. Nat.* 128,
  384 538–550
- Moore, J.C. and Pannell, J.R. (2011) Sexual selection in plants. *Curr. Biol.* 21,
  R176–R182
- 387 11 Willson, M.F. (1994) Sexual selection in plants: perspective and overview. *Am.* 388 *Nat.* 144, S13–S39
- Beirão, J. *et al.* (2018) A novel sperm adaptation to evolutionary constraints on
   reproduction: pre-ejaculatory sperm activation in the beach spawning capelin
   (Osmeridae). *Ecol. Evol.* DOI: 10.1002/ece3.3783
- 392 13 Parker, G.A. (2014) The sexual cascade and the rise of pre-ejaculatory
  393 (Darwinian) sexual selection, sex roles, and sexual conflict. *Cold Spring Harb.*394 *Perspect. Biol.* 6, a017509–a017509
- 395 14 Parker, G.A. (2020) Conceptual developments in sperm competition: a very brief
  396 synopsis. *Philos. Trans. R. Soc. B-Biol. Sci.* 375, 20200061
- 397 15 Parker, G.A. (1970) Sperm competition and its evolutionary consequences in the
   398 insects. *Biol. Rev.* 45, 525–567
- 399 16 Evans, J.P. and Lymbery, R.A. (2020) Sexual selection after gamete release in
  400 broadcast spawning invertebrates. *Philos. Trans. R. Soc. B-Biol. Sci.* 375,
  401 20200069

| 402<br>403 | 17  | Mulcahy, D.L. (1979) The rise of the angiosperms: a genecological factor. <i>Science</i> 206, 20–23 |
|------------|-----|-----------------------------------------------------------------------------------------------------|
| 404        | 18  | da Silva, J. and Drysdale, V.L. (2018) Isogamy in large and complex volvocine                       |
| 405        | 10  | algae is consistent with the gamete competition theory of the evolution of                          |
| 406        |     | anisogamy. Proc. R. Soc. B Biol. Sci. 285, 20181954                                                 |
| 407        | 19  | Frenkel, J. <i>et al.</i> (2014) Pheromone signaling during sexual reproduction in                  |
| 408        | - / | algae. <i>Plant J.</i> 79, 632–644                                                                  |
| 409        | 20  | Firman, R.C. <i>et al.</i> (2017) Postmating female control: 20 years of cryptic female             |
| 410        |     | choice. <i>Trends Ecol. Evol.</i> 32, 368–382                                                       |
| 411        | 21  | Beekman, M. <i>et al.</i> (2016) Sexual selection in hermaphrodites, sperm and                      |
| 412        |     | broadcast spawners, plants and fungi. <i>Philos. Trans. R. Soc. B-Biol. Sci.</i> 371,               |
| 413        |     | 20150541                                                                                            |
| 414        | 22  | Lankinen, Å. and Karlsson Green, K. (2015) Using theories of sexual selection                       |
| 415        |     | and sexual conflict to improve our understanding of plant ecology and evolution.                    |
| 416        |     | AoB PLANTS 7,                                                                                       |
| 417        | 23  | Tonnabel, J. <i>et al.</i> (2021) The scope for postmating sexual selection in plants.              |
| 418        |     | Trends Ecol. Evol. 36, 556–567                                                                      |
| 419        | 24  | Rogers, D.W. and Greig, D. (2009) Experimental evolution of a sexually selected                     |
| 420        |     | display in yeast. Proc. R. Soc. B Biol. Sci. 276, 543–549                                           |
| 421        | 25  | Rosenstiel, T.N. (2012) Sex-specific volatile compounds influence                                   |
| 422        |     | microarthropod-mediated fertilization of moss. Nature 489, 431–433                                  |
| 423        | 26  | Endler, J.A. (1980) Natural selection on color patterns in <i>Poecilia reticulata</i> .             |
| 424        |     | <i>Evolution</i> 34, 76–91                                                                          |
| 425        | 27  | Moore, M.P. and Martin, R.A. (2018) Trade-offs between larval survival and adult                    |
| 426        |     | ornament development depend on predator regime in a territorial dragonfly.                          |
| 427        |     | <i>Oecologia</i> 188, 97–106                                                                        |
| 428        | 28  | Amdekar, M.S. and Thaker, M. (2019) Risk of social colours in an agamid lizard:                     |
| 429        |     | implications for the evolution of dynamic signals. <i>Biol. Lett.</i> 15, 20190207                  |
| 430        | 29  | McQueen, A. <i>et al.</i> (2019) Evolutionary drivers of seasonal plumage colours:                  |
| 431        |     | colour change by moult correlates with sexual selection, predation risk and                         |
| 432        |     | seasonality across passerines. <i>Ecol. Lett.</i> 22, 1838–1849                                     |
| 433        | 30  | Retuerto, R. <i>et al.</i> (2018) Sexual dimorphism in response to stress. <i>Environ. Exp.</i>     |
| 434        |     | <i>Bot.</i> 146, 1–4                                                                                |
| 435        | 31  | Varga, S. and Soulsbury, C.D. (2020) Environmental stressors affect sex ratios in                   |
| 436        |     | sexually dimorphic plant sexual systems. <i>Plant Biol.</i> DOI: 10.1111/plb.13125                  |
| 437        | 32  | Thompson, K.A. and Johnson, M.T.J. (2016) Antiherbivore defenses alter natural                      |
| 438        |     | selection on plant reproductive traits. <i>Evolution</i> 70, 796–810                                |
| 439        | 33  | Williams, J.H. and Mazer, S.J. (2016) Pollen - tiny and ephemeral but not                           |
| 440        |     | forgotten: new ideas on their ecology and evolution. <i>Am. J. Bot.</i> 103, 365–374                |
| 441        | 34  | Prieu, C. <i>et al.</i> (2016) Aperture number influences pollen survival in <i>Arabidopsis</i>     |
| 442        |     | mutants. <i>Am. J. Bot.</i> 103, 452–459                                                            |
| 443        | 35  | Parker, G.A. and Pizzari, T. (2010) Sperm competition and ejaculate economics.                      |
| 444        |     | <i>Biol. Rev.</i> DOI: 10.1111/j.1469-185X.2010.00140.x                                             |
| 445        | 36  | Purchase, C.F. and Moreau, D.T.R. (2012) Stressful environments induce novel                        |
| 446        |     | phenotypic variation: hierarchical reaction norms for sperm performance of a                        |
| 447        |     | pervasive invader. <i>Ecol. Evol.</i> 2, 2567–2576                                                  |

| 448        | 37         | Smith, K.E. <i>et al.</i> (2019) Sea urchin reproductive performance in a changing                  |
|------------|------------|-----------------------------------------------------------------------------------------------------|
| 449        |            | ocean: poor males improve while good males worsen in response to ocean                              |
| 450        |            | acidification. Proc. R. Soc. B-Biol. Sci. 286,                                                      |
| 451        | 38         | García-Roa, R. <i>et al.</i> (2020) Temperature as a modulator of sexual selection. <i>Biol.</i>    |
| 452        |            | <i>Rev.</i> DOI: 10.1111/brv.12632                                                                  |
| 453        | 39         | Ritchie, H. and Marshall, D.J. (2013) Fertilisation is not a new beginning: sperm                   |
| 454        |            | environment affects offspring developmental success. J. Exp. Biol. 216, 3104–                       |
| 455        |            | 3109                                                                                                |
| 456        | 40         | Evans, J.P. et al. (2019) Ejaculate-mediated paternal effects: evidence,                            |
| 457        |            | mechanisms and evolutionary implications. <i>Reproduction</i> 157, R109–R126                        |
| 458        | 41         | Parker, G.A. (1998) Sperm competition and the evolution of ejaculates: towards                      |
| 459        |            | a theory base. In Sperm competition and sexual selection (Birkhead, T. R. and                       |
| 460        |            | Møller, A. P., eds), pp. 3–54, Academic Press                                                       |
| 461        | 42         | Crean, A.J. and Marshall, D.J. (2008) Gamete plasticity in a broadcast spawning                     |
| 462        |            | marine invertebrate. Proc. Natl. Acad. Sci. 105, 13508–13513                                        |
| 463        | 43         | Snook, R. (2005) Sperm in competition: not playing by the numbers. <i>Trends Ecol.</i>              |
| 464        |            | <i>Evol.</i> 20, 46–53                                                                              |
| 465        | 44         | Nätt, D. <i>et al.</i> (2019) Human sperm displays rapid responses to diet. <i>PLOS Biol.</i>       |
| 466        |            | 17, e3000559                                                                                        |
| 467        | 45         | Ji, H. <i>et al.</i> (2018) Exposure of environmental Bisphenol A in relation to routine            |
| 468        |            | sperm parameters and sperm movement characteristics among fertile men. Sci.                         |
| 469        |            | <i>Rep.</i> 8, 17548                                                                                |
| 470        | 46         | Agarwal, A. <i>et al.</i> (2018) Role of oxidative stress, infection and inflammation in            |
| 471        |            | male infertility. <i>Andrologia</i> 50, e13126                                                      |
| 472        | 47         | Jensen, N. <i>et al.</i> (2014) Adaptive maternal and paternal effects: gamete plasticity           |
| 473        |            | in response to parental stress. <i>Funct. Ecol.</i> 28, 724–733                                     |
| 474        | 48         | Taugbol, A. <i>et al.</i> (2017) Salinity-induced phenotypic plasticity in threespine               |
| 475        |            | stickleback sperm activation. <i>Biol. Lett.</i> 13, 201705016                                      |
| 476        | 49         | Vasudeva, R. <i>et al.</i> (2019) Adaptive thermal plasticity enhances sperm and egg                |
| 477        |            | performance in a model insect. <i>Elife</i> 8, e49452                                               |
| 478        | 50         | Fitzpatrick, J.L. and Lüpold, S. (2014) Sexual selection and the evolution of                       |
| 479        | - 4        | sperm quality. MHR Basic Sci. Reprod. Med. 20, 1180–1189                                            |
| 480        | 51         | Immler, S. (2018) The sperm factor: paternal impact beyond genes. <i>Heredity</i>                   |
| 481        | = 0        | 121, 239–247                                                                                        |
| 482        | 52         | Rothäusler, E. <i>et al.</i> (2019) Living on the edge: gamete release and subsequent               |
| 483        |            | fertilisation in <i>Fucus vesiculosus</i> (Phaeophyceae) are weakened by climate                    |
| 484        | = 0        | change–forced hyposaline conditions. <i>Phycologia</i> 58, 111–114                                  |
| 485        | 53         | Begcy, K. and Dresselhaus, T. (2018) Epigenetic responses to abiotic stresses                       |
| 486        | <b>-</b> 4 | during reproductive development in cereals. <i>Plant Reprod.</i> 31, 343–355                        |
| 487        | 54         | Fan, Y. and Zhang, Q. (2018) Genetic and molecular characterization of                              |
| 488        |            | photoperiod and thermo-sensitive male sterility in rice. <i>Plant Reprod.</i> 31, 3–14              |
| 489        | 55         | Zimmermann, B. <i>et al.</i> (2017) A high-throughput FTIR spectroscopy approach to                 |
| 490<br>401 |            | assess adaptive variation in the chemical composition of pollen. <i>Ecol. Evol.</i> 7, 10920, 10940 |
| 491        |            | 10839–10849                                                                                         |

| 492        | 56  | Pers-Kamczyc, E. <i>et al.</i> (2020) The higher availability of nutrients increases the     |
|------------|-----|----------------------------------------------------------------------------------------------|
| 493        |     | production but decreases the quality of pollen grains in <i>Juniperus communis</i> L. J.     |
| 494        |     | Plant Physiol. 248, 153156                                                                   |
| 495        | 57  | Lau, TC. <i>et al.</i> (1995) Effects of soil fertility and mycorrhizal infection on pollen  |
| 496        |     | production and pollen grain size of <i>Cucurbita pepo</i> (Cucurbitaceae). <i>Plant Cell</i> |
| 497        |     | <i>Environ.</i> 18, 169–177                                                                  |
| 498        | 58  | Fisher, H.S. <i>et al.</i> (2018) Sibling rivalry: Males with more brothers develop larger   |
| 499        | 00  | testes. <i>Ecol. Evol.</i> 8, 8197–8203                                                      |
| 500        | 59  | Perry, J.C. <i>et al.</i> (2013) The seminal symphony: how to compose an ejaculate.          |
| 500        | 0,  | Trends Ecol. Evol. 28, 414–422                                                               |
| 502        | 60  | Silva, W. <i>et al.</i> (2019) The effects of male social environment on sperm               |
| 502        | 00  | phenotype and genome integrity. J. Evol. Biol. 32, 535–544                                   |
| 505<br>504 | 61  | Simmons, L.W. and Lovegrove, M. (2017) Socially cued seminal fluid gene                      |
| 504<br>505 | 01  | expression mediates responses in ejaculate quality to sperm competition risk.                |
| 505<br>506 |     | Proc. R. Soc. B Biol. Sci. 284, 20171486                                                     |
|            | 62  | Bartlett, M.J. <i>et al.</i> (2017) Sperm competition risk drives rapid ejaculate            |
| 507        | 02  |                                                                                              |
| 508        | ()  | adjustments mediated by seminal fluid. <i>eLife</i> 6, e28811                                |
| 509        | 63  | Locatello, L. <i>et al.</i> (2013) Tactic-specific differences in seminal fluid influence    |
| 510        |     | sperm performance. <i>Proc. R. Soc. B Biol. Sci.</i> 280, 20122891                           |
| 511        | 64  | Rudolfsen, G. <i>et al.</i> (2006) Rapid adjustments of sperm characteristics in relation    |
| 512        | ~ - | to social status. <i>Proc. R. Soc. B Biol. Sci.</i> 273, 325–332                             |
| 513        | 65  | Lankinen, Å. and Hydbom, S. (2017) Effects of soil resources on expression of a              |
| 514        |     | sexual conflict over timing of stigma receptivity in a mixed-mating plant. <i>Oikos</i>      |
| 515        |     | 126, 692–702                                                                                 |
| 516        | 66  | Delph, L.F. <i>et al.</i> (1997) How environmental factors affect pollen performance:        |
| 517        |     | ecological and evolutionary perspectives. <i>Ecology</i> 78, 1632–1639                       |
| 518        | 67  | Mazer, S.J. et al. (2010) The joint evolution of mating system and pollen                    |
| 519        |     | performance: predictions regarding male gametophytic evolution in selfers vs.                |
| 520        |     | outcrossers. Perspect. Plant Ecol. Evol. Syst. 12, 31–41                                     |
| 521        | 68  | McCallum, B. and Chang, SM. (2016) Pollen competition in style: effects of                   |
| 522        |     | pollen size on siring success in the hermaphroditic common morning glory,                    |
| 523        |     | Ipomoea purpurea. Am. J. Bot. 103, 460–470                                                   |
| 524        | 69  | Celaya, I.N. <i>et al.</i> (2015) Negative effects of heterospecific pollen receipt vary     |
| 525        |     | with abiotic conditions: ecological and evolutionary implications. Ann. Bot. 116,            |
| 526        |     | 789–795                                                                                      |
| 527        | 70  | Harth, J.E. <i>et al.</i> (2016) Effects of virus infection on pollen production and pollen  |
| 528        |     | performance: implications for the spread of resistance alleles. <i>Am. J. Bot.</i> 103,      |
| 529        |     | 577-583                                                                                      |
| 530        | 71  | Rusman, Q. <i>et al.</i> (2019) Floral plasticity: herbivore-species-specific-induced        |
| 531        |     | changes in flower traits with contrasting effects on pollinator visitation. <i>Plant</i>     |
| 532        |     | Cell Environ. 42, 1882–1896                                                                  |
| 533        | 72  | Marshall, D.J. (2015) Environmentally induced (co)variance in sperm and                      |
| 534        |     | offspring phenotypes as a source of epigenetic effects. J. Exp. Biol. 218, 107–113           |
| 535        | 73  | Johnson, M.G. and Shaw, A.J. (2016) The effects of quantitative fecundity in the             |
| 536        | -   | haploid stage on reproductive success and diploid fitness in the aquatic peat                |
| 537        |     | moss Sphagnum macrophyllum. <i>Heredity</i> 116, 523–530                                     |
| 201        |     |                                                                                              |

| 538<br>539 | 74  | Immler, S. (2019) Haploid selection in "diploid" organisms. <i>Annu. Rev. Ecol. Evol. Syst.</i> 50, 219–236                          |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 540        | 75  | Sutter, A. and Immler, S. (2020) Within-ejaculate sperm competition. <i>Philos.</i>                                                  |
| 541        | 75  | <i>Trans. R. Soc. B-Biol. Sci.</i> 375, 20200066                                                                                     |
| 542        | 76  | Alavioon, G. <i>et al.</i> (2017) Haploid selection within a single ejaculate increases                                              |
| 543        |     | offspring fitness. Proc. Natl. Acad. Sci. U. S. A. 114, 8053–8058                                                                    |
| 544        | 77  | Vanwinkle-Swift, K.P. and Burrascano, C.G. (1983) Complementation and                                                                |
| 545        |     | preliminary linkage analysis of zygote maturation mutants of the homothallic                                                         |
| 546        |     | alga, Chlamydomonas monoica. 103, 429–445                                                                                            |
| 547        | 78  | Baskin, J.M. and Baskin, C.C. (2015) Pollen (microgametophyte) competition: an                                                       |
| 548        |     | assessment of its significance in the evolution of flowering plant diversity, with                                                   |
| 549        |     | particular reference to seed germination. <i>Seed Sci. Res.</i> 25, 1–11                                                             |
| 550        | 79  | Kekäläinen, J. et al. (2018) Sperm pre-fertilization thermal environment shapes                                                      |
| 551        |     | offspring phenotype and performance. J. Exp. Biol. 221, jeb181412                                                                    |
| 552        | 80  | Pitnick, S. et al. (2020) Post-ejaculatory modifications to sperm (PEMS). Biol.                                                      |
| 553        |     | <i>Rev.</i> 95, 365–392                                                                                                              |
| 554        | 81  | Eppley, S.M. et al. (2018) Rapid population sex-ratio changes in the moss                                                            |
| 555        |     | Ceratodon purpureus. Am. J. Bot. 105, 1232–1238                                                                                      |
| 556        | 82  | Aulsebrook, L.C. <i>et al.</i> (2020) Reproduction in a polluted world: implications for                                             |
| 557        | ~ ~ | wildlife. 160, R13–R23                                                                                                               |
| 558        | 83  | Beirão, J. <i>et al.</i> (2019) Impact of crude oil and the dispersant Corexit <sup>™</sup> EC9500A                                  |
| 559        |     | on capelin ( <i>Mallotus villosus</i> ) embryo development. <i>Mar. Environ. Res.</i> 147, 90-                                       |
| 560        | 0.4 |                                                                                                                                      |
| 561        | 84  | Beirão, J. <i>et al.</i> (2018) Chemically-dispersed crude oil and dispersant affects                                                |
| 562        |     | sperm fertilizing ability, but not sperm swimming behaviour in capelin ( <i>Mallotus</i>                                             |
| 563        | 05  | villosus). Environ. Pollut. 241, 521–528<br>Kannalan L. and Magney, M.L. (2010). Enigenetics and parantal effects. <i>BioEcony</i> , |
| 564<br>565 | 65  | Kappeler, L. and Meaney, M.J. (2010) Epigenetics and parental effects. <i>BioEssays</i> 32, 818–827                                  |
| 565<br>566 | 96  | Penney, H.D. <i>et al.</i> (2018) Phenotypic plasticity during external embryonic                                                    |
| 567        | 00  | development is affected more by maternal effects than multiple abiotic factors in                                                    |
| 568        |     | brook trout. <i>Evol. Ecol. Res.</i> 19, 171–194                                                                                     |
| 569        | 87  | Donohue, K. (2009) Completing the cycle: maternal effects as the missing link in                                                     |
| 570        | 07  | plant life histories. <i>Philos. Trans. R. Soc. B Biol. Sci.</i> 364, 1059–1074                                                      |
| 571        | 88  | Wolf, J.B. and Wade, M.J. (2009) What are maternal effects (and what are they                                                        |
| 572        | 00  | not)? Philos. Trans. R. Soc. B Biol. Sci. 364, 1107–1115                                                                             |
| 573        | 89  | Crean, A.J. and Bonduriansky, R. (2014) What is a paternal effect? <i>Trends Ecol.</i>                                               |
| 574        |     | <i>Evol.</i> 29, 554–559                                                                                                             |
| 575        | 90  | Badyaev, A.V. and Uller, T. (2009) Parental effects in ecology and evolution:                                                        |
| 576        |     | mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 364,                                                     |
| 577        |     | 1169–1177                                                                                                                            |
| 578        | 91  | Gasparini, C. et al. (2017) Sperm storage by males causes changes in sperm                                                           |
| 579        |     | phenotype and influences the reproductive fitness of males and their sons. Evol.                                                     |
| 580        |     | Lett. 1, 16–25                                                                                                                       |
| 581        | 92  | Immler, S. and Otto, S.P. (2018) The evolutionary consequences of selection at                                                       |
| 500        |     |                                                                                                                                      |
| 582        |     | the haploid gametic stage. <i>Am. Nat.</i> 192, 241–249                                                                              |

| 583<br>584<br>585<br>586 | <ul> <li>93 Clarke, H.J. <i>et al.</i> (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. <i>Euphytica</i> 139, 65–74</li> <li>94 Domínguez, E. <i>et al.</i> (2005) Breeding tomato for pollen tolerance to low temperatures by gametophytic selection. <i>Euphytica</i> 142, 253–263</li> </ul> |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 587                      | 95 Singh, A. <i>et al.</i> (2020) Genetic evidence of pollen selection mediated phenotypic                                                                                                                                                                                                                                                           |
| 588                      | changes in maize conferring transgenerational heat-stress tolerance. <i>Crop Sci.</i>                                                                                                                                                                                                                                                                |
| 589                      | DOI: 10.1002/csc2.20179                                                                                                                                                                                                                                                                                                                              |
| 590<br>591               | 96 Schmid, M.W. <i>et al.</i> (2015) The female gametophyte: an emerging model for cell type-specific systems biology in plant development. <i>Front. Plant Sci.</i> 6, 907                                                                                                                                                                          |
| 592                      | 97 Bhutani, K. <i>et al.</i> (2021) Widespread haploid-biased gene expression enables                                                                                                                                                                                                                                                                |
| 593                      | sperm-level natural selection. <i>Science</i> 371, eabb1723                                                                                                                                                                                                                                                                                          |
| 594                      | 98 Crean, A.J. et al. (2012) Fertilization is not a new beginning: the relationship                                                                                                                                                                                                                                                                  |
| 595                      | between sperm longevity and offspring performance. <i>PLoS ONE</i> 7, e49167                                                                                                                                                                                                                                                                         |
| 596                      | 99 Pérez-Cerezales, S. et al. (2018) Sperm selection by thermotaxis improves ICSI                                                                                                                                                                                                                                                                    |
| 597                      | outcome in mice. <i>Sci. Rep.</i> 8, 2902                                                                                                                                                                                                                                                                                                            |
| 598                      | 100 Scott, C. <i>et al.</i> (2018) Proteomic profile of sex-sorted bull sperm evaluated by                                                                                                                                                                                                                                                           |
| 599                      | SWATH-MS analysis. Anim. Reprod. Sci. 198, 121–128                                                                                                                                                                                                                                                                                                   |
| 600                      | 101 Umehara, T. <i>et al.</i> (2019) Activation of Toll-like receptor 7/8 encoded by the                                                                                                                                                                                                                                                             |
| 601                      | X chromosome alters sperm motility and provides a novel simple technology for                                                                                                                                                                                                                                                                        |
| 602                      | sexing sperm. <i>PLOS Biol.</i> 17, e3000398                                                                                                                                                                                                                                                                                                         |
| 603                      | 102 Navarro-Rubio, S. and Guell, F. (2020) Understanding the correlation                                                                                                                                                                                                                                                                             |
| 604                      | between artificial insemination and offspring health outcomes. Birth Defects Res.                                                                                                                                                                                                                                                                    |
| 605                      | 112, 7–18                                                                                                                                                                                                                                                                                                                                            |
| 606                      | 103 Oseguera-Lopez, I. <i>et al.</i> (2019) Novel techniques of sperm selection for                                                                                                                                                                                                                                                                  |
| 607                      | improving IVF and ICSI outcomes. Front. Cell Dev. Biol. 7, 298                                                                                                                                                                                                                                                                                       |
| 608                      |                                                                                                                                                                                                                                                                                                                                                      |

# Box 1. 'The bridging phenotype' and biphasic life cycles across generations

612 West-Eberhard [5] emphasizes phenotypic continuity among generations, which 613 is enabled by what she calls 'bridging phenotypes'. An egg being a bridge across 614 generations/cycles; its influence on subsequent development is a combination of the 615 genetic material it contains along with phenotypic adjustments that have occurred due to 616 experiences of the adult that created it. Life cycles are "just one loop in a continuous 617 string of ontogenies linked by these gametic bridges between generations [5 - page 92]". 618 This is depicted as figure I; for most species one complete loop around this circuit 619 represents a life cycle and generation in figure 1. Three sequential phases (diploid-620 haploid-diploid or haploid-diploid-haploid) encompassing two generations in most 621 diplontic and haplontic species.

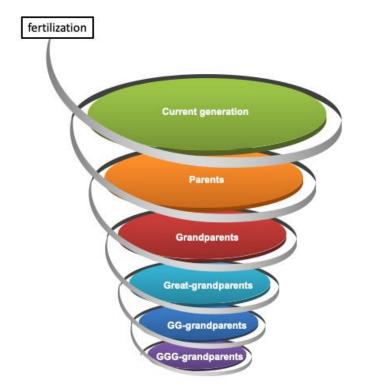



Figure I: Unbroken connections across generations (or groups of generations if >1 generation per cycle). In biphasic life cycles, bridges occur that connect the diploid and haploid phases encompassing one complete circuit. Modified from Fig5.2 in West-Eberhard [5].

634

The concept becomes important for interpreting our selection links that bridge
phases of biphasic life cycles (figure 2). We consider links to be from one phase to the
next immediate one (either diploid-haploid or haploid-diploid). It becomes easy,
however, to see how effects can propagate further in time, which we consider briefly in
Box 2 on parental effects (e.g., diploid-diploid).

640

### 641 Box 2. 'Parental effects': a melting pot of links across the

642 **biphasic life cycle** 

Parental effects are ".. sustained influences on any component of the phenotype ofthe offspring that derives from a parent, apart from nuclear genes" [85]. These can be

645 more influential than abiotic variation [86] and may encompass maternal effects [87,88] 646 and paternal effects [40,89]. They are framed as influences of diplontic parents (adult 647 form of diploid phase, figure 1) on their offspring. By definition, a parental effect is thus 648 a connection across generations from diploid-diploid, but in most situations (parental care 649 is an exception), this is bridged directly through the haploid phase. The traditional 650 definition of a parental effect is thus too narrow. We consider here four types of parental 651 effect, of which the above definition encompasses only one. Our 'types' match some of 652 the 'paths' presented by Badyaev & Uller [90; their Fig 1].

653 <u>Parental effect type I (diploid-haploid):</u> How the diploid phase influences the
654 haploid phase of the life cycle. This has been covered in Section 3a on one-way bridging
655 links and encompasses Links C and D in figure 2.

656 <u>Parental effect type II (diploid-diploid):</u> The traditional definition of a paternal or 657 maternal effect (e.g., embryo yolk, nutrient transfer across a placenta). Whether parental 658 (diploid) influences on the haploid phase (type I), and subsequent diploid phase

659 (offspring, type II) are complementary or antagonistic is poorly understood.

660 Parental effect type III (haploid-diploid): Although the haploid phase does not 661 typically constitute the idea of 'parents' (except haplontic taxa and bryophytes), if 662 haploid 'experiences' of one generation (in any cycle) influence the subsequent diploid 663 phase of the next, this may also be considered a parental effect. It has been discussed in 664 Section 3b on one-way bridging links, and forms Links E and F in figure 2. One may 665 conceptualize types III and IV to be 'gametal effects' (gamete + gametophyte), as an 666 alternative to parental effects in haplodiplontic and diplontic taxa.

667 <u>Parental effect type IV (haploid-haploid):</u> These occur if haploid experiences in 668 one generation, influence performance in the haploid phase of the subsequent generation. 669 Such information must bridge via the diploid phase, but whether types III and IV function 670 independently is not known. These types of parental effects are poorly studied, but do 671 exist. For example, Gasparini et al. [91] demonstrated experimentally that the duration of 672 sperm storage in a fish influenced sperm quality of males in the next generation.

673

#### **Box 3. Haploid selection in predominately diploid organisms**

675

### and its potential applications

676 Artificial selection is human-induced change in the selection environment, and is 677 often purposely done. It could target any of the four stages (figure 1a-c), but has 678 traditionally focused on changing diploid phenotypes by using breeding programs that 679 bypass Stage 2 (e.g., dog, horse, pigeon, chicken breeding). This also bypasses Stage 4, 680 with unknown long-term consequences. For diploid dominant organisms such as humans 681 and most of their agricultural food, haploid selection provides tremendous opportunity. 682 Genes are known to be differentially expressed during the two phases of a given 683 generation because the phases are under different selection pressures. Restricted gene 684 expression in the haploid phase has the potential to purge deleterious alleles or fix 685 beneficial ones effectively in breeding programs [92]. 686 For instance, artificial selection for stress tolerance in pollen has enabled plant 687 breeders to obtain cold-tolerant chickpeas and tomatoes in the next generation [93,94], 688 and repeated pollen selection for heat tolerance in maize improves tolerance of progenies 689 in up to four generations [95] – see Boxes 1 & 2. Gametophytic selection is an attractive

tool in plant breeding programs because the large population size of male gametophyte
(the germinated pollen) allows an exhaustive screening of economically important traits
(in a process not constrained by greenhouse size). Female gametophyte selection needs
further exploration in crop improvement programs because of its significant contribution
to the tissue nurturing the embryo [96].

Haploid selection can also apply to animals outside of the context of sperm competition among donor adult males [97]. Sperm swimming longevity [76,98] and thermotaxis [99] appear to filter sperm within-ejaculates in such a way that influences which are available for fertilization. This has applied implications, for example with *in vitro* fertilization including sperm sexing [100,101] for agricultural breeding programs, and other aspects related to human fertility treatment [102,103]. More thorough research on the complete suite of haploid-expressed genes is needed in animals, followed by empirical testing of artificial selection on those genes. Emerging molecular technologies should provide new opportunities to investigate haploid selection in diploid animals [74]. 

- 705 Figures

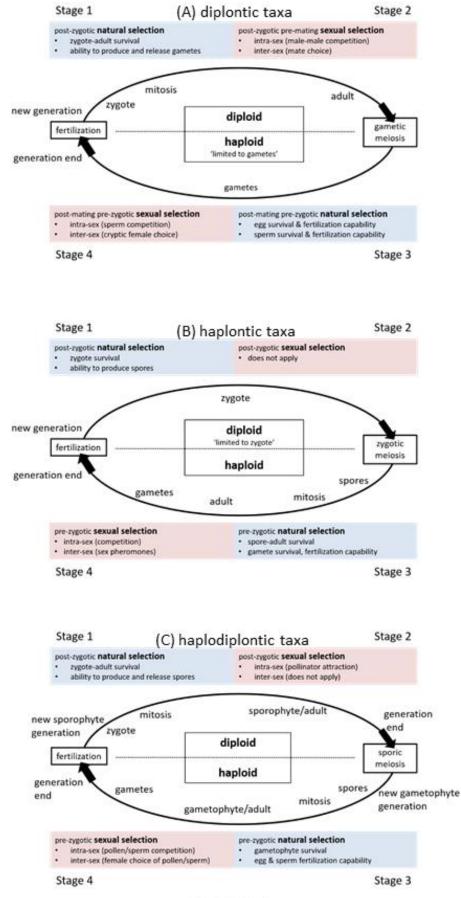



Figure 1

| 714 | Figure 1: Four stages of selection across biphasic life cycles in sexually reproducing       |
|-----|----------------------------------------------------------------------------------------------|
| 715 | eukaryotes, illustrated and defined for diplontic (A), haplontic (B), and haplodiplontic (C) |
| 716 | cycles, which vary depending on the presence or absence of mitosis in each phase.            |
| 717 | Diversity of taxa within some cycles challenges interpretation, for example in               |
| 718 | haplodiplontic angiosperms there is sexual selection at Stage 2, but no flagellated          |
| 719 | (swimming) sperm at Stage 3, while the opposite occurs in bryophytes and ferns.              |
| 720 |                                                                                              |
| 721 |                                                                                              |
| 722 |                                                                                              |
| 723 |                                                                                              |
| 724 |                                                                                              |
| 725 |                                                                                              |
| 726 |                                                                                              |
| 727 |                                                                                              |
| 728 |                                                                                              |
| 729 |                                                                                              |
| 730 |                                                                                              |
| 731 |                                                                                              |
| 732 |                                                                                              |
| 733 |                                                                                              |

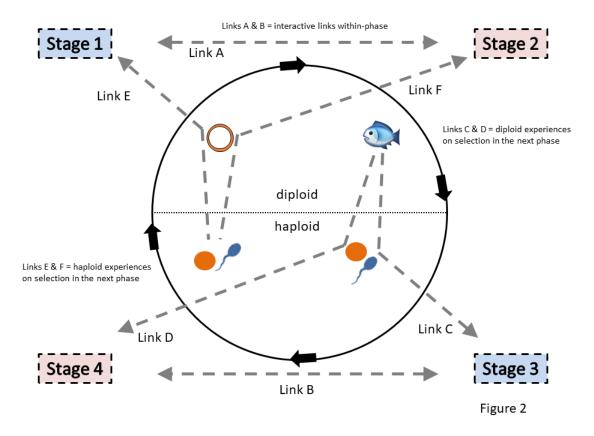



Figure 2: Links (dashed lines) within the biphasic life cycle, showing how selection stages are inter-connected. Illustrated for diplontic cycles but concepts apply to all cycles. Links A & B are trade-offs within-phase. Links C-F are one-way bridges across-phases, where selection in a given phase is tied to experiences in the previous phase - illustrated by the bent arrows. For example, in Link C an adult male fish (diploid) produces sperm (haploid) that can be altered by his experiences, and then those sperm are exposed to selection in the haploid phase. The same would apply when experiences of a diploid plant alter spore-gametophyte-gamete selection in the haploid phase. 

#### 746 Supplementary material

747 Key terms distinguishing diplontic/haplontic/haplodiplontic biphasic life

- 748 <u>cycles</u>
- 749

Biphasic life cycle: Alternation between diploid and haploid phases through one or more
generations; both phases do not have to be free living. Cycles can be monogenerational
(one generation per cycle) or multigenerational.

753 **Diplontic:** Life cycle where meiosis occurs at the end of the dominant, diploid 754 phase of the cycle giving rise to gametes. Mitosis (of unicellular organisms or as 755 part of the developmental process in multicellular organisms) occurs only in the 756 diploid phase. In sexual reproduction meiotic recombination precedes syngamy. 757 **Diplont:** An organism that is diploid for most of its life cycle, except for 758 the gamete phase. It has a diplontic life cycle. Includes all animals, most 759 protists (e.g., diatoms), some brown algae (e.g., Fucus), and some fungi. 760 Haplontic: Life cycle where meiosis occurs at the beginning of the dominant, 761 haploid phase of the cycle. Mitosis (of unicellular organisms or as part of the 762 developmental process in multicellular organisms) occurs only in the haploid 763 phase. In sexual reproduction syngamy precedes meiotic recombination. 764 Haplont: An organism that is haploid for most of its life cycle, except for

the zygote phase. It has an haplontic life cycle. Includes most green algae,
charophytes, sac and club fungi.

767 Haplodiplontic: Life cycle where mitosis (of unicellular organisms or as part of
768 the developmental process in multicellular organisms) occurs in both the haploid

| 769 | and diploid phases. The process of sexual reproduction occurs in both phases:              |
|-----|--------------------------------------------------------------------------------------------|
| 770 | syngamy of gametes produced in the haploid phase, while the production of                  |
| 771 | spores with meiotic recombination is carried in the diploid phase. Haplodiplontic          |
| 772 | taxa include land plants, red algae, most brown algae, some green algae, some              |
| 773 | fungi.                                                                                     |
| 774 | Sporophyte: The multicellular diploid individual of species with                           |
| 775 | haplodiplontic life cycles.                                                                |
| 776 | Gametophyte: The multicellular haploid individual of species with                          |
| 777 | haplodiplontic life cycles.                                                                |
| 778 |                                                                                            |
| 779 |                                                                                            |
| 780 | Generation: A complete circuit around the biphasic life cycle can encompass one or         |
| 781 | more generations. The genealogical definition being focused on the individual. In          |
| 782 | monogenerational life cycles the same developmental phase is achieved through one          |
| 783 | cycle in one generation, while multigenerational life cycles have individuals in different |
| 784 | generations representing different developmental forms.                                    |
| 785 | Alternation of generations: During reproductive phases offspring may be of a               |
| 786 | different organizational form than their parents so that more than one generation          |
| 787 | is needed to close the life cycle, which is synonymous with multigenerational life         |
| 788 | cycles. In haplodiplontic life cycles, the alternation of phases coincides with the        |
| 789 | generations (haploid=gametophyte, diploid=sporophyte).                                     |
| 790 |                                                                                            |

| 791 | Individual: Can be interpreted in a number of ways. Following [Fusco, G. and Minelli,     |
|-----|-------------------------------------------------------------------------------------------|
| 792 | A. (2019) The biology of reproduction, Cambridge University Press.] an undivided          |
| 793 | functioning entity, able to respond to the environment and reproduce. In biphasic life    |
| 794 | cycles, selection targets cells in both phases, regardless of whether they are considered |
| 795 | individuals or not.                                                                       |
| 796 |                                                                                           |
| 797 | Adult: For diplontic taxa an adult is considered the mature diploid individual that is    |
| 798 | capable of producing haploid gametes. Similarly, in most haplodiplontic plants the adult  |
| 799 | is the diploid sporophyte. However, in bryophytes, the haploid gametophyte that           |
| 800 | produces sex cells is considered the adult, as is the case in haplontic taxa.             |
| 801 |                                                                                           |
| 802 | Parent: In diplontic and haplontic taxa, parents are diploid or haploid individuals,      |
| 803 | respectively, that produce gametes that give rise to a zygote in the next generation. In  |
| 804 | haplodiplontic taxa, a parent is the sporophyte (diploid) that produces spores or the     |
| 805 | gametophyte (haploid) that produces gametes.                                              |
| 806 |                                                                                           |
| 807 |                                                                                           |
| 808 |                                                                                           |
| 809 |                                                                                           |
| 810 |                                                                                           |
| 811 |                                                                                           |
| 812 |                                                                                           |
| 813 |                                                                                           |