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Abstract

Deep learning is driving recent advances behind many everyday technologies, including those relying on
speech and image recognition, natural language processing, and autonomous driving. It is also gaining
popularity in biology, where it has been used for automated species identification, environmental monitoring,
behavioral studies, DNA sequencing, and population genetics and phylogenetics, among other applications.
Deep learning relies on artificial neural networks for predictive modeling and excels at recognizing complex
patterns. Operating within the machine learning paradigm, deep learning can be viewed as an alternative
to likelihood-based inference methods. It has desirable properties, including good performance and scaling
with increasing complexity, while posing unique challenges such as sensitivity to bias in input data. In this
review we provide a gentle introduction to deep learning, review its applications in ecology and evolution,
and discuss its limitations and efforts to overcome them. We also provide a practical primer for biologists
interested in including deep learning in their toolkit and identify its possible future applications.
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Introduction

Ecology and evolutionary biology investigate complex
patterns and processes. Because of this, a mathe-
matical toolkit has been necessary to describe and
explain fundamental components of organic evolution
and ecological interactions such as inheritance, natu-
ral selection, adaptation, population dynamics, and
food webs (Otto and Day, 2011). Today, mechanis-
tic modeling of increasing complexity allows us to
sequence and assemble genomes, identify traits under
selection, model extinction and adaptation dynamics,
and assess wildlife populations, to name just a few
examples. Modern biologists are inundated with data,
which aside from genetic sequences, also include digi-
tized information on samples, specimens, and species.
This wealth of data is driving the development of
analytic tools that can provide new understanding,
greater efficiency, and ease of use.

While the increasing amount of data allows un-
precedented insight, it also makes practical aspects
of ecological and evolutionary inference challenging.
Complex patterns in large data sets are often bet-
ter described with complex models and each new
model needs to be developed by researchers. Moreover,
likelihood-based mechanistic approaches designed to
consider many variables can be so computationally
expensive that they can no longer be applied to data
routinely generated in modern studies. A promising
alternative is likelihood-free inference, one example of
which is machine learning. The goal of machine learn-
ing is to find a model that performs well at making pre-
dictions from the data. This contrasts with likelihood-
based methods, which assume the model generating
the data is known (Breiman, 2001). Broadly defined,
machine learning has been in use for decades now
for data transformations and clustering (e.g. Princi-
pal Component and Discriminant Function Analysis,
K-means) and for optimization in much of model-
based inference in ecology and evolution (e.g. Markov
chains, genetic algorithms) (Sorensen and Gianola,
2002; Ghahramani, 2004; Mundry and Sommer, 2007;
Reich et al., 2008; Hamblin, 2012). More recently ma-
chine learning has seen a dramatic surge in popularity
with a slew of new algorithms and applications.

One of the approaches rapidly gaining popularity
is deep learning. Deep learning relies on multilayered,
connected processing units (artificial neural networks
or ANNs) (Goodfellow et al., 2016). In the last ten
years algorithmic developments, hardware improve-
ments, and democratization of high-level software
for building deep learning solutions contributed to a
sudden rise in their popularity. Deep learning is at
the core of emerging technologies such as self-driving

cars and is responsible for significant improvements
to widely-used information technology tools such as
image and speech recognition or automated language
translation (LeCun et al., 2015). These successes were
possible because of a major advantage of deep learning
over other machine learning approaches. Classical ma-
chine learning requires that important data features
are first identified using expert domain knowledge
(Guyon et al., 2008). This is a limitation where fea-
tures adequately describing the data are not obvious
or difficult to extract, as in images. Neural networks
overcome this by discovering the most important data
features and patterns relevant for the task at hand au-
tomatically. Researchers are now beginning to apply
deep learning to problems across ecology and evo-
lutionary biology, from community science projects
and environmental monitoring through sequencing
equipment output processing, to population genetics
and phylogenetic inference. In this review we explain
what neural networks are and how they work, sum-
marize ecological and evolutionary biology problems
they have been applied to, and give an overview of
their promises and limitations. We also provide a
primer for researchers who would like to apply deep
learning to their own systems and questions along
with references and resources for different platforms
and particular applications.

What are neural networks and
how do they learn?

There are several ways to describe what artificial neu-
ral networks are and how they are used as inference
tools. Although the most obvious biological analogy
is limited, it is helpful to visualize neural networks as
computer algorithms inspired by the brain: composed
of interconnected layers of nodes (“neurons”) and con-
nections (“synapses”) capable of learning by changing
how easy it is for neurons to fire and how strong the
connections are (Box 2). Computers represent these
layers and connections as matrices of numbers ma-
nipulated through linear algebra operations, ensuring
that neural networks can be used with virtually any
input that can be represented numerically (Figure 1).
In mathematical sense, neural networks are simply a
function mapping input onto a desired output. This
general design is simple, but it makes neural networks
extraordinarily powerful: a network with informa-
tion flowing from input to output layer with at least
one intermediate layer (i.e. feedforward network) can
approximate any continuous function, regardless of
its complexity (Cybenko, 1989; Hornik et al., 1989).
These approximations can describe pixels of an image,
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Figure 1. Workflow illustrating how various types of data can be encoded as input for deep
learning. From top to bottom, the data sources include an image of a herbarium specimen, sonogram of
a bird song, recorded insect motion represented as optical flow, and DNA data in the form of a multiple
sequence alignment. Deep learning has been applied to all these data, which are here represented as either
two- or three-dimensional input tensors. It is also possible to use one-dimensional (e.g. text string) or
higher-dimensional input tensors (videos, 3D imaging). Tensor is a generalization of the term ’matrix’, which
is used for numbers arranged in a two-dimensional grid, to numbers arranged in any number of dimensions.
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for example, and networks with multiple intermediate
layers (deep neural networks) can also learn relation-
ships between them as high-level concepts such as
lines, geometric shapes, and even whole scenes (see
Boxes 2 and 3). ANNs learn continuous distributions
but their output can represent probabilities of distinct
data classes, as well as continuous values. Such net-
works can thus be used to construct classifiers, which
are models distinguishing among discrete categories,
as well as regression models, which infer continuous
values. However, feedforward operations alone do not
allow the network to learn or generalize to new data,
which is the essence of most ANN applications.

In order for an ANN to be a predictive tool, one
needs to assess how good predictions are and be able
to adjust ANN parameters to improve performance.
A measure of how far off the output of the network
is is called a loss function. One example of a loss
function is the sum of squares error (SSE), which is
simply the sum of differences between each predicted
value (y) and the true value (ȳ) squared for absolute
value:

SSE =

n∑
i=1

(yi − ȳi)
2 (1)

The network also needs a mechanism for finding
the set of parameters that minimize the loss function.
Once the loss (error) is measured at the output, it has
to be traced back across the network to measure how
parameters contributed to it. This process is called
backpropagation and it uses chain rule calculus to find
the derivative (slope) of the loss function with respect
to the network’s trainable parameters (LeCun et al.,
1998, 2015). The process of increasing or decreasing
parameters such that they minimize the derivative of
the loss function is called gradient descent. Backprop-
agation and gradient descent illustrate the limits of
the biological comparison, as no such learning mecha-
nisms are known in biological nervous systems (but
see Lillicrap et al. (2020)). This process is iterative,
occurring every time a batch of training data is pro-
cessed, and collectively referred to as the training
loop (Figure 2). When devised correctly, it results in
improvement of inference accuracy with each pass of
the loop (Rumelhart et al., 1995).

The fact that ANNs are universal approximators
for continuous functions that can be trained makes
them powerful predictive tools. As we will see in the
next section, ANNs are capable of solving problems
that traditional computing has not been able to tackle.
When compared to mechanistic, likelihood-based infer-
ence, the neural network training process is analogous
to both model selection and parameter optimization.

In contrast, neural network structure and choice of
a particular loss function or optimizer algorithm are
examples of hyperparameters. These are usually not
learned from the data but are instead set using heuris-
tics and optimized using trial-and-error for specific
applications, although exceptions exist where hyperpa-
rameters themselves are optimized with deep learning
(Cortes et al., 2017).

This learning scheme is most easily illustrated with
an example of supervised learning, where the network
is trained on a data set with ground truth known,
e.g. images of expert-identified species or methylated
vs. unmethylated DNA sequences. Supervised train-
ing usually involves splitting data into three subsets:
training, validation, and testing. The validation set
is not directly used in training but prediction on it is
performed at the end of each training cycle (epoch) to
assess how well the network generalizes outside of the
training set. Because training is usually an iterative
process, adjustments made between runs may lead to
overfitting to the validation set. Therefore, test set is
held back for the final estimate of accuracy.

Problems other than classification and regression
in a supervised manner can be tackled with deep learn-
ing. Unsupervised learning is used where no ground
truth is available, such as when visualizing patterns in
data, clustering, or reducing dimensionality. The goal
of network learning in this case is to reconstruct the
original input after a transformation. The nature of
this transformation will depend on the question asked.
For example, a researcher may be interested in reduc-
ing genetic data to a few latent (hidden) variables that
best describe geographic origins or population diver-
gence of samples (Battey et al., 2020b,a). The training
process will optimize network parameters such that
the original input can be best reconstructed using
these latent variables. Finally, reinforcement learning
may be used to optimize actions of an agent inter-
acting with a changing environment, rather than a
fixed set of inputs. In this case, learning is determined
by a goal or set of goals with feedback consisting of
rewards and punishments. Reinforcement learning
may be used to create more realistic models of eco-
logical interactions and evolution, as was done in a
predator-prey dynamics study where individual actors
learn to hunt or avoid predators (Wang et al., 2019a).

In the sections that follow, we review how deep
learning has been applied in ecology and evolution,
including species identification and monitoring, ecolog-
ical and behavioral studies, and population genetics
and phylogenetics. We use these examples to show-
case the variety of deep learning techniques extending
its usage beyond the general picture described above.
Figure 3 summarizes how different neural network
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Figure 2. Deep learning classifier supervised training loop. Network weights and biases are random
or initialized to certain values when the first batch of training data is input. The network predicts certain
labels if it is a classifier, or continuous values if it is a regression model. This output is compared with
true labels/values for that batch of input and a measure of error is computed using a loss function. The
optimization procedure then works to adjust the network biases and weights in a way that improves output
predictions. This is done with backpropagation or calculating derivatives of the loss function from the output
layer back through the network and adjusting network parameters to minimize the error, a process known as
gradient descent. This process is iterative, performed on each batch of training data. Input photograph of
ant head by April Nobile, courtesy of www.antweb.org.

architectures have been applied to different tasks in
ecology and evolution.

Automated species identification

Deep learning enabled breakthroughs in automated
image classification, largely possible thanks to convo-
lutional neural networks (CNNs; Box 3) (Goodfellow
et al., 2016; Rawat and Wang, 2017). Image recog-
nition has obvious applications in biology and was
adopted early for problems of species identification
and wildlife monitoring (see Wäldchen and Mäder
(2018) and references therein). It is not surprising
then that identification or classification of individuals
or species from image, video, and sound data is the
most common use of deep learning in the field (Figure
3). These efforts already span many taxa, from bacte-
ria (Satoto et al., 2020), through protozoans (Hsiang
et al., 2019), plants (Unger et al., 2016; Carranza-
Rojas et al., 2017; Schuettpelz et al., 2017; Younis
et al., 2018) to insects (Marques et al., 2018; Boer and
Vos, 2018; Valan et al., 2019; Hansen et al., 2020) and
vertebrates (Villon et al., 2018; Norouzzadeh et al.,
2018), both extant and fossil (Liu and Song, 2020;
Miele et al., 2020; de Lima et al., 2020) and at scales
ranging from local to global. Intensifying efforts to
digitize natural history collections provide troves of

image data that can be used for this purpose (Smith
and Blagoderov, 2012).

Camera trap systems and deep learning classifiers
are now commonly used for vertebrate wildlife moni-
toring (Tabak et al., 2018) and systems automating
environmental monitoring of aquatic macroinverte-
brates are also being developed (Kiranyaz et al., 2011;
Joutsijoki et al., 2014; Ärje et al., 2020; Høye et al.,
2021). Many publications present systems or deep
learning models for detecting and identifying pests or
crop diseases in agroecosystems or stored agricultural
commodities (Liu et al., 2016b,a; Ramcharan et al.,
2017; Thenmozhi and Reddy, 2019; Wu et al., 2019).
Despite economic importance and demonstrated po-
tential for crop pest and disease monitoring, at present
few non-proprietary systems or open source software
applications exist (Kamilaris and Prenafeta-Boldú,
2018). A notable exception is a mobile application
system for identifying diseases of cassava plants, one of
the most important tropical crops (Ramcharan et al.,
2019).

Deep learning has also been applied to identi-
fication from audio recordings, including bird and
bat sounds, and even wing beats of mosquitoes (Fan-
ioudakis et al., 2018; Mac Aodha et al., 2018; Stowell
et al., 2019; Chen et al., 2020c). Unsurprisingly, the
technology has been applied most often to bird calls,

www.antweb.org
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Figure 3. Deep learning approaches in ecology and evolution and their frequency of use by
application. Panels represent three major applications: identification tasks, which include any studies
classifying input into discrete categories; prediction tasks, or prediction of future events from time series and
regression on continuous variables; and modeling, which includes simulating processes or phenomena. Rows
in each panel correspond to different neural network architectures (see Box 2) and columns to input data
prior to transformation. Based on 193 references in Supplementary Table, published through March 2021.
Colors and legend numbers reflect number of studies. This figure shows that use of CNNs has been by far the
most common (102 studies), and that they have been used primarily for image identification tasks but also
using molecular data, sounds, and video. All architectures have been used with molecular data, highlighting
versatility of deep learning in this area.

https://docs.google.com/spreadsheets/d/1IcuPu8WMqd9B7gxi73dvM6147BnoQVNhZLlMXUSXX3k/edit?usp=sharing
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where it has been used not only to identify species, but
also monitor their abundance (see Priyadarshani et al.
(2018) for a review). The recently developed BirdNET
is a deep neural network capable of identifying North
American and European birds from vocalizations in
complex soundscapes, available on a variety of plat-
forms, including user-friendly smartphone apps (Kahl
et al., 2021). Most of these studies use audio converted
to spectrograms, image representations of sound, to
train CNNs as in visual recognition problems.

Given its utility for automated identification, deep
learning is increasingly used in community science
initiatives. Examples include a growing number of
mobile phone applications such as plant-focused identi-
fication app Pl@ntNet, bird identification tool Merlin
or the citizen naturalist portal iNaturalist, as well
as a number of more local or taxon-specific guides
(Farnsworth et al., 2013; Wäldchen and Mäder, 2018;
Sulc et al., 2020; Kahl et al., 2021). Many of these
applications crowd-source training data collection and
identification verification by users. They improve by
periodically re-training their deep learning classifiers
as more reliable data is collected.

Many of these studies employ data handling ap-
proaches that increase performance of deep learning
classifiers. Several use data augmentation, a technique
that relies on altering training data with distortion
(Horn et al., 2018; Sulc et al., 2020; Kahl et al., 2021).
These modifications, applied to each data input in
each training epoch, effectively increase training set
size. Data augmentation is an important strategy
for reducing overfitting and almost always results in
increased classifier accuracy (LeCun et al., 1998). By
ensuring that the neural network never sees the same
input twice, augmentation only partly addresses the
fact that acquiring large, human-labeled datasets is
a bottleneck for many applications. An alternative
approach is to train an initial classifier in a supervised
way, using a labeled training set, and then use this
reasonably well-performing classifier for adding more
images in an unsupervised manner, without human
intervention (Rustia et al., 2019).

Another technique ubiquitous in identification and
classification tasks is transfer learning (Chollet, 2018).
Transfer learning is most commonly accomplished by
first training on a different, usually larger and more
general dataset than the one assembled for the prob-
lem on hand. The resulting network parameters can
then be used as the starting point for fine-tuning on
the focal dataset. In species recognition from im-
ages it is common to use networks pre-trained on
large, public datasets of everyday objects such as Im-
ageNet or COCO (Deng et al., 2009; Lin et al., 2014)
as illustrated by several of the studies cited above

(Norouzzadeh et al., 2018; Ramcharan et al., 2019;
Sulc et al., 2020). Using pre-trained networks makes
the network learn faster and often results in higher
accuracy (Sharif Razavian et al., 2014).

In addition to properly assigning a label to an
image, termed image classification, a common com-
puter vision problem is to localize objects. Object
recognition is a term often used for the combination
of the two: drawing a bounding box around an ob-
ject and predicting its class. Because there may be
many objects in an image, this is a more challenging
problem. The many proposed solutions involve either
extracting candidate regions from images prior to pre-
diction or predicting classes directly on grids of image
pixels (Zhao et al., 2019). Examples are common in
agriculture, where object detection has been used to
identify and count pests (Ding and Taylor, 2016; Liu
et al., 2016b; Fuentes et al., 2017; Shen et al., 2018;
Zhong et al., 2018; Lins et al., 2020; Li et al., 2020a).

The deep learning framework allows training sev-
eral neural networks of the same or varying archi-
tectures on one dataset and averaging their predic-
tions. Known as model ensembling, this technique
reduces variance in predictions and can improve accu-
racy (Goodfellow et al., 2016). Examples in species
identification include Finnish fungi recognition and
UK ladybird beetles (Sulc et al., 2020; Terry et al.,
2020).

Finally, deep learning is not limited to considering
image pixels alone but can also take advantage of
contextual information such as locality or phenology.
For example, output can be improved by filtering out
nonsensical predictions given prior occurrence data
(Berg et al., 2014; Wittich et al., 2018; Mac Aodha
et al., 2019; Kahl et al., 2021). This approach, how-
ever, does not jointly consider the available data in a
common framework. Neural networks can be trained
on multiple data inputs simultaneously and consider
them jointly in the final layers (Chollet, 2018). One
study used this approach for beetle identification from
images and found improvement in accuracy with in-
formation about location, date, weather, habitat, and
user expertise (Terry et al., 2020).

Environmental monitoring and
modeling

The above mentioned approaches to automated identi-
fication of species or individuals are also being scaled
to ecosystem scale and applied to diversity assessment,
conservation, and resource management (Christin
et al., 2019). Examples using techniques detailed
in the previous section include detecting and estimat-
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ing abundance of zooplankton (Schmid et al., 2016)
and detecting and counting sea turtles and whales
using drone and satellite imagery (Gray et al., 2019;
Guirado et al., 2019). Other uses combine digital im-
agery with LiDAR and other remote sensing or geospa-
tial data for mapping of vegetation (Guo et al., 2020;
Li et al., 2020b,c; Kislov and Korznikov, 2020; Ko-
rznikov et al., 2021), forest carbon stock (Asner et al.,
2018), and the footprint of fishing across the world’s
oceans (Kroodsma et al., 2018). Similar applications
include integrated systems for real-time wildlife moni-
toring using data from camera traps and microphones
(Duhart et al., 2019) and raise the prospect of surveil-
lance of social media posts for illegal animal trade
(Minin et al., 2018).

In addition to classification and mapping of static
information, recurrent neural networks (RNNs; Box
2) and similar approaches have been used with tem-
poral ecological data. Examples include predicting
eutrophication (Walter et al., 2001), phytoplankton
blooms (Jeong et al., 2001, 2008; Ye and Cai, 2009;
Malek et al., 2012; Srinivasan et al., 2018), and ben-
thic invertebrate community dynamics (Chon et al.,
2001). As mentioned previously, combining inputs
from different sources is natural for deep learning and
Rammer and Seidl (2019) take advantage of this to
predict and map future bark beetle outbreaks based
on temporal information on climate, vegetation, and
past outbreaks. Capinha et al. (2020) proposed a
generalized approach to classification and prediction
from ecological time series data leveraging automated
choice of the best network architecture for the task at
hand.

Finally, neural networks are being used to develop
more realistic models and simulations of real world
patterns and phenomena. Benkendorf and Hawkins
(2020) found that deep neural networks can be used
to generate accurate species distribution models but
also noted that other machine learning approaches
perform as well or better with limited training data.
Strydom et al. (2021) designed a system to predict
species interactions from co-occurrence data. A study
using reinforcement learning investigated how learning
to hunt or avoid predators by individual agents influ-
enced predator-prey dynamics (Wang et al., 2019a).

Behavioral studies

The study of animal behavior, both in the field and
controlled laboratory settings, is another research area
of ecology and evolution that is poised to greatly
benefit from adoption of deep learning. Recent tech-
nological advancements in sensing, monitoring, and

automation allow behavioral ecologists to collect and
analyze large amounts of data (Egnor and Branson,
2016). Long-standing challenges in identifying, quan-
tifying, and analyzing animal behavior still limit the
ability to fully automate processing of these data,
however. Deep learning has the potential to address
many of these challenges and it is increasingly being
adopted in studies involving identification of individ-
ual animals, body posture and movement tracking,
and classification of behaviors.

In the area of animal body posture, deep learn-
ing can provide non-invasive estimation of the po-
sition of animals’ body parts from video record-
ings (Mathis et al., 2020). Several open-source toolk-
its have been developed for this purpose, ranging
from species-specific solutions (e.g., DeepFly3D for
Drosophila (Günel et al., 2019), OpenMonkeyStudio
for macaques (Bala et al., 2020)) to generic frame-
works applicable to any species (e.g., LEAP (Pereira
et al., 2019, 2020), DeepLabCut (Mathis et al., 2018;
Nath et al., 2019), DeepPoseKit (Graving et al.,
2019)), some of which offer 3-dimensional and/or mul-
tiple animals tracking. In addition to pose estimation,
deep learning is also being adopted to enhance the
performance of established computer vision methods
used to track spatial position of animals (e.g., by tag
detection (Sixt et al., 2018) or the identification of
markers (Gal et al., 2020)), as well as to automati-
cally perform behavioral analysis of spatial trajecto-
ries (Maekawa et al., 2020).

Deep learning can also allow for the identification,
classification, and subsequent re-identification of indi-
vidual animals from camera feeds or traps (Schneider
et al., 2019), both in the wild and in captivity. Usually
based on the use of CNNs for image recognition, deep
learning can also be combined with other technologies
(e.g. motion sensors, RFID) to develop automated
data-processing pipelines to collect and label samples,
as was done by Ferreira et al. (2020) for three different
bird species. A popular application in this area is face
recognition enabling mark-recapture studies for moni-
toring populations of individuals, their behavior, and
social interactions. Examples in the wild include iden-
tification of elephants (Körschens et al., 2018), chim-
panzees (Schofield et al., 2019), right whales (Bogucki
et al., 2019), and brown bears (Clapham et al., 2020).
Studies performed in captivity have been carried out
on pandas (Chen et al., 2020b) and pigs (Hansen
et al., 2018).

Finally, deep learning is being applied to automat-
ically detect and classify the behavior of animals from
raw data, a crucial step towards overcoming time-
consuming and error-prone manual labeling tasks.
Largely based on CNNs, a number of different so-
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lutions have been developed to recognize and label
behaviors from images (Norouzzadeh et al., 2018) as
well as video (Fuentes et al., 2020; van Dam et al.,
2020; Choi et al., 2021) and sound recordings (Bergler
et al., 2019). These behavior detection systems can
discriminate between behaviors (e.g. standing, resting,
feeding, grooming), with the possibility of concurrent
behaviors and thus multi-labeling, or be specifically de-
signed to detect binary events (e.g. distinguish whale
vocalizations from noise, Bergler et al. (2019), or rare
social changes in otherwise stable insect colonies, Choi
et al. (2021)). In addition to behavior recognition,
deep learning solutions are also being devised to pre-
dict behavioral measurements that would otherwise
require specialized recording devices. For example,
Browning et al. (2018) used artificial neural networks
to predict the diving behavior of seabirds from GPS
data alone without specialized time-depth records,
whereas Liu et al. (2019) used vertical movement sen-
sors alone to predict locomotor energy expenditure of
sharks.

Genomics, population genetics,
and phylogenetics

A rapidly growing number of studies apply deep learn-
ing to study genomes (Zou et al., 2018). Deep learn-
ing is used in DNA sequencing for translating the
raw signal of long-read Oxford Nanopore sequencers
into nucleotide calls, outperforming other basecallers
(Boža et al., 2017; Teng et al., 2018; Wick et al., 2019).
Another example of successful application is variant
calling, or identification of small nucleotide polymor-
phisms and indels in diploid or polyploid genomes.
DeepVariant is a tool that converts text file representa-
tions of multiple sequences aligned to a reference (read
pileups) to images and uses a CNN to predict alterna-
tive alleles (Poplin et al., 2018). Another tool predicts
gene copy number variations from high-throughput
sequencing reads (Hill and Unckless, 2019).

Deep learning has been particularly successful in
functional and regulatory genomics and has been
used for predicting sequence specificity of nucleic acid-
binding proteins, methylation status, identification
of transcription start sites, predicting expression pat-
terns from genotypes, classification of transposable el-
ements, and more. These applications are not strictly
within the purview of ecology and evolution and have
been comprehensively reviewed elsewhere (Park and
Kellis, 2015; Angermueller et al., 2016; Zou et al.,
2018).

Deep learning is a part of a growing trend to apply
machine learning to the study of evolution of popula-

tions and species (Schrider and Kern, 2018). One of
the early studies applying neural networks to popu-
lation genetic data showed them capable of estimat-
ing population-scale mutation rates, population sizes
and their changes through time, recombination rates,
and detecting introgressed loci and positive selection
on simulated data (Flagel et al., 2018). That study
demonstrated that CNNs are capable of estimating
population genetic parameters in scenarios for which
likelihood-based methods have yet to be developed,
such as accurately inferring recombination rates from
read coverage data in autotetraploid genomes. The
impressive performance of deep learning for popula-
tion genetics encouraged recent development of user-
friendly tools for inference from empirical data, includ-
ing selective sweep classification (Kern and Schrider,
2018), quantifying selection strength (Torada et al.,
2019), jointly inferring selection and population size
change (Sheehan and Song, 2016), and inferring re-
combination landscapes (Adrion et al., 2020). Other
studies relied on custom approaches to identifying dele-
terious variants in sorghum (Lozano et al., 2021) and
positive selection in SARS-CoV-2 (Ouellette et al.,
2021). An emerging approach involves combining
deep learning with approximate Bayesian computa-
tion (ABC) (Beaumont et al., 2002; Bertorelle et al.,
2010). It has been applied to inferring population size
change through time (Sanchez et al., 2020), identify-
ing hybridization from pairwise nucleotide divergences
(Blischak et al., 2020), and choosing best-fitting demo-
graphic scenarios based on site frequency spectra or
SNP data (Mondal et al., 2019; da Fonseca et al., 2020;
Perez et al., 2020). Most of the above approaches use
CNNs, which in their standard formulation are sensi-
tive to permutations. This means that the ordering of
chromosomes in the input, for example, is significant
for training and prediction. Flagel et al. (2018) dealt
with this by sorting chromosomes by similarity but
network architectures insensitive to input ordering are
also being developed (Chan et al., 2018).

Deep learning has also been used for inference and
visualization of population structure (Derkarabetian
et al., 2019; Battey et al., 2020b). Here neural net-
works are used for dimensionality reduction, similar to
principal component analysis, rather than for solving
a classification or regression problem. To achieve this,
the authors used variational autoencoders (VAEs; Box
2), a pair of neural networks that learn efficient rep-
resentations of data in an unsupervised manner. In
this method the encoder network compresses input
data into latent variables, while the decoder network
attempts reconstructing the original data from those
variables. The loss function in this case is a combined
measure of how good the reconstruction is and de-
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sirable properties of latent variables. In the case of
(Battey et al., 2020b) and (Derkarabetian et al., 2019)
the goal was to visualize population structure in a two-
dimensional space and so the data were compressed
into two variables representing coordinates.

As the importance of the spatial component is
becoming increasingly highlighted in population ge-
netics (Bradburd and Ralph, 2019), deep learning is
also beginning to be used for predicting sample ori-
gins based on genetic variation (Battey et al., 2020a)
and local-ancestry inference (Montserrat et al., 2020),
which aims to identify populations from which a ge-
netic locus descended. This application involves using
generative adversarial networks (GANs; Box 2) (Wang
et al., 2019b) to create artificial human genomic se-
quences of known ancestry (Montserrat et al., 2019;
Yelmen et al., 2019).

In the field of phylogenetics, CNNs have been
used for inference under conditions challenging exist-
ing likelihood-based methods. This includes correctly
inferring topologies from alignments simulated under
phylogenetic tree shapes known to produce biased
results (Suvorov et al., 2019) and with substitution
parameters changing across the phylogenetic tree (Zou
et al., 2020). This work was motivated by the fact a
majority of likelihood-based phylogenetic programs
assume constant model parameters across the phy-
logeny, which can lead to biased inference (Foster,
2004). A recent application enables placement of new
genetic sequences onto existing trees, a frequently
needed but algorithmically challenging task (Jiang
et al., 2021). Neural networks have also been used
to identify whether the evolution of genetic markers
collected from several species is better described by
a bifurcating or reticulated phylogeny (Burbrink and
Gehara, 2018) and to identify genetic locus proper-
ties contributing to gene-tree/species-tree discordance
(Burbrink et al., 2019).

Limitations and how to overcome
them

Important shortcomings of deep learning include sen-
sitivity to quality and bias of training data and the
“black box” aspect of machine learning. It is impor-
tant to acknowledge these limitations and identify
possible solutions.

Researchers using supervised deep learning are
limited to datasets large enough for successful train-
ing. Training data may be unavailable, insufficient,
or biased. It should also minimize noise and requires
accurate labels. This is an obvious challenge for many
systems and questions. Advances in digital technolo-

gies and automation continue to facilitate data acqui-
sition and generation, however, as exemplified by the
many studies cited in this review. Data quality can be
improved by automation and standardization and, in
some cases, augmentation with generative deep learn-
ing (Shorten and Khoshgoftaar, 2019). It is worth
stating that there are many questions and datasets for
which deep learning may not be the best tool. Com-
plex patterns can be discerned with other machine
learning approaches (Tarca et al., 2007; Schrider and
Kern, 2018), although a comparative study seeking
correlations between biological data properties and
success of different machine learning algorithms is
lacking.

A related problem involves using supervised deep
learning for empirical problems for which no ground
truth data exists. There are few population genetic
or phylogenetic datasets, for example, for which we
know the true generating evolutionary processes (but
see Lenski et al. (1991); Hillis et al. (1992)). This
does not prevent the use of supervised learning, how-
ever, because it is still possible to successfully infer
parameters or scenarios in cases where simulation is
feasible but where no likelihood-based methods for
inference have been devised. This has been recently
demonstrated for problems in population genetic infer-
ence (Flagel et al., 2018). Avoiding circularity in this
approach requires understanding assumptions behind
simulated training data and how it may depart from
real life before drawing conclusions from empirical
data. Asking how robust predictions are to model
mis-specification, i.e. how unaccounted parameters
may impact inference, should be standard practice for
such studies.

Deep learning is also sensitive to systematic bias in
training data (Kim et al., 2019). The well-documented
over-representation of European males in human ge-
nomics datasets (Editorial, 2019), for example, im-
pacts models designed to determine healthcare treat-
ments (Kessler et al., 2016; Chen et al., 2020a). These
biases not only impact the efficacy and robustness
of the model to new data, but could also have im-
pacts on clinical outcomes. For the types of data used
in ecology and evolution, there are potential biases
at every level of the data collection, model training,
and evaluation process. For example, the way that
natural history collections have grown over time is
influenced by taxonomic and research interests, ac-
cessibility of collecting locations, perceptions of value
to research programs or institutions, and political
boundaries and the relationship of collections-based
institutions to colonialism (Daru et al., 2018; Das and
Lowe, 2018). Biodiversity data is therefore biased
both taxonomically and geographically, which will im-
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pact the inferences we can make about global patterns.
The recent paper by Schell et al. (2020) demonstrated
the ways ecology has been and continues to be shaped
by systemic racism, which has ramifications for our
natural history collections, species occurrence data,
and environmental monitoring data. Such biases have
the potential to impact traditional research methods,
but because deep learning is often used to discern
broad patterns across global datasets, any conclusions
must be viewed through the lens of social and other
factors that went into generation of the data. Training
methods accounting for known data biases are actively
pursued (Hendricks et al., 2018; Alvi et al., 2018), but
they cannot address ignored or unknown biases.

Another potential source of bias can occur with the
use of transfer learning. When pre-trained models are
used, training data are often not openly available. We
may not know the source(s) of the training data, how
the data was collected, or how representative the differ-
ent categories are. This has the potential to introduce
bias into final models partly retrained with original
training data, compromises ability to make the work
truly reproducible, and has ethical implications for
the downstream implementation. A solution to this is
ensuring that deep learning workflows are adequately
documented and adhere to the FAIR (findable, acces-
sible, interoperable, and reusable) principles of data
management from start to finish (Wilkinson et al.,
2016).

In many of the applications described in this re-
view, researchers generate biological insight from the
final output of a neural network, with complex net-
work architectures obscuring the path from data input
to network output. For this reason, neural networks
can be viewed as a “black box”: a model effectively
trained to parse biological data at fine resolution but
the biological features guiding the model’s decisions
remain poorly understood. This perception is exacer-
bated by the “unreasonable effectiveness of deep learn-
ing” (Sejnowski, 2020): the method is simple to apply,
yet broader questions about why deep learning is so
successful are still unanswered (Sejnowski, 2020; Bara-
niuk et al., 2020). For practical applications in ecology
and evolution (e.g., sorting data, identifying outliers,
counting individuals or anatomical structures), an
effective “black box” may be acceptable. However,
scientific applications for hypothesis testing require a
more complete interrogation of what information is
learned and “represented” by a neural network and
how that information is biologically relevant. The
opaqueness may also contribute to hiding data biases
highlighted above.

Indeed, deep learning is also referred to as “rep-
resentation learning” (Bengio et al., 2013) because it

generates a latent (hidden) space, in a fixed number
of dimensions, in which the most relevant features of
the data and the relationships between those features
are represented mathematically. This latent space is
generated (i.e. “learned”) during network training,
and the subsequent placement of the input data in
the latent space is what is used to make predictions.
Understanding the relationships between and among
classes of data and the mechanisms that underlie those
relationships is an important step for integrating deep
learning into studies of ecology and evolution. Gener-
ating such insights requires simplifying complex neural
network representations. Low dimensional projections
of complex data are already afforded by more tradi-
tional tools in ecology and evolution (e.g. principal
components analysis, multidimensional scaling, canon-
ical correspondence analysis). These methods have
long provided biological insights for data that were
otherwise uninterpretable. Dimensionality reduction
for a neural network architecture can be achieved
by a number of methods (Van der Maaten and Hin-
ton, 2008; McInnes et al., 2018; Szubert et al., 2019;
Graving and Couzin, 2020). Other methods for in-
terrogating neural network decisions may yield more
fine-grained information. A recently developed “net-
work dissection” shows how individual units within a
neural network learn higher level conceptual informa-
tion (Bau et al., 2020). Samek et al. (2021) describe 46
different methods for generating useful interpretations
of neural networks (see Table 3 in Samek et al. (2021)).
Such methods bridge the gap between highly accurate
deep learning applications and the underlying features
of the data that play a role in generating accurate
predictions. These methods would find useful applica-
tions across various data types, allowing deep learning
to drive insights in ecology and evolution.

Finally, it is worth noting there are no universal
approaches to all inference problems (Wolpert and
Macready, 1997) and deep learning is no exception.
When considering a new approach, the researcher
should establish a performance baseline against which
to measure success and compare multiple models. Ex-
amples of problems not suitable for deep learning
include questions for which analytic solutions exist,
instances where mechanistic model itself is the focus,
and datasets that are small and noisy.

Future directions

As studies applying deep learning to ecology and evo-
lution continue to proliferate, we hope for increased
scrutiny and mitigation of data biases and other com-
mon issues, some of which can be remedied by existing
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best practices checklists (Roberts et al., 2021) and
algorithmic auditing (Juneja and Mitra, 2021).

Combined with robotics, deep learning is likely to
lead to increased automation in biodiversity discovery
and monitoring and speeding up of digitization efforts.
Future applications will move beyond distinguishing
classes of data known from training to ”open world
learning”, combining classification with outlier detec-
tion for the discovery of previously unknown data
classes (e.g. phenotypes or genotypes) (Shu et al.,
2018; Hassen and Chan, 2020). At the point of data
collection, deep learning could eventually be used for
on-the-spot detection of relevant samples (e.g. outlier
genotypes, hybrids, cryptic species) to improve effi-
ciency of field sampling efforts. The ability of neural
networks to consider diverse data types could make
studies combining molecular and phenotypic data eas-
ier in subfields that often consider them in isolation,
such as in taxonomy and species delimitation. Ecol-
ogy and evolution are also likely to see increased use
of unsupervised learning for pattern visualization and
discovery of gaps, as well as rise of new methods that
interrogate neural networks for biologically meaningful
features and their relationships.

In the fields relying on molecular data, deep learn-
ing has the potential to shortcut through the currently
necessary multi-step linear analytic workflows. In phy-
logenetics, for example, this could be inference of trees
directly from sequencing reads without the need for
intermediate steps of data assembly and alignment
(Guang et al., 2016).

Finally, we expect future integration of machine
and deep training into the ecology and evolution grad-
uate and postgraduate-level training, just as knowl-
edge of statistics, chemistry, and bioinformatics have
become standard components of most ecology and
evolution programs.

A primer and computer system
considerations

The deep learning technology is relatively accessible
to computing-literate biologists, thanks to numerous
learning resources and language platforms. Here we
include a digital supplement with a computational
notebook primer (Kluyver et al., 2016; Nelson and
Hoover, 2020) describing three simple scenarios with
biological data using Python libraries TensorFlow
and Keras [link to Google Colab notebook supple-
ment]. A primer on using deep learning to discover
transcription-binding factors in DNA sequences ac-
companies the review by Zou et al. (2018). Beyond
these tutorials, potential users should consider more

comprehensive but still accessible hands-on primers
by Chollet (2018) (for Python users) and Chollet and
Allaire (2018) (for R users). A good way to develop
intuition behind deep learning concepts is to consult
the extensive visual introduction by Glassner (2021).
Given the general interest in deep learning, a number
of on-line resources is available, ranging from free tu-
torials to online graduate degree programs offered by
major educational institutions.

Software frameworks for deep learning exist in
most popular scripting languages, including Python
and R, as well as MATLAB and Java. Python and
R have the advantage of a large ecosystem of open-
source tools for deep learning. The popular libraries
include Caffe, Theano, Torch, and TensorFlow. Caffe
is a C++ framework (Jia et al., 2014) which can be
used as a standalone tool with command line interface
or through a Python or MATLAB interface. Caffe was
optimized for CNNs and image recognition problems.
Theano (Bastien et al., 2012; The Theano Develop-
ment Team et al., 2016) is a Python library that was
designed as a flexible tool for defining mathematical
expressions in a symbolic way and compiling them
into highly efficient, hardware-specific implementa-
tions. Theano may be compelling for advanced users
wanting to build neural networks declared as compu-
tational graphs. Torch was originally developed to be
used with the scripting language Lua (Collobert et al.,
2011) but has since been re-written with a popular
and user-friendly Python interface as PyTorch (Paszke
et al., 2019) and is also available for R (Falbel et al.,
2021). A powerful feature of PyTorch is native support
of structured data input, enabling easy creation of net-
works capable of processing inputs of variable shapes
and sizes in the same training loop. Another strength
is PyTorch’s declarative data parallelism, allowing
easy computing with multiple processors. TensorFlow
(Abadi et al., 2016) is another library with a Python
or R interface and currently the most popular deep
learning framework. It offers a high-level API called
Keras, which allows fast development with little code.
Large user base and well-written series of official Keras
tutorials (Chollet, 2018) make it easy to learn and
find help on TensorFlow. TensorFlow supports static
definition of neural network models, meaning that
they need to be defined first and ran afterwards. This
makes building networks capable of processing input
of varying structure difficult compared to Torch. Data
parallelism is also more challenging to implement al-
though TensorFlow allows for great flexibility in this
regard.

Deep learning relies heavily on linear algebra and
computationally expensive matrix operations. Com-
puter graphics is concerned with similar mathematics

https://colab.research.google.com/drive/17alpWgW_QW9CpmrMQ8n4QtkOenbJ6DO5?usp=sharing
https://colab.research.google.com/drive/17alpWgW_QW9CpmrMQ8n4QtkOenbJ6DO5?usp=sharing
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and processors developed for optimum performance in
that realm are called Graphical Processing Units, or
GPUs. Until recently, commercial demand from the
computer game industry was driving the development
of powerful GPUs (Pratx and Xing, 2011) but the
rising popularity of deep learning is disrupting this
trend and now many GPUs are built with neural net-
work training performance in mind. GPUs are one to
two orders of magnitude more efficient than standard
processors (CPUs) at deep learning computing. Indi-
vidual researchers interested in applying deep learning
to their research should therefore consider purchasing
one, as even a mid-range gaming GPU will offer great
advantage over almost any CPU. An alternative is to
use on-line environments that make GPU resources
available for limited time for free. An example is
the Google Colab platform (Zou et al., 2018; Nelson
and Hoover, 2020), which can be used for code pro-
totyping. Users requiring long-term access to GPU
resources may also consider purchasing cloud comput-
ing resources on one of the many well-documented
platforms (Langmead and Nellore, 2018).

Conclusion

Deep learning can work on data from a variety of
sources, learn complex, hierarchical patterns directly
from raw input, and solve problems for which no
likelihood-based solutions exist. These desirable qual-
ities are motivating research that outweighs or over-
comes weaknesses and challenges of deep learning. So
far the most common application of deep learning has
been to identify and classify in a supervised manner.
In the future, classification tasks will further benefit
from combining data from sources as disparate as
images, motion and location sensors, and text anno-
tations, to mention just a few possibilities. Increasing
popularity and sophistication of sensor-based tech-
nologies in ecological research ensures that temporal
prediction using deep learning is likely to proliferate.
Unsupervised approaches to visualization and cluster-
ing of complex patterns such as population genetic
structure are promising and will undoubtedly continue
to be developed. Generative deep learning appears
to be the best tool thus far for creating data with
complexity approaching real-life biological patterns.
As a competitor of and a complement to mechanistic
modeling in the most complex inference problems,
deep learning is on track to become an integral part
of the future biologist’s toolkit.



14

Box 1: Glossary

Architecture. The configuration of neurons, layers, and connections among them in a neural network.

Augmentation. A set of techniques for modifying existing training data in order to increase data set size for
machine learning.

Backpropagation. A crucial method allowing neural networks to learn. Backpropagation measures the
output error and adjusts network biases and weights in a way that minimizes it. This is done by computing
errors starting with the output layer and deriving errors for neurons connected to it, then deriving errors for
neurons for layers further back, all the way to the input layer, propagating the error backwards. Once an error
is known, it can be minimized using gradient descent.

Batch. In the network training process, the number of input samples the network works through between
computing error and updating weights and biases using backpropagation.
Class. A category of data in a discrete category classification problem.

Classifier. Algorithm mapping input variables to discrete categories, or target variables. A neural network
distinguishing among different species captured on frames of a wildlife monitoring camera is a classifier.
Contrast with regression model.

Convolutional Neural Network (CNN or ConvNet). A type of neural network commonly used in
visual recognition, in which connections between different layers allow performing convolutions (see Box 3).

Dropout layer. Neural network layer that randomly masks a portion of outputs from another layer. Dropout
is used to prevent overfitting.

Epoch. The number of complete passes of the training set in the network training process.

Filter. Also called a kernel, a filter is a tensor that is moved across the input to a convolutional layer,
transforming it into a feature map. Through training, the values in the filter cells are optimized for detecting
useful information, which in visual recognition tasks may include presence of horizontal or vertical lines or
more complex patterns.

Gradient descent. Optimization algorithms used to find internal neural network parameters that improve per-
formance according to a pre-defined measure of error. In other words, gradient descent is tasked with finding the
best way to minimize the loss function. Many variations of gradient descent exist, designed to balance the goals
of minimizing network learning time, avoiding local optima of parameter values, and improving overall accuracy.

Hidden layer. Layers of a neural network placed between input and output layers.

Loss function. A measure of error in neural network outputs.

Model. In the context of deep learning, the word ”model” is often used to refer to a trained neural network.
This can be confusing in studies that use neural network classifiers to distinguish among data generated
under different evolutionary models or models of population demographics.

Object detection. Localizing, usually by surrounding with bounding boxes, and predicting the class of
objects in images. Compare to semantic segmentation.

Overfitting. The error of a predictive model too narrowly fitting a limited set of data points. In the context
of deep learning this means a network that performs well on the training and/or validation set but does not
produce reliable results on other data.

Pooling layer. Neural network layer that reduces the feature map of a CNN (see Box 3). This is accomplished

by sliding a window across the feature map tensor and calculating maximum or average value of cells in that

window. The output serves to reduce feature map dimensions.
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Glossary, continued

Pre-training. Training a classifier or regression model on data similar to training set before using any
of the training data. Pre-training is used instead of initializing a model with random weights and biases,
allowing for transfer learning.

Regression model. Algorithm mapping input variables to continuous target variables. A neural network
estimating demographic parameter values of a population from genetic data is a regression model. Contrast
with classifier.

Semantic segmentation. Predicting the class of objects for each pixel in images, giving information about
object shape and the boundaries between overlapping objects. Compare to object detection.

Tensor. Mathematical term applied as a generalization of the term matrix, but with any number of
dimensions. Example tensors include a zero-dimensional matrix or a single number, one-dimensional matrix or
a series of numbers (often called a ”vector”), two-dimensional matrix or numbers arranged into rows and
columns, etc.

Test set. Data used to compare performance of a neural network beyond that used in training and
validation. Although measures such as validation loss estimate how well the network generalizes, multiple
rounds of training and adjustments to its parameters will cause overfitting to the validation set. Therefore,
measures of accuracy should be performed on the test set only once.

Training. The process neural networks use to measure error and improve performance. Training happens in
batches, where a pre-defined number of input samples is fed through the network, error is measured using
the given loss function, and backpropagation and gradient descent are used to update the network
such that is minimizes error. Complete training usually involves multiple iterations over the entire training
set, or epochs.

Training set. Input data used directly for training of a neural network, as opposed to validation and test
sets, which evaluate how well it generalizes beyond the training set.

Transfer learning. The process by which neural network can acquire skill from training on data similar,
but not identical, to the problem at hand. This is achieved with pre-training.

Underfitting. The error of a predictive model failing to accurately capture the relationship between input
data and target variables. In the context of deep learning this means a network that fails to produce reliable
results on training as well as other data.

Validation set. Data used to evaluate the performance of a neural network on data beyond that used

directly in training. The validation loss is computed at the end of each training epoch and is often the

measure that decides training termination.
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Box 2: Common neural network architectures

Neural networks (also known as Artificial Neural Networks, ANNs) are complex mathematical models
composed of a large number of equations whose structure is represented as a network of interconnected nodes
(neurons, one for each equation). Neurons are arranged in layers, can be connected to other neurons in different
layers but not within the same layer. This arrangement of layers and connections is the network architecture.
In the simplest form, a neural network has one input layer, at least one intermediate or hidden layer, and an
output layer. In the so-called fully connected (or densely connected) layer, each node is connected with every
node in the succeeding layer. The trainable network parameters consist of biases and weights. Each node has
a bias value (b in panel A), which determine how easy it is for it to “fire”. Each connection has a weight value
(W ) which represents connection strength. Each node also has an activation function (f), for example sigmoid
function. Given some input (x), the so-called feedforward output (y) of a node is determined by a simple
equation:

y = f(W × x+ b) (2)

A fully connected or dense network (DNN; figure panel A), with information flowing from left to right. The
number, arrangement, and type of layers and connections determine the neural network architecture. The
original input (x1) is progressively transformed (y1 through y5) as it moves forward through the network.
In practice, values in neural networks are packaged in tensors (matrices of varying numbers of dimensions)
and manipulated using linear algebra. For clarity, figure panel A shows only a single weight and input and
output at one node per layer. In reality, outputs in this fully connected network would be calculated as a
sum of all inputs and weights at each node. Although modern networks often use several different types of
layers, fully connected layers are still used in many architectures. An important modification of the fully
connected design involved rearranging the connections to allow for convolution operations described in Box 3.
These convolutional neural networks (CNNs) excel at capturing complex, hierarchical patterns and are the
architecture used in most identification and classification problems.
In dense networks, input data are usually shuffled prior to training and no information persists from one
training batch to the next. This breaks relationships between consecutive data points and makes predicting
events based on time series data impossible. Recurrent neural networks (RNNs; panel B) address this issue by
adding loops to their information flow. A basic RNN can be imagined as a network with a single input, hidden,
and output layer; Information flows from the input to the output of the network but it can also flow back from
the output to the input of the hidden layer through recurrent weights (Wrec in panel B). A way to visualize
this process is to “unroll” the network by connecting hidden layer neurons through time. The figure shows
both representations. However, simple RNNs such as the one shown in the figure are difficult to train because
weights in these networks can quickly diverge during training. More advanced derivations of the original RNN
concept, such as Long Short-Term Memory networks (LSTMs) or Gated Recurrent Units (GRUs), address
this problem and are commonly used with time series data or in language processing tasks. In evolutionary
biology, deep learning solutions including GRU have been used to predict recombination landscapes.
A Variational Autoencoder (VAE; figure panel C) is another neural network architecture, composed of two
parts: one called the encoder that maps input data onto a pre-defined number of latent variables, and one
called the decoder that reconstructs the original input. Crucially, the encoder produces two vectors for each
latent variable, one for the mean and the other for the standard deviation. This produces a continuous
space for the latent variables. Thanks to this, VAEs are capable of generating new instances of data that
are similar but not identical to the input. An example VAE use is visualization of population structure in
two-dimensional space using genetic data as input. By transforming data into few, informative dimensions,
VAEs are comparable to principal components analysis, but VAEs are additionally capable of non-linear
dimensionality reduction.

A Generative Adversarial Network (GAN; figure panel D) is a type of neural network that generates artificial

data by means of the interaction between two components: a generator and a discriminator. The generator

produces plausible artificial data (i.e., similar to training set examples). The discriminator classifies the

input as either real or artificial data. The generator takes random noise as its input and maps it onto the

artificial output, which can be used along with real training examples as input for the discriminator. A

variational autoencoder can be used as the generator. The decoder is trained to become better at distinguishing

between real and artificially generated examples, whereas the loss function computed on artificially generated

examples informs the training of the generator. This way the generator and discriminator improve each

other’s performance to produce data resembling real-world input. An example of GAN use is the generation of

artificial genome sequences.
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Box 2, continued
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Box 3: Convolutions

A convolution is the operation of transforming an input tensor into an output called a feature map. It can
be visualized as a window (called filter or kernel) sliding across the input in successive steps (see figure).
Each step of a convolution takes the dot product between values in the input sector and those in the filter,
resulting in a feature map. The filter consists of values that can be automatically learned by the network. In
the figure, filter values correspond to network weights and the feature map calculations omit the bias term
and activation function for clarity. Feature maps are crucial in visual recognition tasks because they capture
information about the location of certain visual cues, for example, horizontal, angled, or vertical lines in an
image, as well as more complex and abstract features. The process of detecting data features with a filter is
often called “feature extraction”. For example, the filter displayed in the figure is sensitive to diagonal lines
and will produce feature maps with diagonal edges “extracted”. Padding around the input may be used to
preserve input dimensions in feature maps. There are usually multiple filters and corresponding feature maps
in a single layer and networks commonly employ multiple stacked convolutional layers. In those cases, feature
maps from the previous layer are used as input for the next layer, sometimes after passing through a pooling
and/or dropout layer. Convolutional neural networks excel at capturing complex, hierarchical patterns.

Convolutions for image recognition are most often performed in two dimensions, as in the figure example,

but they are also possible using data with different numbers of dimensions. For example, one-dimensional

convolutions can be used on time series data or text strings and three-dimensional convolutions can be applied

to video or 3D images.

=

(1×0)+(1×1)+(0×1)+(2×0)=1

(1×0)+(1×1)+(2×1)+(2×0)=3

=

(0×0)+(2×1)+(1×1)+(0×0)=3

(2×0)+(2×1)+(0×1)+(0×0)=2

=

=

step 1

step 2

step 3

step 4
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