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Abstract 80 
Aim: Addressing global environmental challenges requires access to biodiversity data across 81 
wide spatial, temporal and biological scales. Recent decades have witnessed an exponential 82 
increase of biodiversity information aggregated by biodiversity databases (hereafter ‘databases’). 83 

However, heterogeneous coverage, protocols, and standards of databases hampered the data 84 
integration among databases. To stimulate the next stage of data integration, here we present a 85 
synthesis of major databases, and investigate i) how the coverages of databases vary across 86 
taxonomy, space, and record type; ii) the degree of integration among databases; iii) how 87 
integration of databases can increase biodiversity knowledge; iv) the barriers to databases 88 

integration. 89 
Location: Global 90 
Time period: Contemporary 91 
Major taxa studied: Plants and Vertebrates 92 

Methods:  We reviewed the scope of twelve well-established databases and assessed the status 93 
of their integration. We synthesized information from these databases to assess major knowledge 94 

gaps and barriers to fully integration. We estimated how improved integration can increase the 95 
coverage and depth of biodiversity knowledge.  96 

Results: Each reviewed database had unique focus of data coverages. Data flows were common 97 
among databases, though not always clearly documented. Functional trait databases were more 98 
isolated than those pertaining to species distributions. Poor compatibility between taxonomic 99 

systems used by different databases posed a major challenge to integration. We demonstrated 100 
that integration of distribution databases can lead to greater taxonomic coverage that corresponds 101 

to 23 years’ advancement in knowledge accumulation, and improvement in taxonomic coverage 102 
could be as high as 22.4% for trait databases.  103 
Main conclusions: Rapid increase of biodiversity knowledge can be achieved through the 104 

integration of databases, providing the data necessary to address critical environmental 105 

challenges. Our synthesis provides an overview of the integration status of databases. Full 106 
integration across databases will require tackling the major impediments to data integration – 107 
taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and 108 

isolation of individual initiatives. 109 
 110 

Keywords: Big Data, Biodiversity Informatics, Biogeography, Database integration, Functional 111 
trait, Taxonomic System 112 

  113 
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1. Introduction 114 
In the face of rapid global changes, a grand challenge is how to efficiently catalogue, assess, 115 
anticipate, and respond to changes in biodiversity and associated ecosystem services (Chapin et 116 
al., 2000; Ceballos et al., 2015; Díaz et al., 2019). Addressing this challenge requires 117 

unprecedented access to biodiversity data across fine to broad spatial, temporal and biological 118 
scales (Beck et al., 2012). The past few decades have witnessed fast growth of biodiversity 119 
information (Bisby, 2000; Hardisty et al., 2013; Hobern et al., 2019). Rapid digitization of 120 
existing biodiversity collections and ongoing collection of new information are expanding data 121 
availability worldwide (Sullivan et al., 2014; Page et al., 2015; Chandler et al., 2017b). Indeed, 122 

the Global Biodiversity Information Facility (GBIF) – the world’s leading repository of 123 
biodiversity observations – recently reached 1.6 billion records (accessed March 2021). 124 
However, we are still a long way from fully characterizing the taxonomy, geographic ranges and 125 
functions of all species on Earth (Lomolino, 2004; Hortal et al., 2015; Stork, 2018). Addressing 126 

these shortfalls requires novel efforts in data synthesis to integrate the information held in the 127 
world’s biodiversity projects, some 600+ of which had been created as of 2014 (Belbin, 2014) 128 

and nearly half of which are essentially invisible or inaccessible to the research community due 129 
to lack of cataloguing and integration (Blair et al., 2020).  130 

 131 
Data aggregation has been an ongoing goal of the biodiversity community (Nelson & Ellis, 132 
2019), and a tremendous amount of work has been done by existing biodiversity data 133 

aggregators, such as GBIF, iDigBio, and VertNet. However, the challenges are many: existing 134 
biodiversity data aggregators often have singular objectives and consequently adhere to different 135 

protocols and standards (Mesibov, 2018) (termed “data domains” in (König et al., 2019)), and 136 
datasets are highly heterogeneous spatially, temporally, and taxonomically (Reichman et al., 137 
2011; Cornwell et al., 2019). The differences among biodiversity data aggregators can 138 

accumulate over time; thus, biodiversity data aggregators run the risk of “speciating,” or 139 

becoming isolated, which can impede data sharing and integration. In response, the community 140 
has been calling for greater alignment between efforts and actively working on coordination 141 
mechanisms for developing shared roadmaps for biodiversity informatics (Hobern et al., 2019). 142 

We therefore assert that a new synthesis is needed for the next stage of biodiversity data 143 
integration, i.e., information from existing biodiversity data aggregators should be further 144 

integrated to reduce shortfalls in biodiversity knowledge and achieve a more complete picture of 145 
Earth’s biodiversity (Hobern et al., 2019; König et al., 2019; Kattge et al., 2020).  146 

 147 
To facilitate better integration among biodiversity data domains, we first need to assess the 148 
current state of connectivity and integration among databases. Though biodiversity data 149 
generally are well organized in individual databases, overlaps in their data coverage and the 150 
extent of communication between databases remains unclear. Indeed, attention has rarely been 151 

paid to the post-aggregation processes and interactions among commonly used databases (such 152 
as nontransparent data flows between two databases) and synthesis studies of biodiversity data 153 

from multiple databases are still scarce in the literature (Cornwell et al., 2019; König et al., 154 
2019). To address this gap, we conducted a synthesis of existing biodiversity databases, and 155 
aimed to answer four questions: (i) How does the coverage of a suite of major biodiversity 156 
databases differ across taxon, space, and record type? (ii) How are existing biodiversity 157 
databases integrated? (iii) How would the integration of databases increase biodiversity 158 
knowledge?  and (iv) What are the barriers that prevent data integration? To answer these 159 
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questions, we first reviewed the scope of existing major biodiversity databases and assessed the 160 
status of their integration. We also demonstrated that the integration of biodiversity databases 161 
could rapidly narrow major knowledge gaps. Finally, we discussed barriers that need to be 162 
overcome to obtain a more complete picture of the biodiversity on Earth.  163 
 164 

2. Review of biodiversity databases 165 
Many biodiversity databases have been built over the past two decades, with varying emphases 166 
on taxonomy, spatial location, and record type. To synthesize the major attributes of existing 167 
biodiversity databases, we selected twelve well-established biodiversity databases: Atlas of 168 
Living Australia (ALA; Belbin & Williams, 2016), Botanical Information and Ecology Network 169 
(BIEN; Enquist et al., 2016), Biodiversity Information Serving Our Nation (BISON; U.S. 170 

Geological Survey, 2018), eBird (Sullivan et al., 2014), Encyclopedia of Life (EOL; Parr et al., 171 
2014), Global Biodiversity Information Facility (GBIF), Global Inventory of Floras and Traits 172 

(GIFT; Weigelt et al., 2017), Integrated Digitized Biocollections (iDigBio, 2018a), iNaturalist 173 

(iNaturalist), Map of Life (MOL; Jetz et al., 2012), a global database of plant traits (TRY; Kattge 174 
et al., 2011), and VertNet (Constable et al., 2010). Our selection can not cover every notable 175 
database because of limited effort and the accessibility of database content or documentations, 176 

though they were chosen to represent the breadth of the most commonly used, well-established 177 
large-scale biodiversity databases (MacFadden & Guralnick, 2016; Chandler et al., 2017a; James 178 
et al., 2018; Singer et al., 2018; Cornwell et al., 2019; König et al., 2019) to maximize the 179 

generalizability of our results and conclusions. We acknowledge that these databases are 180 
typically under active development; thus our synthesis is based on a snapshot of their status on 181 

the access date (March 2021; see Appendix 1).  182 
 183 

2.1 Varied focuses among biodiversity databases  184 
We reviewed associated metadata for biodiversity databases from project websites or 185 
publications. We recorded database name, taxonomic scope, taxonomic system, record type, 186 

number of records, and spatial coverage. We classified the record types into three categories: 187 
geographic distribution, media type, and biological information (standardized trait databases or 188 

generalized text descriptions). Within geographic distribution, we further classified the 189 
information as specimen records, observations, checklists of geographic regions, or distribution 190 
maps. Specimen records and observations both have information on specific occurrences of a 191 

species at a georeferenced point location, but only specimen records are associated with physical 192 
specimens. Checklists usually contain lists of species known to be present in defined geographic 193 

regions (e.g., political divisions or protected areas). Distribution maps are those that were drawn 194 
by experts or generated through models with various degrees of complexity. Media data type 195 
were classified as image, audio, and video. Biological information included standardized trait 196 
and generalized text descriptions. 197 

 198 
Our review showed that each of these biodiversity databases holds unique scientific value 199 
because they cover different spatial extents, taxonomic groups, and record types (Fig. 1a). The 200 

databases could be grouped into different clusters based on similarities of focus and data 201 
coverage. For example, EOL, iNaturalist, and eBird form a cluster of databases that indexes 202 
media data and biological descriptions, while also sharing public education objective (Fig. 1b). 203 
TRY and GIFT form another cluster that mainly focuses on indexing functional traits of plants. 204 
GBIF, BISON, iDigBio, and VertNet form yet another cluster that emphasizes indexing species 205 
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occurrences. The cluster of ALA, MOL, and BIEN share the property of indexing both species 206 
occurrences and geographic range maps. Here our grouping of databases considered the different 207 
attributes equally, though assigning different weights on the attributes can lead to different 208 
grouping outcomes. For example, many of the databases seek to document all taxa across the 209 

globe (e.g., GBIF, EOL, eBird) or to index many types of data (e.g., EOL, ALA, iNaturalist).  210 
 211 

2.2 Data integration status among biodiversity databases 212 

To understand how existing biodiversity databases are integrated, we reviewed the data flow 213 
among the databases. Biodiversity databases (e.g., GBIF) are typically data aggregators of 214 
digitalized information from data providers, such as museums, herbariums, and research data 215 

repositories, and detailed information about data providers are usually acknowledged on a 216 
databases’ website (e.g., BIEN data contributors-217 
https://web.archive.org/web/20210511034441/https://bien.nceas.ucsb.edu/bien/data-218 

contributors/). However, it is usually not straight forward to understand whether one database is 219 
aggregated by another database, probably because of the concern of losing uniqueness of data 220 
coverage, i.e. acknowledging to be aggregated by another aggregator can be interpreted as one 221 

database becoming a subset of the other database. Regardless, understanding such relationships 222 
among databases is important for users, as this immediately affects the determination of most 223 
comprehensive data coverage (e.g., whether or not GBIF has the most complete occurrence set of 224 

a species) or evaluation of data quality (e.g., whether or not to consider duplicated records when 225 
using multiple databases). Therefore, we assessed data integration among biodiversity databases 226 

based on their documentation and publications. 227 

 228 

Overall, the data flows between biodiversity databases are not always clearly documented and at 229 
times the relationships need to be inferred. Key technical details of data flow, such as time and 230 

frequency of data exchange/flow, and the version or date of the imported data, are usually 231 
lacking. The lack of ‘snapshot’ data archives hinders the reproduction of data content, as well as 232 

the reproducibility of associated scientific research (Feng et al., 2019). Unclear documentation of 233 
data exchange may also lead to compliance issues with data licensing, and can prevent 234 

assignment of proper credit to data collectors.  235 
 236 
We found that data flow, unidirectional or bidirectional, is common among biodiversity 237 

databases (Fig. 2 & Table S1). Among the network of databases, GBIF serves as a central 238 
aggregator at a global scale that ingests species occurrence data from many databases, such as 239 
BISON, iDigBio, and eBird. ALA and BISON have bidirectional data flows with GBIF – they 240 

both i) aggregate biodiversity data collected from their focal regions (i.e., Australia and North 241 
America respectively) and pass the data to GBIF, and ii) import other data collected from 242 
Australia or North America from GBIF to their respective databases (Table S1). There are also 243 

cases of unidirectional data flow from GBIF to specialized databases. For example, MOL 244 
aggregates multiple types of information of species geographic distributions, including 245 
occurrences from GBIF; as does BIEN.  246 
 247 

We summarized the status of data integration across databases into four categories: synced, 248 
lagged, impeded, and isolated (Fig. 3). Ideally, information in databases could be fully integrated 249 
in either one or multiple directions in real (or near-real) time (i.e., synced). For example, data 250 

published to iDigBio is automatically published to GBIF (iDigBio, 2018b; Singer et al., 2018), 251 
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thus the content of iDigBio is considered synced with GBIF (Fig. 3). However, differences may 252 
arise between otherwise fully integrated databases in the time between synchronization events 253 
(lagged). For example, BIEN imports and integrates data from GBIF and other sources at annual 254 
or longer intervals, which provides more stable and easily archived datasets, but the imported 255 

GBIF content can be different from the most up-to-date GBIF data until the next 256 
synchronization. This lag can be addressed by increasing the frequency of data exchange, shared 257 
data import protocols, or developing novel database architecture designed for data integration 258 
(LeBauer et al., 2013). Differences between databases may also arise from obstacles that prevent 259 
subsets of data from being shared (impeded). For example, iNaturalist only publishes data to 260 

GBIF that are properly licensed (iNaturalist, 2018)). Differences in data licensing is one of the 261 
major impediments to integration and is a problem that was rarely emphasized in biodiversity 262 
data aggregation prior to the last decade. For example, GBIF initialized a license requirement in 263 
2014 (GBIF, 2014) and excluded approximately 49 million existing records without appropriate 264 

licenses. Clearly defined data licenses will make future data use and integration legally 265 
straightforward, and will also provide a cornerstone for the Open Science movement (Escribano 266 

et al., 2018). Creative commons licenses are the most widely used mechanism to ensure proper 267 
attribution while allowing others to copy and distribute data (Fitzgerald et al., 2007). 268 

 269 
Unlike the distribution databases discussed above, trait databases are characterized by isolation 270 
status. These databases typically capture data within particular taxa or focus on a single trait, 271 

such as GlobTherm for thermal tolerance (Bennett et al., 2018) and AmphiBIO for amphibian 272 
ecological traits (Oliveira et al., 2017) (Fig. 3). A degree of isolation is unavoidable due to the 273 

complex nature of trait data, which varies greatly in terms of data types, units, and measurement 274 
methods (Deans et al., 2015) and the taxon-specific nature of many traits (e.g., seed traits apply 275 
only to seed plants). Such complexity is not resolved by following existing standard commonly 276 

used by occurrence data such as Darwin Core (Wieczorek et al., 2012). Effective synthesis and 277 

integration of trait information will require trait-specific specifications such as trait ontologies 278 
(Walls et al., 2012), trait data standards (Schneider et al., 2019) and embracing of Open Science 279 
principles via initiatives like the Open Traits Network (Gallagher et al., 2020).  280 

 281 

Poor compatibility between taxonomic systems adopted by different databases has posed a major 282 

impediment for database integration (Fig. 2 & Table S2). As biodiversity information is 283 

generally indexed by species’ scientific names, a crucial step is to index information based on 284 

one unified or multiple compatible taxonomic systems. Taxonomic systems reflect decisions of 285 

database developers; some databases maintain flexibility in nomenclature, especially when the 286 

taxa are in flux (e.g., vertebrate species stored in VertNet), whereas some databases impose 287 

stronger rules. For example, EOL maintains multiple independent taxonomic systems to avoid 288 

potential conflicts between non-compatible nomenclature; GBIF and COL have both employed a 289 

comprehensive but single-backbone system designed to be compatible with different taxonomic 290 

systems; MOL developed a backbone that includes Catalogue of Life (a global effort to compile 291 

existing catalogued species) and manually curated taxonomic datasets for synonym issues; BIEN 292 

standardizes taxon names according to external, expert-curated taxonomic reference databases 293 

(Boyle et al., 2013). The different approaches and strategies to accommodating taxonomic 294 

systems among biodiversity databases may solve taxonomic issues locally for that specific 295 

database (Jorge & Peterson, 2004), but deepen differences that prevent future data integration, 296 
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thus facilitating the “speciation” of databases. Still, resolving differences between existing 297 

taxonomic systems is just an initial step. Creation of a single authoritative list of names will take 298 

time; full reconciliation of synonyms and distinct taxon concepts may take decades (Berendsohn, 299 

1997; Franz & Peet, 2009; Boyle et al., 2013; Wiser, 2016; Garnett et al., 2020). This will 300 

require a global effort, as envisioned by the Global Taxonomy Initiative (Samper, 2004). 301 

 302 

3. Enhanced data coverage via database integration 303 
To quantify the improvement of combining multiple databases, we compared leading databases 304 
that focus on similar taxonomic groups and similar record types. We used terrestrial plants 305 
(Embryophyta; hereafter “plants”) and vertebrates (Vertebrata) as test cases, because these 306 
taxonomic groups are comparatively well collected and documented in biodiversity databases 307 
compared to others (Clark & May, 2002; Fazey et al., 2005; Hecnar, 2009; Titley et al., 2017; 308 

Cornwell et al., 2019; König et al., 2019; Kattge et al., 2020). We did not use taxon, such as 309 
microbes or invertebrates, that account for large portions of biodiversity on Earth but face huge 310 

data gaps (Locey & Lennon, 2016). Specifically, we combined (i) the distribution of terrestrial 311 
plants from GBIF and non-GBIF sources, and (ii) one crucial and commonly measured trait for 312 

plants and vertebrates, respectively: maximum height (Moles et al., 2009; Guralnick et al., 2016) 313 
using the Botanical Information and Ecology Network (BIEN (Enquist et al., 2016)), TRY 314 

initiative (Kattge et al., 2011), and EOL (Parr et al., 2014), and body length using VertNet 315 
(Constable et al., 2010) and EOL (see Appendix 1). Our study goes beyond recent gap analyses 316 
of biodiversity data (Meyer et al., 2016; Cornwell et al., 2019; König et al., 2019), by expanding 317 

the scope to multiple data aggregators with similar missions, in two major clades (i.e., plants and 318 
vertebrates), and using an ecological trait characterized by continuous values.  319 

 320 

3.1 Better coverage through data integration  321 

3.1.1 Overall trend in data collection 322 
We found that the total number of distribution records (spatial coordinates) for plants has 323 

increased exponentially since the 1750s (Lomolino et al., 2010) (Fig. 4a) as documented in GBIF 324 
and the combined dataset. A similar exponential increase was found when only spatially unique 325 
records were examined (Fig. 4b). This pattern is also supported by a model selection analysis 326 

among linear, exponential, and logistic functions (Table S3). This trend in the growth of 327 

biodiversity data is analogous to many accelerating processes in the Anthropocene (Steffen et al., 328 
2015), such as urbanization, globalization, transportation, and telecommunications. One 329 
prominent example in Information Technology (IT) is the exponential growth in the number of 330 
transistors in a dense integrated circuit, which doubles roughly every two years (Moore, 1965). 331 
This pattern, termed “Moore’s Law”, is also evident in the accelerating development of cyber 332 

infrastructures for many disciplines in science. Based on the similar exponential curve for 333 
biodiversity data, we estimated that the total number of plant distribution records doubles every 334 

17 years and the number of spatially unique records doubles every 21 years. The high speed of 335 
biodiversity data accumulation represents the great power of data collection, digitization, 336 
processing, and publishing, which lays the basis for and presents the opportunities for 337 
biodiversity database integration.   338 
 339 

In contrast to the number of distribution records, the number of species identified is gradually 340 
reaching saturation (Fig. 4c). Based on a fitted logistic curve (Table S3), we predicted that the 341 
number of catalogued plant species in distribution databases would be saturated at 365,519 ± 342 
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2,233 (mean ± SD of the coefficient from the fitted logistic model), i.e. the saturation point of 343 
predicted number of terrestrial plant species in the integrated biodiversity distribution databases, 344 
with species names resolved using the Taxonomic Name Resolution Service (TNRS; version 5.0) 345 
(Boyle et al., 2013). This estimate is higher than the current catalogued number of terrestrial 346 

plants in Catalogue of Life (COL; 354,327), though within the previously estimated range for the 347 
total number of plant species on Earth (334,000 - 403,911) (Lughadha et al., 2016). The slowing 348 
trend in plant species discovery started in ~1949 (the inflection point of the logistic curve of the 349 
cumulative number of species in GBIF; Table S1), and is in line with previous estimations 350 
(Christenhusz & Byng, 2016). Such trends may suggest that we are gradually reaching saturation 351 

and closing the Linnean shortfall, the lack of knowledge in describing and cataloging species 352 
(Hortal et al., 2015), for plants. The slowing trend could also be caused by species extinctions, 353 
reduced funding for natural history studies, and increasing difficulties in detecting the remaining 354 
rare species (Joppa et al., 2011). 355 

 356 

3.1.2 Improvement in distribution data 357 
Integration of biodiversity databases would powerfully increase our knowledge of biodiversity. 358 
For instance, GBIF is the world’s largest biodiversity repository, but adding ~15 million records 359 

from additional sources (compiled by BIEN) would improve its coverage by ~3.7 million 360 
spatially unique records and ~20 thousand species (Fig. 4d-f). The number of distribution records 361 
per taxon in GBIF could be increased by 4.4% – an average of 19 additional records per species. 362 

The improvement of taxonomic coverage in GBIF would be equivalent to 23 years of new data 363 
accumulation, based on extrapolation of the fitted logistic curve (Fig. 4c, Table S3). GBIF and 364 

non-GBIF datasets together provide distribution data for ~ 307,985 species (76-92% of the 365 
estimated richness of all plants (Lughadha et al., 2016)), suggesting we are gradually decreasing 366 
the Wallacean shortfall, the lack of knowledge in species distribution, for plant species, in 367 

accordance with findings in Cornwell et al. (2019).  368 

 369 

3.1.3 Improvement in trait data  370 
Database integration also substantially improves the taxonomic coverage of trait information 371 

(i.e., maximum height in plants; body length in vertebrates; see Methods). Under standardized 372 
taxonomy, we found that individual plant and vertebrate trait databases always include unique 373 

species-trait combinations and cover different portions of taxonomic diversity (Fig. 5). For 374 
instance, trait knowledge increased in 69-82 plant orders and 86-124 vertebrate orders through 375 

database integration, while the range of increase varied by database. The average improvement 376 
of species-trait combination across these databases ranged from 2.0 to 8.7% for plant orders and 377 
21.5-22.4% for vertebrate orders. The number of plant orders that were sparsely-sampled in 378 
BIEN (i.e., <10% of species with trait observations), for example, decreased from 99 to 65 379 
through data integration; a similar decrease was seen for sparsely-sampled vertebrate orders in 380 

EOL from 53 down to nine (Fig. 5).  381 

 382 

3.1.4 Limitations of our assessment 383 
Data integration can effectively decrease the gaps in our knowledge, and the resulting more 384 
comprehensive data can facilitate global scale studies of biodiversity and help identify and 385 
reduce potential data biases (Reddy & Dávalos, 2003). We note that our assessment of the 386 
possibilities for data integration does not address how different data sources (or “data 387 
resolutions,” as defined in (König et al., 2019)) should be best integrated for different study 388 
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objectives. These mismatches are apparent in cases, such as distribution data represented 389 
by presences vs. abundances, or a trait value measured at individual level vs. species level.  390 
However, indexing the availability of trait data for a focal species is a major step toward more 391 
rigorous data integration and scientific research. With the integrated data, one could cross-392 

validate the values from different sources to ask questions such as: “Do trait values vary by 393 
methods of measurements?” or “Can species-level trait data well represent the range of values 394 
measured at the individual level?” Cross-validations will be especially useful if the user of one 395 
database is mainly the general public while the user of the other is the science community, so 396 
that more rigorous information is delivered from the science community to the general public. 397 

With the integrated data, one could also conduct scientific research at broader scales and study, 398 
for example, trait variation across time or across spatial or environmental gradients (Siefert et al., 399 
2015), or species-trait combinations within communities.  400 
 401 

3.2 A clearer picture of what we do not know 402 
Importantly, database integration can provide an improved assessment of gaps in biodiversity 403 

knowledge (Meyer et al., 2015; Cornwell et al., 2019; König et al., 2019). Following our 404 
integration of various databases (Appendix 1), approximately 58,000 plant species still lacked 405 

publicly available distribution records. This gap corresponds to approximately 15.8% of the 406 
species in Catalogue of Life – a global effort to compile existing catalogued species. The 407 
coverage of distribution records in plant orders varied from 47% (in order Hypnales) to fully 408 

covered in some orders with small number of extant species (Cornwell et al., 2019) (e.g. 409 
Ceratophyllales). Further, 30.8 million km2 of ice-free land surface, as assessed using Eckert IV 410 

equal area projection, currently has no valid plant geolocations (Fig. 4g). These areas are mainly 411 
in Russia (despite the considerable recent progress of data sharing by the Russian GBIF 412 
community (Shashkov & Ivanova, 2019)), central Asia, and northern Africa, and are 413 

approximately 13% of the Earth’s land area.  414 

 415 
Trait data have considerably larger gaps: height information is absent for 333,597 plant species 416 
from 102 orders from BIEN, TRY and EOL, and body length information is absent for 38,992 417 

vertebrate species from 127 orders from VertNet and EOL. In total, height data is unavailable for 418 
approximately 92.6% of plant species and body length for 56.8% of vertebrate species in 419 

Catalogue of Life. The data coverages were mostly below 60% for plant orders and percentages 420 
were relatively higher for vertebrate orders. Plant height and vertebrate body length are 421 

commonly used traits in ecological research that are frequently recorded in databases (Moles et 422 
al., 2009; Guralnick et al., 2016), suggesting other biological traits (e.g., life span, metabolic 423 
rate) or essential biodiversity variables (e.g., population abundances) (Pereira et al., 2013) will 424 
likely have much larger shortfalls (but see analyses of plant growth form in (König et al., 2019)). 425 
In the face of accelerating increases in biodiversity data availability, recognizing the remaining 426 

knowledge gaps could help guide future data compilation efforts (e.g. the gap filling activity in 427 
eBird (eBird, 2014)) and potentially turn our enhanced power of compiling information into 428 

efforts that generate critically needed knowledge (Cornwell et al., 2019).  429 
 430 

4. Challenges and Opportunities  431 
4.1 A catalogue and synthesis of biodiversity databases 432 
To achieve global integration of biodiversity knowledge, we would first need to know what 433 
databases are available. To facilitate this process, we need a catalogue of biodiversity databases 434 
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with their metadata recorded, such as spatial, temporal, taxonomic scope, as well as the types of 435 
data aggregated, so that existing or new databases can be easily known, compared, and 436 
effectively used. Lee Belbin has maintained the Biodiversity Information Projects of the World 437 
(Belbin, 2014) – essentially containing metadata of 685 biodiversity projects. The recorded 438 

metadata includes project summary, geographic, temporal, and taxonomic scope, and key 439 
technique attributes (though this list is no longer accessible after 2019; but see (Blair et al., 440 
2020)). Similarly, GBIF has a registry system that indexes the metadata of GBIF participants, 441 
institutions, and datasets; however, data associated with this registry mainly focuses on a few 442 
record types, including occurrences, checklists, and sampling events 443 

(https://web.archive.org/web/20210514141441/https://www.gbif.org/article/5FlXBKbirSiq0ascK444 
YiA8q/gbif-infrastructure-registry). Another example is Global Index of Vegetation Plot 445 
Databases that indexes the metadata of vegetation-plot data that are publicly available (Dengler 446 
et al., 2011). In contrast, DataONE has a broader scope that indexes the metadata of large variety 447 

of biological and environmental data (Michener et al., 2012). Those existing efforts form a good 448 
basis for a catalogue of biodiversity databases that can continuously keep track of existing data 449 

aggregators and index new aggregation efforts. Still, the relationships among the biodiversity 450 
databases are not always obvious. Therefore, a synthesis, ideally updated regularly, would be 451 

helpful to clarify the relationships among the biodiversity databases, in particular what is the 452 
unique data coverage of one database and what are the data flows among biodiversity databases.  453 

 454 
4.2 Overcoming the barriers to database integration 455 
After cataloguing the metadata and synthesizing the relationships among biodiversity databases, 456 

many technical barriers remain. As a prerequisite to integration, the data in a database should be 457 
openly available with proper data licenses to minimize impediments to data sharing (see section 458 
2.2); another major barrier is the incompatible taxonomic systems. A promising effort is 459 

Catalogue of Life Plus (Banki et al., 2019) that builds upon existing but disconnected efforts 460 

(such as the COL and GBIF backbone taxonomy) to create an open, shared and sustainable 461 
consensus taxonomy, which can serve as the infrastructure for individual biodiversity databases 462 
or database integration. Thirdly, existing databases adopt different mechanisms of data standards 463 

and database architecture (Hardisty et al., 2019), thus leading to incompatibilities for database 464 
integration. For example, during the data cleaning stage, one collection of a specimen without 465 

coordinates could be georeferenced differently based on different georeferencing algorithms, 466 
thus likely leading to two different coordinates, and therefore appear to be two different records 467 

after data integration. One solution could be creating a community-wide standard and tools for 468 
data evaluation and cleaning (e.g. Belbin et al., 2018; Serra-Diaz et al., 2018). Community-469 
driven standards for biodiversity data, such as Darwin Core (Wieczorek et al., 2012), Humboldt 470 
Core (Guralnick et al., 2018), and trait-data standard (Schneider et al., 2019) have emerged; 471 
expanding the use of those community-developed data standards by individual databases would 472 

enable more effective database integration. Overall, the essential goal is to maximize 473 
compatibility, and thus minimize barriers to data flow and synthesis. After solving the technical 474 

barriers, the integrated content from multiple databases could be organized in multiple non-475 
exclusive ways: i) a single centralized database, ii) some decentralized but connected databases 476 
(Gallagher et al., 2020), or iii)  multiple synced databases (LeBauer et al., 2013).  477 

 478 
4.3 Challenges for individual aggregators after database integration 479 
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It is also worth thinking the uniqueness and destiny of individual databases after integration. 480 
Seemingly, integration may render individual databases irrelevant, e.g., an individual database 481 
may be considered a subset of an integrated database. However, this should not the case. While 482 
data integration occurs at shared data element (e.g., taxon, place, time) and data standard, each 483 

individual database could still have unique domain information. For example, while GBIF 484 
aggregates species occurrence data from iNaturalist, the latter still uniquely host the media data. 485 
Also, an individual database can make a unique contribution by aiming to fill data gaps (e.g., 486 
spatial or taxon gaps revealed by the integrated knowledge base).  487 
 488 

On the other side, there has been a process of specialization of databases along the whole 489 
workflow of data aggregation. Specifically, the developers of some databases have expanded 490 
their scope to development of infrastructure, such as tools for data integration, data cleaning, and 491 
hosting data portals. There are prominent examples among the databases that have close 492 

relationships with GBIF. For example, ALA develops open-access modules for the platform that 493 
can be implemented by other biodiversity initiatives (Belbin et al., 2021). VertNet has been 494 

actively providing data maintenance services, including data cleaning and indexing, among the 495 
network of collaborative biodiversity databases (Constable et al., 2010). 496 

 497 
Besides specialized roles in data aggregation or tool development, individual databases can also 498 
play unique roles for users, even when based on the same shared knowledge base. For example, 499 

ALA is prominent in the education of Australian biodiversity to its Australian users, as well as in 500 
facilitating scientific research by putting this biodiversity in the context of its environment. 501 

 502 
 503 

5. Concluding remarks 504 
The accelerating increase of biodiversity data offers numerous exciting prospects and challenges 505 

for documenting and forecasting the location, status, function and potential fate of species on the 506 
planet. However, increases in biodiversity data do not directly translate to similar increases in the 507 
knowledge needed to address many fundamental and applied questions. In the face of urgent 508 

environmental challenges, new approaches are urgently needed to increase biodiversity 509 
knowledge and accessibility of the knowledge. We demonstrate that rapid progress can be made 510 

toward better biodiversity knowledge through the integration of database infrastructures. 511 
Integration can lead to large and rapid increases in knowledge of species distributions and traits 512 

(see (Conde et al., 2019; König et al., 2019)), but the benefit goes beyond just more complete 513 
knowledge: it can reduce biases and doubled efforts in biodiversity research, allow cross-514 
validations to compare conclusions drawn from different sources, and provide a clearer picture of 515 
where gaps remain, thereby helping to focus future sampling and research (König et al., 2019). 516 
To address the shortfalls in biodiversity knowledge and achieve full integration across databases, 517 

we need to fund and maintain the foundations of biodiversity information science including 518 
biological surveys, taxonomic assessment (Australian Academy of Science, 2018), and 519 

digitization of legacy data (Ariño, 2010), as well as tackle the major impediments to data 520 
integration – taxonomic incompatibility, lags in data exchange, barriers to effective synthesis, 521 
and isolation of individual initiatives.   522 
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 798 

   799 
Figure 1. Overview of biodiversity databases reviewed in this paper. The coverages of their data 800 

are shown in panel (a) indicated by “X”. Based on the data coverages, the biodiversity databases 801 

are grouped into several clusters (b), where the height of the dendrogram is the relative distance 802 

between clusters. Notes: a) GBIF, iDigBio, and VertNet indexes and displays images on its 803 

website, while the images are mainly hosted by external institutions or facilities. b) TRY and 804 

GIFT also stores geographic information about where the trait was measured.   805 
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 808 

Figure 2. Data exchange between biodiversity databases with different taxonomic systems. Each 809 

box represents one database and its adopted taxonomic system (lower half). The taxonomic 810 

systems are shown in different colors, while the same color represents compatible systems. A 811 
variety of taxonomic systems exist: some databases develop backbone systems (e.g. BIE 812 
backbone, GBIF backbone, MOL backbone), some databases adopt a name scrubbing tool that 813 

standardizes names towards pre-selected taxonomic systems (e.g. BIEN, GIFT, TRY), some rely 814 
on multiple taxonomic systems (e.g. iNaturalist, EOL), and some do not implement a strong 815 

regulation on taxonomic names (e.g. VertNet). The one-way or two-way arrow represents 816 
unidirectional or bidirectional data flow between databases. ALA: Atlas of Living Australia; 817 
BIE: Biodiversity Information Explorer; BIEN: Botanical Information and Ecology Network; 818 
BISON: Biodiversity Information Serving Our Nation; EOL: Encyclopedia of Life; GBIF: 819 

Global Biodiversity Information Facility; GIFT: Global Inventory of Floras and Traits; iDigBio: 820 
Integrated Digitized Biocollections; ITIS: Integrated Taxonomic Information System; IUCN: 821 
International Union for Conservation of Nature; MOL: Map of Life; TNRS: Taxonomic Name 822 
Resolution Service; TRY: TRY, a global database of plant traits; uBio: Universal Biological 823 

Indexer and Organizer. As the databases continue to grow and develop, this figure represents the 824 
best of our knowledge as of March 2021. 825 
  826 
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  827 
Figure 3. Data integration among biodiversity databases. The status of data integration is 828 

classified as four categories: synced, lagged, impeded, and isolated . Synced refers to the status 829 
of full integration, in either one or multiple directions, between different databases in or near 830 

real-time. For example, data published to iDigBio is automatically published to GBIF. Lagged 831 
refers to the difference between otherwise fully integrated databases between two sync events. 832 
For example, BIEN imports and integrates data from GBIF and other sources (e.g., The Forest 833 
Inventory and Analysis or FIA) annually or at longer intervals and publishes the results as 834 

versioned database releases. The most recent data in those sources will not be available via BIEN 835 
until the next import and versioned release. Impeded refers to differences between databases 836 
caused by barriers that prevent subsets of the data from being shared. For example, iNaturalist 837 

only publishes data to GBIF that are properly licensed for open sharing (iNaturalist, 2018). 838 
Contrary to distribution databases, trait databases are generally isolated from one another in 839 
different databases, though there are flows/exchanges of plant trait data between TRY and GIFT, 840 
and TRY and EOL (Table S1). We caution that the data flow between or among databases is not 841 
well documented, and this figure represents the best of our knowledge as of March 2021. 842 
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   843 
Figure 4. Spatial and taxonomic coverage of terrestrial plant occurrence data. Georeferenced 844 
plant observations, as illustrated by observation dates in GBIF, the largest biodiversity 845 

informatics infrastructure, have increased exponentially over the past 200 years (panel a,b), 846 
though the number of species recorded in these databases is reaching saturation (panel c). By 847 
integrating additional data sources compiled by BIEN (i.e. non-GBIF sources; ~15 million 848 

records; panel d), the georeferenced plant observations in GBIF can be expanded by an 849 
additional ~4 million spatially unique records (panel e) and ~20 thousand species (panel f). Still, 850 
the gaps in plant distributions warrant our attention: large areas in Russia, central Asia, and 851 
northern Africa (red area in panel g) are missing publicly available occurrences. The black color 852 
in panel g represents ice covered areas.  853 
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 855 
Figure 5. Increased taxonomic coverage of plant and vertebrate trait data through data 856 
integration. By combining trait databases, coverage could be expanded in 69-82 plant orders 857 
(panel a) and 86-124 vertebrate orders (panel b) compared to individual data sources (panel c & 858 

d). The taxonomic coverage of a database is measured as the percentage of the species in that 859 

plant or vertebrate order that are represented. Panels c & d show the taxonomic coverages of 860 
individual databases and the combined dataset; the positions of the points on the x-axis are re-861 
ordered from low to high based on the combined taxonomic coverage (orders with low coverage 862 

on the left and orders with high coverage on the right).  863 
  864 
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Table S1. Summary of data flow among biodiversity databases. 865 

From To Details References/Links 

ALA GBIF ALA is a GBIF publisher, though data 

hosted by ALA may not be fully 

available on GBIF because of, for 

example, data licenses.  

https://web.archive.org/web/2021050615

1646/https://www.gbif.org/publisher/3c5e

4331-7f2f-4a8d-aa56-81ece7014fc8 

GBIF ALA ALA includes exported data from GBIF 

that occur in Australia. 

https://web.archive.org/web/2021040703

4945/https://collections.ala.org.au/public

/showDataResource/dr695 

GBIF MOL MOL includes exported data from GBIF. https://web.archive.org/web/2021050615

2723/https://mol.org/datasets/9905692e-

6a28-4310-b01e-476a471e5bf8 

BISON GBIF BISON is a product of the United States 

Geological Survey (USGS) 

(Administrator of the U.S. Node of 

GBIF), and thus works closely and 

shares data with GBIF. 

https://bison.usgs.gov/#help 

GBIF BISON The Canadian and U.S. data added 

directly to GBIF would  

become available through BISON. 

https://bison.usgs.gov/#help 

iNaturalist GBIF iNaturalist is a GBIF publisher. 

 

https://web.archive.org/web/2021050616

1424/https://www.gbif.org/publisher/28eb

1a3f-1c15-4a95-931a-4af90ecb574d 

GBIF iNaturalist iNaturalist displays data from GBIF on 

the interactive map.  

https://www.inaturalist.org/taxa/71130-

Polyphaga 

GBIF EOL EOL incorporates data from GBIF. https://web.archive.org/web/2021050616

2446/https://opendata.eol.org/dataset/gbi

f-data-summaries 

eBird GBIF eBird Observational Dataset is published 

on GBIF. 

https://web.archive.org/web/2021032922

5357/https://ebird.org/news/gbif/ 

TRY EOL TRY summarized records are available 

from EOL. 

https://web.archive.org/web/2021032617

4302/https://eol.org/resources/504 

TRY GIFT Co-develop and exchange trait data on 

plant growth form. 

(Kattge et al., 2020) 

GIFT TRY Co-develop and exchange trait data on 

plant growth form. 

(Kattge et al., 2020) 

GBIF BIEN BIEN includes data exported from GBIF. https://web.archive.org/web/2021050616

3327/https://bien.nceas.ucsb.edu/bien/bie

ndata/bien-2/sources/ 

https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506151646/https:/www.gbif.org/publisher/3c5e4331-7f2f-4a8d-aa56-81ece7014fc8
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d
https://web.archive.org/web/20210506161424/https:/www.gbif.org/publisher/28eb1a3f-1c15-4a95-931a-4af90ecb574d


26 
 

iDigBio GBIF iDigBio is a GBIF publisher. https://web.archive.org/web/2021050616

4312/https://www.gbif.org/publisher/205

3a639-84c3-4be5-b8bc-96b6d88a976c 

VertNet GBIF VertNet is a GBIF publisher. https://web.archive.org/web/2021032919

2932/http://vertnet.org/join/ipt.html  

VertNet iDigBio The majority of the data in the datasets 

published by VertNet are available in 

other portals such as GBIF, Canadensys, 

and iDigBio. 

https://web.archive.org/web/2020101220

4516/vertnet.org/resources/datalicensing

guide.html 

 866 

  867 

https://web.archive.org/web/20210329192932/http:/vertnet.org/join/ipt.html
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https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
https://web.archive.org/web/20201012204516/vertnet.org/resources/datalicensingguide.html
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Table S2. Summary of taxonomic system of biodiversity databases. 868 

Name  Taxonomic system References 

GBIF GBIF backbone https://doi.org/10.15468/39omei 

ALA Biodiversity Information Explorer (BIE) backbone https://web.archive.org/web/202104070

32823/https://www.ala.org.au/blogs-

news/updates-to-alas-name-and-

taxonomy-index/ 

MOL MOL developed a backbone that includes Catalogue of Life and manually 

curated taxonomic datasets for synonym issues. 

Anonymous reviewer 

 

BISON Integrated Taxonomic Information System (ITIS) https://web.archive.org/web/202105051

85337/https://bison.usgs.gov/ 

iNaturalist iNaturalist backbone is composed of global taxonomic authorities. regional 

taxonomic authorities, primary literature, and other  name providers including 

Catalogue of Life and uBio. 

https://web.archive.org/web/202105051

85713/https://www.inaturalist.org/page

s/curator+guide 

EOL The EOL Dynamic Hierarchy is curated by EOL staff based on a suite of 

classification providers (including Catalog of Life, the International Union for 

Conservation of Nature (IUCN), the National Center for Biotechnology 

Information (NCBI) and the World Register of Marine Species (WoRMS)) for 

different branches and layers of the tree of life, and can be manually patched 

and curated. 

https://web.archive.org/web/202105051

90456/https://eol.org/docs/what-is-

eol/whats-new 

TRY Plant taxonomy of the TRY database is consolidated using the Taxonomic 

Names Resolution Service (TNRS) with a taxonomic backbone based on the 

Plant List, Tropicos, the Global Compositae Checklist, the International 

Legume Database and Information Service, and USDA's Plants Database. 

(Kattge et al., 2020) 

GIFT The GIFT database standardized non-hybrid species names in The Plant List 

1.1 and additional resources available via iPlant's Taxonomic Name 

Resolution Service (TNRS).  

(Weigelt et al., 2017) 

BIEN Taxon names were corrected and standardized using the Taxonomic Name 

Resolution Service v5.0 (TNRS) with Tropicos, The Plant List and USDA 

Plants as taxonomic references, and all other options at their default settings. 

(Enquist et al.) 

eBird eBird/Clements Checklist 

The eBird species and subspecies taxonomy follows the Clements Checklist. 

In addition to the formal taxonomic concepts that are included in the 

Clements Checklist, the eBird taxonomy includes an expanded list of other 

bird taxa that birders may report.  

https://web.archive.org/web/202105052

32653/https://ebird.org/science/use-

ebird-data/the-ebird-taxonomy 

iDigBio The scientific names are matched to the GBIF backbone to correct typos and 

older names. 

https://web.archive.org/web/202105052

33105/https://www.idigbio.org/wiki/ind

ex.php/Data_Ingestion_Guidance 

Vertnet Flux system 

VertNet does not have a simple taxon resolution mechanism, and vertebrate 

species names are particularly in flux.  

(Zermoglio et al., 2016) 

 869 

https://www.itis.gov/
http://www.catalogueoflife.org/
http://www.iucnredlist.org/
http://www.iucnredlist.org/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
http://www.marinespecies.org/
https://paperpile.com/c/pNepVw/SeHX
http://www.birds.cornell.edu/clementschecklist?__hstc=60209138.ef8d65c113332296f992587f47c992ef.1620256668821.1620256668821.1620256668821.1&__hssc=60209138.1.1620256668822&__hsfp=639316031
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Table S3. Summaries of model fitting for the temporal trend in plant distribution data.  870 

Data source Data Model AIC Inflection 

point 

combined 

  

  

  

  

  

  

  

number of records 

  

exponential -1686 n/a 

linear -239 n/a 

logistic NA NA 

number of spatially unique 

records 

  

exponential -1916 n/a 

linear -258 n/a 

logistic NA NA 

number of species 

  

exponential -739 n/a 

linear -510 n/a 

logistic -1682 1947 

GBIF 

  

  

  

  

  

  

  

number of records 

  

  

exponential -1816 n/a 

linear -315 n/a 

logistic NA 2059 

number of spatially unique 

records 

  

exponential -1957 n/a 

linear -301 n/a 

logistic NA NA 

number of species 

  

exponential -804 n/a 

linear -552 n/a 

logistic -1762 1949 

 871 

  872 
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Appendix 1. Materials and Methods 873 
Metadata review 874 
Many biodiversity databases have been built over the past decade, with varying emphases on 875 
taxonomy, spatial location, and record type. Associated metadata for biodiversity databases is 876 

typically found in publications or project websites. To synthesize the major attributes of existing 877 
biodiversity databases, we selected 12 well-established biodiversity databases: Atlas of Living 878 
Australia (ALA (Belbin & Williams, 2016)), Botanical Information and Ecology Network (BIEN 879 
version 4.1 (Enquist et al., 2016)), Biodiversity Information Serving Our Nation (BISON (U.S. 880 
Geological Survey, 2018)), eBird (Sullivan et al., 2014), Encyclopedia of Life (EOL (Parr et al., 881 

2014)), Global Biodiversity Information Facility (GBIF), Global Inventory of Floras and Traits 882 
(GIFT (Weigelt et al., 2017)), Integrated Digitized Biocollections (iDigBio (iDigBio, 2018a)), 883 
iNaturalist (iNaturalist), Map of Life (MOL (Jetz et al., 2012)), a global database of plant traits 884 
(TRY version 1.0 (Kattge et al., 2011)), and VertNet (Constable et al., 2010). The twelve 885 

databases we examined were chosen among the most commonly used, well-established, large-886 
scale biodiversity databases (MacFadden & Guralnick, 2016; Chandler et al., 2017a; James et 887 

al., 2018; Singer et al., 2018; Cornwell et al., 2019; König et al., 2019) to maximize the 888 
generalizability of our results and conclusions. Selections were also limited to databases from 889 

which we could either access the entirety of the data or the ones with clear documentations. We 890 
compiled information from online documentation and relevant publications, though the design 891 
and architecture of a database can be in continuous development. Specifically, we recorded 892 

database name, taxonomic scope, taxonomic system, record type, number of records, and spatial 893 
coverage. We classified the record types into three categories: geographic distribution, media 894 

(image, audio, or video), and biological information (standardized trait databases or generalized 895 
text descriptions). Within geographic distribution, we further classified the information as 896 
specimen records, observations, checklists of geographic regions, and distribution maps. 897 

Specimen records and observations both have information on species’ geolocations, but only 898 

specimen records are associated with physical specimens. Checklists usually contain lists of 899 
species known to be present in certain geographic regions (e.g., political divisions or protected 900 
areas). Distribution maps are either drawn by experts or generated through models. There are 901 

frequent data exchanges among biodiversity databases, but many are not transparent to database 902 
users. Consequently, we compiled data exchange information and assessed the status of data 903 

integration between databases. We used geographic distribution and trait data as examples, 904 
which are the most prominent record type among the reviewed databases. We assessed the 905 

integration status by taxonomy groups, which are all organisms, plants, or vertebrates 906 

 907 

Improvement of data coverage by database integration 908 
To quantify the improvement gained by combining multiple databases, we compared leading 909 

databases that focus on similar taxonomic groups and record type. We used terrestrial plants 910 
(Embryophyta) and vertebrates as test cases, because these are the taxonomic groups that are 911 

comparatively better collected and documented in biodiversity databases compared to other 912 
taxonomic groups (Clark & May, 2002; Fazey et al., 2005; Hecnar, 2009; Titley et al., 2017; 913 
Cornwell et al., 2019; König et al., 2019; Kattge et al., 2020). We did not use taxoa, such as 914 
microbes, that account for large portions of biodiversity on Earth but face huge data gaps (Locey 915 
& Lennon, 2016). More specifically, we compared (1) plant distribution data from GBIF and 916 
non-GBIF sources compiled by BIEN (Enquist et al., 2016), (2) plant trait data (i.e. plant height) 917 



30 
 

from BIEN, TRY, GIFT, and EOL, and (3) animal trait data (i.e. vertebrate body length) from 918 
VertNet and EOL. 919 

 920 
We obtained plant distribution data from BIEN (version 4.2; accessed March 2021) that 921 

compiled plant distribution data from GBIF (https://doi.org/10.15468/dl.87zyez) and non-GBIF 922 
sources, such as the Forest Inventory and Analysis (U.S. Department of Agriculture Forest 923 
Service) (FIA) and NeoTropTree (Oliveira-Filho, 2017). The GBIF and non-GBIF sources have 924 
been fused through a series of data scrubbing and standardization workflows (e.g. TNRS (Boyle 925 
et al., 2013)) and here we only included data with valid collection year and spatial coordinates. 926 

We classified the data into three groups: data from GBIF, data from non-GBIF sources, and the 927 
combined full dataset. We quantified the numbers of distribution records, numbers of spatially 928 
unique records, and numbers of species with distribution records in all three data sources. A 929 
spatially unique record is defined as a record of the distribution of a species (a pixel at 30 arc-930 

seconds resolution in WGS84 coordinate reference system that its coordinate corresponds to) that 931 
is unique to a dataset. We standardized all species names against multiple reference taxonomies, 932 

including Tropicos and The Plant List, through the TNRS (Boyle et al., 2013). The 933 
standardization process parses and corrects misspelled names and authorities, standardizes 934 

variant spellings, and converts nomenclatural synonyms to currently accepted names. To reveal 935 
the temporal trend of data accumulation, we quantified the cumulative numbers of observations 936 
made over time, from 1750 to present (2020).  937 

 938 
To describe and quantify those temporal trends, we fitted the cumulative numbers (dependent 939 

variable) and years (independent variable) with simple linear (eqn 1), exponential (eqn 2), and 940 
logistic regression (eqn 3) using ordinary least squares (“nls” function in stats package version 941 
3.4.2 in R version 3.4.2):  942 

𝑦 = 𝑎 + 𝑏 ∗ 𝑥 (𝑒𝑞𝑛 1) 943 

𝑦 = 𝑒𝑎+𝑏∗𝑥 (𝑒𝑞𝑛 2) 944 

𝑦 =
𝑎

1 + 𝑒−𝑏−𝑐∗𝑥
 (𝑒𝑞𝑛 3) 945 

where x represents time and y represents either number of records, number of spatially unique 946 

records, or the number of species. We determined the best model fit from the lowest Akaike 947 
Information Criterion value (AIC). To reveal the contribution of GBIF or non-GBIF sources to 948 

the combined dataset, we quantified the commonalities and uniqueness of GBIF and non-GBIF 949 
subsets in terms of number of records, number of spatially unique records, and number of species 950 

with distribution data. For our quantification of the temporal trend in the number of species 951 
observed, we also retained only currently accepted names to reduce uncertainty (Berendsohn, 952 
1997; Franz & Peet, 2009; Boyle et al., 2013), which yield comparable temporal pattern.  953 
We identified knowledge gaps in two ways. We showed the pixels (at 30 arc-seconds resolution 954 

in WGS84 coordinate reference system) for which there were no valid plant geolocation data, 955 
and quantified the geographic area of those pixels (in Eckert IV equal area projection). We 956 
caution that the gap here may be an overestimation because the plant distribution data compiled 957 

by BIEN (including the data exported from GBIF) do not include all possible data sources, but 958 
rather shareable data that are mainly publicly available. We then calculated the taxonomic 959 
completeness of the distribution data at the level of plant orders. We obtained a list of accepted 960 
names of extant terrestrial plant species from the Catalogue of Life (Catalogue of Life, 2021) and 961 
considered that as the master list of known species. All taxonomic names were standardized 962 
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through TNRS (Boyle et al., 2013). We obtained the order level completeness by calculating the 963 
percentage of species in a plant order that have distribution information in the combined dataset. 964 
 965 
In addition to distribution data, we also investigated the improvement in taxonomic coverage of 966 

trait data through database integration, specifically terrestrial plant height and vertebrate body 967 
length. We downloaded plant height data from BIEN, EOL, and TRY (accessed March 2021). 968 
We also obtained a list of accepted names of extant terrestrial plant species from Catalogue of 969 
Life (accessed March 2021) and considered that as the master list of known species. All 970 
taxonomic names were standardized through TNRS (Boyle et al., 2013). We calculated the 971 

taxonomic completeness of species trait information at the species and order levels. We obtained 972 
the species level completeness by checking species whose heights were recorded in BIEN, EOL, 973 
TRY, or the combined dataset, against the names recorded in COL. We obtained the order level 974 
completeness by calculating the percentage of species in a plant order that have height 975 

information in either dataset. We calculated the improvement in percentages by comparing 976 
individual datasets to the combined dataset. The improvement in taxonomic coverage represents 977 

the benefit of using multiple databases. 978 
 979 

Following the same workflow, we quantified the taxonomic coverage of animal trait and 980 
percentage improvement between individual dataset and the combined dataset. Body length of 981 
vertebrates were downloaded from VertNet and EOL (accessed March 2021). Accepted names of 982 

extant vertebrates were obtained from Catalogue of Life. The taxonomic names were 983 
standardized through Global Names Resolver using the Taxize package (Chamberlain & Szocs, 984 

2013) (version 0.9.4.9100) in R (version 3.4.2). The Global Names Resolver resolves names 985 
against specific name databases, which is Catalogue of Life in this study. The resolution process 986 
includes a series of exact and fuzzy matches based on the full or part of the name input (see more 987 

details in https://resolver.globalnames.org/about). The matching process also considers the 988 

context of taxonomy and reduces the likelihood of matches to taxonomic homonyms. The 989 
matching process yields a series of confidence scores for all possible matches; here we only kept 990 
the best matching records. However, the creation of a single authoritative list of names will take 991 

time; full reconciliation of synonyms and distinct taxon concepts may take decades (Berendsohn, 992 
1997; Franz & Peet, 2009; Boyle et al., 2013). The standardization of taxonomic names based on 993 

either TNRS or Global Names Resolver will not solve all issues of taxonomic name integration, 994 
but this step represents the state-of-the-art in standardizing taxonomy names in biodiversity 995 

databases and provides a baseline for the comparisons of different biodiversity databases.  996 
 997 

https://resolver.globalnames.org/about

