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Abstract 1 

1. Modern tracking devices allow for the collection of high-volume animal tracking 2 

data at improved sampling rates over VHF radiotelemetry. Home range estimation 3 

is a key output from these tracking datasets, but the inherent properties of animal 4 

movement can lead traditional statistical methods to under- or overestimate home 5 

range areas.  6 

2. The Autocorrelated Kernel Density Estimation (AKDE) family of estimators 7 

were designed to be statistically efficient while explicitly dealing with the complex-8 

ities of modern movement data: autocorrelation, small sample sizes, and missing 9 

or irregularly sampled data. Although each of these estimators has been described 10 

in separate technical papers, here we review how these estimators work and provide 11 

a user-friendly guide on how they may be combined to reduce multiple biases sim-12 

ultaneously.  13 

3. We describe the magnitude of the improvements offered by these estimators and 14 

their impact on home range area estimates, using both empirical case studies and 15 

simulations, contrasting their computational costs. 16 

4. Finally, we provide guidelines for researchers to choose among alternative esti-17 

mators and an R script to facilitate the application and interpretation of AKDE 18 

home range estimates. 19 

 20 

Keywords: home range, tracking data, telemetry, kernel density estimation, movement process 21 
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Introduction 22 

An animal’s home range was first defined in Burt (1943) as “the area traversed by the individual 23 

in its normal activities of food gathering, mating, and caring for young”. Although this definition 24 

does not provide a mathematical description or statistical method for estimation, it highlights 25 

how behavior drives animal movement: areas selected by individual animals are usually distinct 26 

from the larger areas an animal could explore given their movement abilities. Early translations 27 

into a statistical definition include quantifying an animal’s probability of using a given location 28 

(i.e., utilization distribution; Jennrich & Turner, 1969; Worton, 1989). The concept of home range 29 

has been redefined by many authors over the years (Harris et al., 1990); here, we follow the 30 

definition of home range as the area repeatedly used throughout an animal’s lifetime for all its 31 

normal behaviors and activities, excluding occasional exploratory excursions outside of home range 32 

boundaries. The characteristic temporal stability of a home range also highlights additional con-33 

cepts: range residency, defined as the tendency of an animal to remain within its home range; and 34 

timescale parameters that quantify the weakness of this tendency, including the home range cross-35 

ing timescale (τ), defined as the average time required for an animal to cross the linear extent of 36 

its home range. 37 

Home range area estimates are used to inform conservation practitioners and wildlife managers 38 

about protected area sizes and to advocate for conservation policy changes (Bartoń et al., 2019; 39 

Lambertucci et al., 2014; Linnell et al., 1997). It is thus crucial to provide a reliable and statisti-40 

cally robust metric that is comparable across individuals, species, and sites. Natural landscapes 41 

are becoming increasingly fragmented (Curtis et al., 2018; Hansen et al., 2020), imposing new 42 

challenges at local, regional, and global scales, and unreliable estimations may hinder area-based 43 

conservation. Reliable estimates of home ranges, however, have proven to be deceptively difficult 44 
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to achieve, and have occupied generations of ecologists (Fieberg & Börger, 2012; Horne et al., 45 

2020; Jennrich & Turner, 1969; Worton, 1989). The inherent properties of animal tracking data 46 

create unique analytical challenges. Specifically, animal movement data frequently feature some 47 

combination of autocorrelation, small sample sizes, missing observations, or irregular sampling, 48 

and home range estimators that are not designed to handle these issues can both under- and 49 

overestimate the sizes of home ranges. 50 

Though many home range estimators exist (Horne et al., 2020), Autocorrelated Kernel Density 51 

Estimation (AKDE) was the first to explicitly account for temporal autocorrelation in the data 52 

(Fleming et al., 2015). Since its introduction, AKDE has grown into a family of related techniques, 53 

each aimed at mitigating a different source of bias that can affect home range estimates, including 54 

unmodeled autocorrelation (Hemson et al., 2005; Kie et al., 2010; Swihart & Slade, 1997), over-55 

smoothing (Seaman & Powell, 1996; Worton, 1995), autocorrelation estimation bias (Cressie, 56 

2015), and unrepresentative sampling in time (Frair et al., 2004; Horne, Garton, & Kimberly A. 57 

Sager‐Fradkin, 2007; Katajisto & Moilanen, 2006). These biases are mitigated, respectively, by 58 

the original AKDE (Fleming et al., 2015), the area-corrected AKDE (Fleming & Calabrese, 2017), 59 

the perturbative Hybrid REML parameter estimation and parametric bootstrapping (Fleming et 60 

al., 2019), and weighted AKDE (Fleming et al., 2018). AKDE and associated corrections have 61 

been shown to outperform traditional home range estimators across species, degrees of autocorre-62 

lation, and sample size (Noonan et al., 2019). These methods can be run using the programming 63 

language R (www.r-project.org) and the ctmm or amt packages (Calabrese et al., 2016; Signer & 64 

Fieberg, 2021), or the ctmmweb graphical user interface (https://ctmm.shinyapps.io/ctmmweb; 65 

Calabrese et al., 2021). In addition to offering flexible and open-source tools for home range esti-66 

mation, these software programs allow easy documentation and implementation of new methods 67 



4 

 

 

by sharing code and workflows. Such reproducible methods can increase reliability and transpar-68 

ency in ecology (Alston & Rick, 2020; Culina et al., 2020; Powers & Hampton, 2019; Signer & 69 

Fieberg, 2021). 70 

Because movement data often violates multiple assumptions of traditional methods, the individual 71 

methodological advances offered by the AKDE family of home range estimators can and often 72 

should be combined. The costs and benefits of each estimator have previously been described in 73 

separate technical papers, so in this paper, we bring all of these estimation methods together in 74 

one document. We describe their effects on the quality of home range estimates, both in isolation 75 

and in combination, while evaluating how sample size interacts with multiple different sources of 76 

bias. We use tracking data from African buffalo (Syncerus caffer; Cross et al., 2009), lowland 77 

tapir (Tapirus terrestris; Fleming et al., 2019), and jaguar (Panthera onca; Morato et al., 2018) 78 

as empirical case studies to guide researchers through the application and value of these analyses. 79 

Finally, we use simulations to show the improvements offered by combining these techniques and 80 

demonstrate their application in real-world problems. We conclude by giving clear guidance on 81 

how ecologists can choose among these alternatives to best achieve their study goals. We hope 82 

that this review provides a practical guide to why and how to use AKDE methods to estimate 83 

home ranges that will be useful for both researchers and practitioners who are unfamiliar with 84 

these methods. 85 

Sources of bias and mitigation measures 86 

Many biases, including most that affect home range estimates, are exacerbated by small sample 87 

sizes. Conversely, large sample sizes in modern tracking datasets are typically achieved through 88 

higher sampling frequencies, which exacerbate autocorrelation. Autocorrelation is a general sta-89 

tistical property of variables measured across geographic and temporal space (Dale & Fortin, 2002; 90 
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Legendre, 1993), as observations sampled more closely in space or time tend to be more similar. 91 

In these conditions, it is thus important to distinguish between two different measures of sample 92 

size: absolute sample size (n) and effective sample size (N). Absolute sample size is simply the 93 

total number of observations in a dataset. More relevant for home range estimation, however, is 94 

the effective sample size. Specifically, the amount of information available to home range estima-95 

tors is governed not simply by the total number of observations, but by the number of range 96 

crossings that occurred during the observation period (i.e., how many times an animal traversed 97 

the linear extent of its home range). The effective sample size can be roughly estimated as T/τ, 98 

where T is the temporal duration of the tracking dataset, and τ is the average home range crossing 99 

time parameter. Increasing sampling frequency leads to larger absolute sample sizes, but does not 100 

increase the effective sample size commensurately. For autocorrelated data, the effective sample 101 

size is necessarily smaller than the absolute sample size and, very frequently in practice, orders of 102 

magnitude smaller (Fleming et al., 2019). In contrast, small absolute sample sizes commonly occur 103 

in VHF tracking data but are becoming rarer in modern GPS tracking data. 104 

We now describe each source of bias and the mitigation measure available to correct it, highlight-105 

ing the difference each correction makes with real data from multiple case studies. We present the 106 

bias sources in order of their general importance, from the largest bias to the smallest. Note that 107 

this ranking refers to the typical magnitude of each type of bias, but the order may be different 108 

under some conditions. 109 

Bias I: Unmodeled autocorrelation  110 

Traditional home range estimators such as minimum convex polygons (MCPs) and kernel density 111 

estimators (KDEs) assume independently and identically distributed (IID) data. When these tech-112 

niques came into common use in the 1980s, the sheer difficulty of obtaining VHF location fixes 113 
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ensured that the time interval between successive observations was typically long enough for most 114 

of the autocorrelation among observations to have decayed (Swihart & Slade, 1997; Worton, 115 

1989). The IID assumption at the heart of these techniques was therefore usually satisfied by 116 

VHF-quality data (Harris et al., 1990). The situation began to change with the arrival of new 117 

technologies, most notably GPS tracking systems (Rempel et al., 1995), which now routinely 118 

feature large volumes of data with much more frequent temporal sampling than is feasible for 119 

VHF-based animal tracking. As autocorrelation arises from observations sampled closely in time 120 

also being located closely in space, increasing sampling frequencies inevitably leads to more 121 

strongly autocorrelated tracking data (De Solla et al., 1999). Automated, high-sampling frequency 122 

tracking data has undoubtedly revolutionized movement ecology (Kays et al., 2015), but these 123 

advances have broken the armistice between the statistical assumptions of traditional home range 124 

estimators and the reality of the datasets now used to study animal movement (Boyce et al., 125 

2010).  126 

Specifically, feeding autocorrelated data into a home range estimator based on the IID assumption 127 

yields negatively biased estimates (Noonan et al., 2019). Autocorrelation-induced underestimation 128 

of home range areas is particularly pronounced when the effective sample size is small. In the 129 

recent comparative study of Noonan et al. (2019), 368 out of 369 tracking datasets featured strong 130 

autocorrelation, and roughly half were also plagued by small effective sample size. In these condi-131 

tions, conventional estimators—such as MCPs, KDEs, and local convex hull polygons—underes-132 

timate home range areas by a factor of ~2 to 13 (on average), depending on the method and 133 

bandwidth optimizer, which is what determines how tightly KDEs conform to the data. Accord-134 

ingly, published estimates featuring these traditional methods may severely underestimate animal 135 

space-use requirements, hindering conservation and management decisions. 136 
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Mitigation Measure I: AKDE 137 

Fortunately, it is not autocorrelation per se that causes errors in home range estimation, but 138 

rather autocorrelation that is statistically ‘unmodeled’ (Calabrese et al., 2021). Home range esti-139 

mators that account for autocorrelation can therefore avoid the biases and violated assumptions 140 

of traditional methods. Autocorrelated Kernel Density Estimation (AKDE) explicitly requires a 141 

movement model that accounts for the autocorrelation in the tracking data (Figure 1) and then 142 

estimates the home range while conditioned on the same movement model (Fleming et al., 2015). 143 

This model is identified via formal model selection among a range of plausible alternatives, cur-144 

rently spanning from uncorrelated data (IID), correlated positions but uncorrelated velocities 145 

(Ornstein-Uhlenbeck or OU; Uhlenbeck & Ornstein, 1930), to correlated positions and correlated 146 

velocities (Ornstein-Uhlenbeck foraging process or OUF; Fleming et al., 2014). In this framework, 147 

IID is both a candidate model and one limit of a continuum of possibilities, rather than an a priori 148 

assumption. These models are ranked based on Akaike’s Information Criterion adjusted for small 149 

sample sizes (AICc) by default, though the ctmm package also offers AIC, Bayesian Information 150 

Criterion (BIC), Leave-One-Out Cross-Validation (LOOCV), and Half-Sample Cross-Validation 151 

(HSCV).  152 

Ad hoc measures such as data thinning (Harris et al., 1990; Rooney et al., 1998) are not necessary, 153 

as AKDE allows model assumptions to conform as closely as possible to empirical reality, instead 154 

of coercing the data to fit a model with unrealistic assumptions. Feeding IID data into AKDE will 155 

not have any adverse effects, as it will simply result in a conventional KDE estimate. This work-156 

flow also allows reliable confidence intervals to be determined for home range area estimates, 157 

which historically have not been applied to home range estimates. This measure of confidence is 158 
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fundamental for any statistical estimate (Pawitan, 2001), increasing the comparability of AKDE 159 

and its relevance for biogeographical and conservation applications. 160 

 

Figure 1. An example of autocorrelated data (individual six from the African buffalo dataset, available 
within the ctmm package), and the same data when it achieves independence (IID) after data thinning (from 
one fix per hour to one fix per week). We calculated the 95% contour of an Autocorrelated Kernel Density 
Estimation (AKDE) and a Gaussian reference function KDE (GRF-KDE). Displayed errors correspond to % 
bias of full dataset KDE and subset KDE against full dataset AKDE. N: effective sample size, n: absolute 
sample size. 

Bias II: Oversmoothing 161 

Kernel density estimators are best-in-class tools for estimating unknown probability distributions 162 

and are used in this capacity across the sciences (Chen, 2017; Silverman, 1986; Wang et al., 2013). 163 

In the context of tracking data, KDEs estimate the probability distribution of locations, which is 164 
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then used to estimate the area of a home range (Powell, 2000; Worton, 1989). Typically, ecologists 165 

are more interested in this area estimate than in the distribution itself. 166 

Even when we account for autocorrelation (AKDE), kernel density estimators based on the Gauss-167 

ian reference function (GRF) remain biased owing to the natural tendency of the GRF approxi-168 

mation to oversmooth (yielding a more spread-out distribution). This bias is estimator-specific, 169 

and may be either positive or negative (Kie et al., 2010; Worton, 1995): for GRF-KDEs—such as 170 

AKDE and href (Silverman, 1986)—this bias is positive and, all else being equal, leads to an 171 

overestimated home range (Seaman & Powell, 1996). Importantly, for estimators that do not 172 

account for autocorrelation, like href but unlike AKDE, this positive bias can be masked by the 173 

often stronger negative bias caused by unmodeled autocorrelation. For KDEs based on least-174 

squares cross-validation, hLSCV, this bias is typically negative (Blundell et al., 2001; Hemson et al., 175 

2005) and exacerbates the autocorrelation-induced underestimation of home range areas. 176 

Mitigation Measure II:  KDE c or AKDE c 177 

Fleming and Calabrese (2017) derived an improved KDE by calculating the bias in area estimation 178 

under a GRF approximation and applying a correction in an area-based coordinate system. By 179 

pulling the contours of the location distribution estimate inward towards the data without dis-180 

torting its shape, this correction removes the tendency of GRF-based methods (including AKDE) 181 

to overestimate the area of home ranges, particularly at small effective sample sizes (Figure 2). 182 

Formally correcting the density function estimate allows us to calculate a more reliable home 183 

range area and confidence intervals. This correction can be applied to both conventional and 184 

autocorrelated GRF-KDEs (then termed KDEc and AKDEc, respectively), and is the default 185 

method within the ctmm package. As this source of bias is estimator-specific, the mitigation must 186 
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also be estimator-specific, so this correction cannot be applied to non-GRF KDE approaches such 187 

as hLSCV. 188 

 

Figure 2. Autocorrelated Kernel Density Estimation (AKDE) and area-corrected AKDE (AKDEc) calcu-
lated for one individual from the lowland tapir tracking dataset with: large effective sample size (N ≈ 1,566), 
medium effective sample size (N ≈ 261), and small effective sample size (N ≈ 30). Displayed errors correspond 
to % bias of AKDE against AKDEc of the same individual. 

Bias III: Autocorrelation estimation bias   189 

The main advantage of AKDE is that it accounts for the autocorrelated structure of animal 190 

movement data; for optimal performance, we need to estimate this autocorrelation correctly. Max-191 

imum Likelihood (ML) estimation is the standard approach to fitting movement models to animal 192 

tracking data (Horne, Garton, Krone, et al., 2007; Michelot et al., 2016) due to its versatility, 193 

widespread use, and relatively good performance (Pawitan, 2001). However, ML performs best at 194 

large sample sizes, while parameters related to variances and covariances tend to be underesti-195 

mated in small sample size conditions (Cressie, 2015). As variance-associated parameters are 196 

closely related to home range size, their underestimation propagates into underestimated home 197 

range areas (Noonan et al., 2019). 198 
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Mitigation Measure III: pHREML and parametric bootstrapping  199 

Residual Maximum Likelihood (REML) estimation is often used to improve (co)variance param-200 

eter estimation with small sample sizes, but it can perform poorly for the class of movement 201 

models on which AKDE depends (Fleming et al., 2019). To mitigate the small sample size bias in 202 

autocorrelation model parameter estimates, Fleming et al. (2019) developed a series of REML-203 

based estimators that focus on small effective sample sizes (perturbative REML; pREML), small 204 

absolute sample sizes (Hybrid REML; HREML), or both small absolute and small effective sample 205 

sizes (perturbative Hybrid REML; pHREML). We focus on pHREML here (Figure 3) as it is 206 

the most broadly applicable of these methods and has no serious disadvantages relative to the 207 

others, because it combines the bias correction of REML and the stability of ML. It is currently 208 

the default parameter estimation method in the ctmm package. 209 

 

Figure 3. AKDEc calculated with Maximum Likelihood (ML) and with perturbative Hybrid REML 
(pHREML) for an individual within the jaguar dataset, showcasing its effect on large absolute but small 
effective sample size (reduce to a sampling duration of 3 months: n = 362 locations, N ≈ 3.1), and both small 
absolute and small effective sample size (3 months thinned to n = 5 locations, N ≈ 4). Displayed errors 
correspond to % bias of ML-fitted AKDE against pHREML-fitted AKDE. 

The parametric bootstrap method (Efron, 1982) is another standard solution for the biases caused 210 

by ML estimation and can be applied on top of REML-based estimations to further reduce biases. 211 

In extreme cases where effective sample sizes are ~5 or less, parametric bootstrapping may result 212 
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in substantial improvements. However, the high computational cost incurred by bootstrapped 213 

pHREML (Supplementary File 1), coupled with the usually modest improvements it provides, 214 

reinforce its use only as a last resort. 215 

Bias IV: Unrepresentative sampling in time  216 

From a statistical perspective, evenly spaced temporal sampling of tracking data ensures the 217 

widest possible range of analytical options. In practice, however, many real-world issues can lead 218 

to animal locations being sampled irregularly in time: duty-cycling tags to avoid wasting battery 219 

during periods of inactivity, acceleration-informed sampling, device malfunction, habitat-related 220 

signal loss, and many other causes (DeCesare et al., 2005; Frair et al., 2004; Horne, Garton, & 221 

Kimberly A. Sager‐Fradkin, 2007). When unaccounted for, such cases can yield biased datasets, 222 

causing area estimates associated with over-sampled portions of home ranges to be too large and 223 

those associated with under-sampled parts of home ranges to be too small (Fieberg, 2007). There 224 

is no guarantee that these contrasting biases cancel each other out, so the overall home range area 225 

estimate may be either positively or negatively biased. 226 

Mitigation Measure IV: wAKDE 227 

Weighted AKDE (or wAKDE) corrects for unrepresentative sampling in time (Fleming et al. 228 

2018) through the larger bias addressed is where the area is distributed: it optimally upweights 229 

observations that occur during under-sampled times, while optimally downweighting observations 230 

occurring during over-sampled times. In IID data, optimal weights are uniform (i.e., there is no 231 

temporal sampling bias, as all times are equally important) so there is no advantage to weighting. 232 

For autocorrelated data with highly irregular sampling, however, the difference between weighted 233 

and unweighted AKDE can be considerable (Figure 4).  234 
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Figure 4. A uniformly weighted AKDEc and an optimally weighted AKDEc (wAKDEc), calculated from an 
individual from the African buffalo dataset with an irregular sampling schedule likely due to a device mal-
function (nicknamed “Pepper”; available within the ctmm package). Displayed errors correspond to % bias 
of AKDEc core area (50%) against wAKDEc core area (50%). 

In practice, very few tracking datasets are perfectly regular, so it is essential to handle data 235 

irregularity appropriately. Missing data equate to a loss of information, and these errors can 236 

propagate into biases in habitat selection or area-based conservation outputs (Frair et al., 2004). 237 

For example, areas with good satellite reception (e.g., open flat landscapes) may appear over-used 238 

even when animals did not spend more time in them compared to areas with poorer recep-239 

tion. Shifting sampling schedules (based on behavioral or seasonal patterns) is a common strategy 240 

employed in animal tracking projects, due to the trade-off between sampling intensity and battery 241 

life (Brown et al., 2012); in these circumstances, weight optimization via wAKDE is critical for 242 

comparisons between individuals or populations. 243 

Combination of mitigation measures 244 

In practice, different sources of bias frequently occur together in the same datasets. This is a key 245 

reason why home ranges are so difficult to estimate accurately. However, the mitigation measures 246 
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described above can be implemented simultaneously when necessary to combat multiple biases. 247 

For example, if a tracking dataset features autocorrelation, small effective sample size, and irreg-248 

ular temporal sampling, we can use pHREML to estimate and select the underlying movement 249 

model, and then pass the selected model to an optimally weighted area-corrected AKDE (wAKDEc) 250 

to properly estimate home range area. The default settings in the ctmm package have been carefully 251 

chosen to balance performance against computational cost, so in this example, only optimal 252 

weighting would need to be manually selected by the user. Default values and alternative options 253 

are discussed in more detail in the ctmm documentation (Fleming & Calabrese, 2021).  254 

To quantify the level of improvement offered by each mitigation measure and to explore the 255 

tradeoff between accuracy and computational cost, we performed a detailed simulation study. Our 256 

simulations are based on an OUF movement model, which features both correlated velocities (i.e., 257 

directional persistence), correlated positions, and a home range. We chose the OUF model because 258 

it was the most frequently selected across all empirical GPS datasets in the Noonan et al. (2019) 259 

study, with 240 out of 369 datasets. We set both the directional persistence and range crossing 260 

timescales to one day, and varied the duration of the simulated datasets from 1 to 4,096 days in 261 

a doubling series, sampled hourly (except for bootstrapped pHREML wAKDEc which was signif-262 

icantly more computationally intensive and impractical to simulate over the whole sampling du-263 

ration). This setup results in effective sample sizes that approximate the duration of each 264 

simulated dataset. We then sequentially fit home range estimators in the ctmm package to each 265 

simulated dataset in the following order: KDE, AKDE, AKDEc, pHREML AKDEc, pHREML 266 

wAKDEc, and bootstrapped pHREML wAKDEc. This represents a progression from no bias cor-267 

rections (KDE) through all possible bias corrections applied simultaneously, in order of the typical 268 

importance of the corrections. Each simulation was repeated 400 times. We calculated bias as the 269 
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95% area estimate of the method in question divided by the true simulated area, while the com-270 

putational cost was the time the simulation took to complete in seconds. All analyses were per-271 

formed in the R environment (version 3.5.2; R Core Team 2018) using the ctmm package (version 272 

0.5.2; Calabrese et al. 2016) and conducted on the University of Maryland High Performance 273 

Cluster. 274 

Table 1. Mean improvement (%) in area estimation for each AKDE method compared to baseline KDE, 
over small (N < 32), medium (32 > N < 512), and large effective sample sizes (N > 512). Numbers in red 
denote underperformance. 

  Improvement over KDE 
Methods Small N Medium N Large N 
AKDE  51.3% -31.3% -78.4% 

AKDEc  42.6% 48.3% 36.4% 

pHREML AKDEc  59.8% 52.9% 40.4% 

pHREML wAKDEc  59.4% 52.9% 43.1% 

Bootstrapped pHREML wAKDEc 72.0% NA NA 

 

Compared to conventional KDE, the original AKDE offered clear advantages for small effective 275 

sample sizes, but failed to improve area estimation for medium and large effective sample sizes 276 

(N > 32; Table 1). By solving the oversmoothing bias, AKDEc improved over KDE for all effec-277 

tive sample sizes. The next technique, pHREML-fitted AKDEc (ctmm default settings) further 278 

improved over conventional KDE and all previous measures, and stabilized the closest to 0% 279 

relative error after only eight sampling days (Figure 5a). Additional mitigation measures do lead 280 

to an increasingly higher computational cost: for the full sampling duration (4,096 days), 281 

pHREML-fitted wAKDEc ran on average 2.7 times longer than the original AKDE, and 230 times 282 

longer than a conventional KDE (Figure 5b, Supplementary File 1). With an Intel i7 3.9GHz 283 

processor using a single core, and an hourly tracking dataset collected for a year, this could cor-284 

respond to an increase from a few seconds to approximately 45 minutes. However, unlike AKDE, 285 
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conventional KDE does not run any autocorrelation model selection, or numerical optimization of 286 

parameter estimates.  287 

 

Figure 5. (a) Mean relative error (%) of the home range area estimation and (b) computational cost (log-
transformed) for each method, by sampling duration (in days). Based on simulations (repeated 400 times) 
where the position and velocity autocorrelations were kept constant at 1 day and 1 hour, respectively. Error 
bars represent 95% confidence intervals. AKDE and AKDEc have almost overlapping performances, as well 
as pHREML-fitted AKDEc and pHREML wAKDEc. 

Discussion 288 

The techniques presented in this paper represent a family of home range estimators starting with 289 

conventional GRF-KDE and progressing through a series of estimation methods designed to mit-290 

igate bias arising when the core assumption of IID data is not met. These methods are imple-291 

mented with efficient computational algorithms that work with both small and large animal 292 

tracking datasets. We have brought these techniques together in a single document to demonstrate 293 
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when each correction is applicable, the degree to which home range estimates can be improved, 294 

and when and how they can be combined to handle the unique quirks of each tracking dataset to 295 

yield accurate home range estimates. 296 

The AKDE family of estimators are all implemented in the ctmm R package (Calabrese et al., 297 

2016), so we provide an annotated R script in the supplementary material of this paper to guide 298 

users through the applications of these techniques (Supplementary File 2). The current default 299 

settings are pHREML, for estimating movement model parameters, and (A)KDEc, for estimating 300 

home ranges. The decision between KDEc and AKDEc is determined using model selection, and 301 

dependent on whether the data are independently distributed or autocorrelated, respectively. We 302 

recommend that users keep pHREML and (A)KDEc as the default settings and especially caution 303 

against changing these settings for any effective sample sizes below 20. When working with legacy 304 

data where small effective sample sizes are a serious concern, but additional data collection is not 305 

an option, bootstrapped pHREML may be used as a method of last resort to obtain the best 306 

possible home range estimates. However, due to the high computational cost of using pHREML, 307 

users should decide on a bias threshold (typically > 1–5% with an initial pHREML estimate) 308 

before applying this measure (see Supplementary File 2 for how to determine this bias thresh-309 

old). Finally, wAKDEc can account for temporal sampling bias (i.e., missing or irregular tracking 310 

data), but is switched off by default due to its considerable computational cost (approximately 311 

200 times longer than KDE).  312 

Most mitigation measures we have discussed here become increasingly valuable at small sample 313 

sizes (absolute and/or effective), allowing researchers to maximize the value of legacy datasets or 314 

to handle situations where larger effective sample sizes are impossible to obtain (e.g., on smaller 315 

animals for which battery size limits the temporal duration of GPS lifespans). Nevertheless, the 316 
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application of these analytical methods should not replace careful study design before data collec-317 

tion, tailored to address specific research questions (Fieberg & Börger, 2012). When the main goal 318 

of a study is home range estimation, the sampling duration should be many times larger than the 319 

average range crossing time of the focal species. This ensures that the effective sample size will 320 

be large enough to facilitate reliable estimation of the area of home ranges. Achieving this goal 321 

may require researchers to decrease the sampling rate of their devices to save battery power, 322 

although small effective sample sizes may be inevitable even in these conditions due to battery 323 

constraints, specific ranging behaviors, or short lifespans. 324 

Although AKDEs provide reliable home range area estimations in the conditions presented in this 325 

manuscript, there are scenarios in which they fail. A known issue of KDE methods is that their 326 

estimates extend beyond hard boundaries (or other covariate dependences), and have difficulties 327 

resolving narrow movement corridors (Guo et al., 2019; Péron, 2019; Silverman, 1986; Worton, 328 

1995); nevertheless, the positive bias from boundary spillover is likely less influential than the 329 

negative bias due to unmodeled autocorrelation (Noonan et al., 2019). Kernel density methods 330 

also fail to adequately resolve non-stationary behavior and nomadism (Lichti & Swihart, 2011; 331 

Nandintsetseg et al., 2019), as nomadic species lack site fidelity to movement pathways or key 332 

sites (e.g., breeding or wintering areas). Addressing non-stationarity requires home range esti-333 

mates that accommodate multiple centers and allowing for variation in use patterns (Breed et al., 334 

2017). In addition, a misspecified model due to migratory behaviors will affect the accuracy of 335 

AKDE area outputs. However, if an animal is not range resident, then the data are not appropriate 336 

for any home range estimation method.  337 

Only by estimating home ranges in a comparable way across sampling schedules, study designs, 338 

and behavioral idiosyncrasies can wildlife researchers provide wildlife managers and practitioners 339 
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with accurate information for conservation planning and land-use decision-making. Movement 340 

ecology has reached an inflection point where it is no longer possible to ignore autocorrelation: 341 

using autocorrelated tracking datasets with estimators that assume IID data will result in under-342 

estimated home range areas (Noonan et al. 2019). Although further technological advances will 343 

only increase the amount of autocorrelation present in tracking data, autocorrelation is often still 344 

present even in VHF data and should not be overlooked. We have provided guidelines to obtain 345 

accurate home range area estimates with the AKDE family of home range estimators which, in 346 

their current form, provide the most reliable and flexible solution for home range area estimation. 347 

These methods were explicitly designed to work synergistically, eliminating discrepancies between 348 

empirical reality and estimator assumptions that drive home range under- or overestimation with 349 

conventional techniques. Furthermore, these techniques can be implemented with open source 350 

software and code (Calabrese et al., 2016, 2021), and new movement processes can be easily added 351 

into the AKDE workflow as they are developed. This flexibility “future proofs” the AKDE family 352 

of analyses by allowing it to be tailored to new datasets, movement behaviors, and species as 353 

necessary.  354 
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Supplementary figure 1. Relative home range area, i.e., where the true home range area is scaled to

1, versus computational cost (in logarithmic scale) for the Kernel Density Estimation (KDE) method.

Based on simulations (repeated 400 times) of different sampling durations (1 to 4,096 days).
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Supplementary figure 2. Relative home range area, i.e., where the true home range area is scaled to

1, versus computational cost (in logarithmic scale) for the Autocorrelated Kernel Density Estimation

(AKDE) method. Based on simulations (repeated 400 times) of different sampling durations (1 to 4,096

days).
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Supplementary figure 3. Relative home range area, i.e., where the true home range area is scaled to 1,

versus computational cost (in logarithmic scale) for the area-corrected Autocorrelated Kernel Density

Estimation (AKDEc) method. Based on simulations (repeated 400 times) of different sampling durations

(1 to 4,096 days).
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Supplementary figure 4. Relative home range area, i.e., where the true home range area is scaled

to 1, versus computational cost (in logarithmic scale) for the area-corrected Autocorrelated Kernel

Density Estimation method fitted with perturbative Hybrid REML (pHREML AKDEc). Based

on simulations (repeated 400 times) of different sampling durations (1 to 4,096 days).
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Supplementary figure 5. Relative home range area, i.e., where the true home range area is scaled to

1, versus computational cost (in logarithmic scale) for the weighted, area-corrected, Autocorrelated

Kernel Density Estimation method fitted with perturbative Hybrid REML (pHREML wAKDEc).

Based on simulations (repeated 400 times) of different sampling durations (1 to 4,096 days).
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Supplementary figure 6. Relative home range area, i.e., where the true home range area is scaled to 1, ver-

sus computational cost (in logarithmic scale) for the boostrapped, weighted, area-corrected Autocor-

related Kernel Density Estimation method fitted with perturbative Hybrid REML (Bootstrapped

pHREML wAKDEc). Based on simulations (repeated 400 times) of different sampling durations (1 to

4,096 days).

The results presented here were generated with R version 4.0.5, and ggplot2 version 0.6.0.
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Introduction

Home range estimation is a key output from tracking datasets, but the inherent properties of animal move-

ment can lead traditional methods to under- or overestimated their size. Autocorrelated Kernel Density

Estimation (AKDE) methods were designed to be statistically efficient while explicitly dealing with the

complexities and biases of modern movement data, such as autocorrelation, small sample sizes, and missing

or irregularly sampled data.

This tutorial is a companion piece to our manuscript “Autocorrelation-informed home range estimation: a

review and practical guide”. For any definitions, check the main manuscript or the Glossary. The AKDE

family of home range estimators will be run using R software (https://www.r-project.org/) and the ctmm

package (Calabrese, Fleming, and Gurarie 2016). The techniques and mitigation measures available within

this package include:

Method When to run? What does it do? R function
AKDE Tracking data is

autocorrelated
Estimates range distributions from autocorrelated
data, by conditioning on an autocorrelation
model.

akde(…, debias =
FALSE)

AKDEc If using GRF-based
KDEs (such as
AKDE)

Removes the tendency of Gaussian reference
function (GRF) methods to overestimate the area
of home ranges.

akde(…, debias =
TRUE)

pHREML Small (absolute and
effective) sample sizes

Improves upon ML and REML autocorrelation
estimation, mitigating small sample size biases.

ctmm.select(…,
method = "pHREML")

wAKDEc Irregular sampling
schedules or missing
data

Upweights observations that occur during
under-sampled times, while downweighting those
occurring during over-sampled times.

akde(…, weights =
TRUE)

Parametric
bootstrap

Extremely small
effective sample size

Calculates and corrects for autocorrelation
estimation biases, by simulating from an
approximate sampling distribution.

ctmm.boot(...)
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AKDEc and pHREML are default arguments within the akde() and ctmm.select() functions, respectively:

both will run automatically if arguments debias and method are left unspecified. For most situations, we

recommend keeping both of these arguments as the default.

# Installing & loading package:
install.packages("ctmm")
library(ctmm)

We provide a guide to home range estimation using the following workflow:

• Step 1. – Formatting and loading an animal tracking dataset;

• Step 2. – Checking for the range residency assumption;

• Step 3. – Selecting the best-fit movement model through model selection;

• Step 4. – Feeding a movement model into the home range estimator;

• Step 5. – Evaluating additional biases, applying mitigation measures.

Data Preparation

We will use two datasets, both available within the ctmm package: African buffalos (Syncerus caffer), and

Mongolian gazelles (Procapra gutturosa). Information on the data collection protocol is available in Cross

et al. (2009) and Fleming et al. (2014). The ctmm package requires data to conform to Movebank naming

conventions (https://www.movebank.org/node/2381). We recommend uploading your data to Movebank

(http://www.movebank.org/) as this will facilitate data preparation, and ensure that your data are correctly

formatted for ctmm. If needed, Movebank allows you to keep your data private.

We will focus on the simplest data structure:

• animal ID — An individual identifier for each animal tracked;
• timestamp or t — The date and time corresponding to a sensor measurement;

– Example: 2021-01-01 18:31:00.000
– Format: yyyy-MM-dd HH:mm:ss.SSS

• longitude or x — The geographic longitude of the location as estimated by the sensor.
– Example: -121.1761111
– Units: decimal degrees, WGS84 reference system.

• latitude or y — The geographic latitude of the location as estimated by the sensor;
– Example: -41.0982423
– Units: decimal degrees, WGS84 reference system.

Location can also be described as UTM locations instead of latitude/longitude. In this case, you should

provide UTM easting, UTM northing, and UTM zone. For all terms and conventions, please see the full

2
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vocabulary list here: http://vocab.nerc.ac.uk/collection/MVB/current/.

Step 1. – Formatting and loading an animal tracking dataset

You can import data into R through the read.table() or read.csv() functions; make sure to navigate

to the appropriate folder or working directory. For this tutorial, our data is already prepared into a list of

telemetry objects which we can load into R:

1.1. Buffalo tracking data

data("buffalo")
animal1_buffalo <- buffalo[[4]] # select individual number 4
head(animal1_buffalo)

## timestamp longitude latitude t x y
## 17517 2006-04-25 05:09:00 31.73749 -24.19705 1145941740 -51803.35 -2715.663
## 17518 2006-04-25 06:09:00 31.73653 -24.19929 1145945340 -51569.29 -2845.660
## 17519 2006-04-25 07:09:00 31.73946 -24.20100 1145948940 -51340.72 -2576.353
## 17520 2006-04-25 08:09:00 31.73987 -24.20092 1145952540 -51344.11 -2533.788
## 17521 2006-04-25 10:09:00 31.74086 -24.20365 1145959740 -51029.45 -2474.771
## 17522 2006-04-25 11:09:00 31.74098 -24.20370 1145963340 -51022.23 -2463.655

# Plotting locations:
plot(animal1_buffalo)
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This dataset showcases an irregular sampling schedule: the buffalo nicknamed “Pepper” had a sampling rate

shift from one fix every hour to one fix every two hours. We will use this dataset to highlight data irregularity

and the wAKDE mitigation measure.

1.2. Gazelle tracking data

data("gazelle")
animal2_gazelle <- gazelle[[11]] # selecting individual number 11
head(animal2_gazelle)

## x y t
## 2742 18152.70 -8539.799 0
## 2743 15931.16 -32069.788 1306800
## 2744 17678.84 -28632.329 1396800
## 2745 23135.50 -23820.789 1486800
## 2746 -20310.78 20348.792 2419200
## 2747 -17920.31 20598.668 2509200

# Plotting locations:
plot(animal2_gazelle)
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Mongolian gazelles have a home range crossing time of a few months, and with a maximum longevity

around 10 years, it is impossible to get a considerable effective sample size no matter the study duration

(Christen H. Fleming et al. 2019). We will use this dataset to highlight how to check effective sample size
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and apply the parametric bootstrap mitigation.

Data Analysis

Step 2. – Checking for the range residency assumption

First, we want to check if our first tracking dataset (animal1_buffalo) can be used for home range estimation

by checking for range residency. To achieve this, we calculate the semi-variance function (SVF), and

visualize it through the variogram() function.

Variograms are an unbiased way to visualize autocorrelation structure, representing the average square

displacement (y-axis) over a specific time lag (x-axis). To facilitate interpretation, we have the SVF of

animal1_buffalo zoomed out (right) to showcase all time lags and (left) zoomed in to showcase time lags

up to two months:

level <- 0.95 # we want to display 95% confidence intervals
xlim <- c(0,2 %#% "month") # to create a window of 2 months

SVF <- variogram(animal1_buffalo)
par(mfrow = c(1,2))
plot(SVF, fraction = 1, level = level)
abline(v = 1, col = "red", lty = 2) # adding a line at 1 month
plot(SVF, xlim = xlim, level = level)
abline(v = 1, col = "red", lty = 2)
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We can see that the variogram flattens (i.e., reaches an asymptote) after approximately 1 month (red line).

This also indicates at how coarse the timeseries needs to be to assume independence (no autocorrelation), and

corresponds to when traditional methods —such as minimum convex polygons (MCPs) and Kernel

Density Estimators (KDEs)— could be applied without violating their assumptions.

Step 3. – Selecting the best-fit movement model through model selection

It is necessary to choose a home range estimator that accounts for the autocorrelated structure of the data,

now that we see that it is not independently and identically distributed (non-IID). We need to test what

movement model may explain the autocorrelated structure of our tracking data. We can run different move-

ment processes with maximum likelihood (ML) or other parameter estimators, such as perturbative

Hybrid REML (pHREML). To facilitate further comparisons, we will run both ML and pHREML with

the ctmm.select function.

# Calculate an automated model guesstimate:
GUESS1 <- ctmm.guess(animal1_buffalo, interactive = FALSE)

# Automated model selection, starting from GUESS:
FIT1_ML <- ctmm.select(animal1_buffalo, GUESS1, method = 'ML')
FIT1_pHREML <- ctmm.select(animal1_buffalo, GUESS1, method = 'pHREML')
## reminder: it will default to pHREML if no method is specified.

summary(FIT1_ML)

## $name
## [1] "OUF anisotropic"
##
## $DOF
## mean area speed
## 11.24296 20.01326 747.72143
##
## $CI
## low est high
## area (square kilometers) 431.446013 706.20245 1047.55828
## t[position] (days) 6.775273 12.18604 21.91786
## t[velocity] (minutes) 31.861346 35.81413 40.25730
## speed (kilometers/day) 15.948352 16.54124 17.13385
summary(FIT1_pHREML)

## $name
## [1] "OUF anisotropic"
##
## $DOF
## mean area speed
## 10.34454 15.65772 746.09401
##
## $CI
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## low est high
## area (square kilometers) 439.064822 773.50766 1201.09155
## t[position] (days) 6.664052 13.36206 26.79221
## t[velocity] (minutes) 31.807736 35.75689 40.19636
## speed (kilometers/day) 15.949646 16.54326 17.13658

Within these summaries, $name provides the selected best-fit model, $DOF provides information on the degrees

of freedom (where $DOF["area"] corresponds to the effective sample size of the home-range area esti-

mate), and $CI are the parameter outputs (area, position autocorrelation timescale, velocity autocorrelation

timescale, and speed).

The typical pool of candidate models includes isotropic (when diffusion is the same in every direction;

symmetrical) and anisotropic (when diffusion varies with direction; asymmetrical) variants. The automated

model selection shows that OUF anisotropic (anisotropic Ornstein-Uhlenbeck foraging process) is our best-fit

model. This movement process features a home range, correlated positions, and correlated velocities. To

check the full model selection table, we can run the following command:

FIT1_pHREML_verbose <- ctmm.select(animal1_buffalo, GUESS1, verbose = TRUE)
summary(FIT1_pHREML_verbose)

ΔAICc ΔRMSPE (km) DOF[area]
OUF anisotropic 0.0000 2.224045 15.657669
OU anisotropic 295.0898 2.634793 9.638283
OUF isotropic 330.2236 3.564231 11.204035
OUf anisotropic 1890.8878 0.000000 333.620712

By adding the argument verbose = TRUE we have access to the model selection table. By default, model

selection is based on Akaike’s Information Criterion adjusted for small sample sizes (AICc). The ctmm

package also offers BIC, LOOCV, and HSCV. LOOCV seems to work slightly better for very small datasets,

but we recommend AICc for the majority of datasets.

Step 4. – Feeding a movement model into the home range estimator

Now we can fit this movement process into the akde() function, and estimate the home range of

animal1_buffalo. This function currently defaults to the area-corrected AKDE, or AKDEc (Fleming

& Calabrese 2017):

# Run an area-corrected AKDE:
UD1_ML <- akde(animal1_buffalo, FIT1_ML)
UD1_pHREML <- akde(animal1_buffalo, FIT1_pHREML)
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summary(UD1_pHREML)$CI # home range area estimation

## low est high
## area (square kilometers) 429.6573 756.9343 1175.357

We have calculated our home range for animal1_buffalo, resulting in an estimation of 757 km2 (with 95%

confidence intervals: 430–1,175 km2).

Step 5. – Evaluating additional biases, applying mitigation measures

5.1. Buffalo tracking data

summary(UD1_pHREML)$DOF["area"] # effective sample size of animal1

## area
## 15.65772
nrow(animal1_buffalo) # absolute sample size

## [1] 1725

Our output here also reveals more information regarding our dataset: the effective sample size (N) and

the absolute sample size (n). We can return this measure with the summary function: in our case, the N

for animal1_buffalo is 15.7. Comparatively, our absolute sample size is easy to output, as it is the total

number of observations within our dataset (n = 1,725).

As mentioned earlier, animal1_buffalo had a device malfunction that led GPS fixes to shift from one fix

per hour, to one fix every two hours. As such, this individual is particularly suited for a weighted AKDEc

(or wAKDEc), so we can re-run the function with weights set to TRUE:

UD1w_pHREML <- akde(animal1_buffalo, FIT1_pHREML, weights = TRUE)

summary(UD1w_pHREML)$CI # home range area estimation (weighted)

## low est high
## area (square kilometers) 432.2234 761.4551 1182.376

Our new home range area estimation for animal1_buffalo is 761 km2 (with 95% confidence intervals: 432–

1,182 km2). We can now plot our home range estimate for animal1_buffalo:

# Creating an extent that includes both UDs at the 95% CI level:
EXT <- extent(list(UD1_ML, UD1_pHREML, UD1w_pHREML), level = 0.95)

# Plotting pHREML (with and without weights) side-by-side:
par(mfrow = c(1,2))
plot(animal1_buffalo, UD = UD1_pHREML, ext = EXT)
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title(expression("pHREML AKDE"["C"]))
plot(animal1_buffalo, UD = UD1w_pHREML, ext = EXT)
title(expression("pHREML wAKDE"["C"]))
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For animal1_buffalo, the difference between model parameter estimators is not substantial; we only have

a ~5.7% AKDE area underestimation by ML compared to pHREML. However, the data fits the spatial

locations much better.

( 1 - summary(UD1_ML)$CI[1,2] / summary(UD1w_pHREML)$CI[1,2] ) * 100

## [1] 5.742588

5.2. Gazelle tracking data

We can also check the difference with animal2_gazelle’s tracking data, where the small effective sample

size issue is clearer:

GUESS2 <- ctmm.guess(animal2_gazelle, interactive = FALSE)

FIT2_ML <- ctmm.select(animal2_gazelle, GUESS2, method = 'ML')
FIT2_pHREML <- ctmm.select(animal2_gazelle, GUESS2, method = 'pHREML')

UD2_ML <- akde(animal2_gazelle, FIT2_ML)
UD2_pHREML <- akde(animal2_gazelle, FIT2_pHREML)

With animal2_gazelle, we have a more substantial area underestimation by ML compared to pHREML

(~15.2%). We can also see that our effective sample size is only 4.5, with an absolute sample size of 49 (N
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≪ n).

( 1 - summary(UD2_ML)$CI[1,2] / summary(UD2_pHREML)$CI[1,2] ) * 100

## [1] 15.19245
summary(UD2_pHREML)$DOF["area"] # effective sample size

## area
## 4.528926
nrow(animal2_gazelle) # absolute sample size

## [1] 49

At this point, we have selected a movement process, fed it into a home range area estimation with different

model parameter estimators, and corrected for irregular sampling rates. With small effective sample sizes,

it is important to see if parametric bootstrapping may be worth it to further reduce our estimation error.

In order to do so, we can check the expected order of bias from pHREML:

# Expected order of pHREML bias:
1/summary(FIT2_pHREML)$DOF['area']^2

## area
## 0.04875392

The bias is currently 𝒪(5%) (“in the order of” 5%). As such, we will run parametric bootstrapping for

animal2_gazelle. The relative error target is 1% by default (argument error = 0.01), but can be adjusted

if necessary.

start_time <- Sys.time() # start recording running time
BOOT <- ctmm.boot(animal2_gazelle, FIT2_pHREML, trace = 2)
## note: this function incurs substantial computational cost, may take hours.
( total_time <- Sys.time() - start_time ) # output running time

summary(BOOT)

## $name
## [1] "OUF isotropic"
##
## $DOF
## mean area speed
## 3.196957 3.530735 10.000358
##
## $CI
## low est high
## area (square kilometers) 3429.704883 14089.021613 32137.455223
## t[position] (months) 0.000000 1.781242 3.758819
## t[velocity] (hours) 2.248230 10.481973 48.870349
## speed (kilometers/day) 5.590052 8.072361 10.551247
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1/summary(BOOT)$DOF['area']^3 # expected order of bias

## area
## 0.02271981

We can see that the expected order of bias was reduced to 2.3%, which is comparable to the numerical error

target of 1%. To reduce the numerical error further, we would need to change the default relative error target

of ctmm.boot, but the computational cost would continue to increase, and the comparably large statistical

bias (2%) would remain.

Now we will calculate the AKDEc based on the estimated parameters, and plot the home range of

animal2_gazelle. Because of small effective sample size, we set optimal weights to TRUE for improved

statistical efficiency:

UD2_bpHREML <- akde(animal2_gazelle, BOOT, weights = TRUE)
summary(UD2_bpHREML)$CI

## low est high
## area (square kilometers) 3231.504 13274.82 30280.25

Finally, we have calculated our home range for animal2_gazelle, with an estimated area of 13,274 square

kilometers (with 95% confidence intervals: 3,231–30,280 km2). Our uncertainty with animal2_gazelle is

substantially higher than with animal1_buffalo, as expected due to the small effective sample size.

# Creating an extent that includes both UDs at the 95% CI level:
EXT <- extent(list(UD2_pHREML, UD2_bpHREML), level = 0.95)

# Plotting pHREML and bootstrapped-pHREML side-by-side:
par(mfrow = c(1,2))
plot(animal2_gazelle, UD = UD2_pHREML, ext = EXT)
title(expression("pHREML AKDE"["C"]))
plot(animal2_gazelle, UD = UD2_bpHREML, ext = EXT)
title(expression("Bootstrapped pHREML wAKDE"["C"]))
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The results presented here were generated with R version 4.0.5, and ctmm version 0.6.0.

Glossary

– Home range: the area repeatedly used throughout an animal’s lifetime for all its normal behaviors and

activities, excluding occasional exploratory moves.

– Range residency: the tendency of an animal to remain within their home range.

– Home range crossing time: the time required for an animal to cross the linear extent of its home range.

– Absolute sample size (n): the observations in a dataset.

– Effective sample size (N): number of range crossings that occurred during the observation period. Can be

roughly estimated by dividing the duration of the tracking dataset by the average home range crossing time

parameter.
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