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Abstract 22 

Phenotypic plasticity is an important mechanism that allows populations to adjust to 23 

changing environments. Plastic responses induced by early life experiences can have lasting 24 

impacts on how individuals respond to environmental variation later in life (i.e., reversible 25 

plasticity). Developmental environments can also influence repeatability of plastic responses 26 

thereby altering the capacity for reaction norms to respond to selection. Here, we compared 27 

metabolic thermal reaction norms in lizards (Lampropholis delicata) that were incubated at 28 

two developmental temperatures (ncold = 26,  nhot = 25). We repeatedly measured individual 29 

reaction norms across six acute temperatures 10 times over ~3.5 months (nobs = 3,818) to 30 

estimate the repeatability of average metabolic rate (intercept) and thermal plasticity (slope). 31 

The intercept and the slope of the population-level thermal reaction norm did not change with 32 

developmental temperatures. Repeatability of average metabolic rate was, on average, 10% 33 

lower in hot incubated lizards and was stable across acute temperatures. The slope of the 34 

reaction norm was moderately repeatable (R = 0.44, 95% CI = 0.035 – 0.93) suggesting that 35 

individual metabolic rate changed consistently with acute temperature, although credible 36 

intervals were quite broad. Importantly, reaction norm repeatability did not depend on early 37 

developmental temperature. Our work implies that thermal plasticity has the capacity to 38 

evolve, despite there being less consistent variation in metabolic rate under hot environments. 39 

This capacity for thermal plasticity to evolve will be increasingly more important for 40 

terrestrial ectotherms living in changing climate.41 



Introduction 42 

A substantial amount of variation in an individual’s phenotype is determined by 43 

formative processes experienced throughout embryonic development. Environmental 44 

perturbations during this critical period can have persistent effects on an individual’s 45 

physiology, morphology, behaviour and life history (Noble et al. 2018; Eyck et al. 2019; 46 

O’Dea et al. 2019). Developmental shifts in phenotypes may be adaptative if it allows 47 

organisms to better cope in similar environments later in life (Beldade et al. 2011). However, 48 

environment-phenotype mismatches can occur when developmental cues fail to predict later 49 

life conditions (Auld et al. 2010; Bonamour et al. 2019). A multitude of traits throughout an 50 

animal’s life are labile; reversibly responding to environmental change. Reversible plasticity 51 

in phenotypic traits allows individuals to adjust to acute changes in their surroundings 52 

(Piersma and Drent 2003), and can broadly be classified into two categories, acclimation and 53 

phenotypic flexibility (Piersma and Drent 2003; Havird et al. 2020). Acclimation is generally 54 

a slower form of reversible plasticity that involves remodelling of physiological systems from 55 

chronic exposure to a particular environment (Seebacher 2005). Phenotypic flexibility, in 56 

contrast, describes short-term changes in traits that are induced by acute environmental 57 

exposure, such as changes in metabolic rate in response to acute temperature (Piersma and 58 

Lindström 1997; Piersma and Drent 2003).  59 

 60 

Reversible plasticity may be able to alleviate the costs associated with phenotype 61 

mismatches induced by early life environments (Angilletta Jr et al. 2003; Ghalambor et al. 62 

2007). When environments shift predictably, flexibility in the phenotype would be 63 

advantageous because individuals can compensate for the effects of prevailing conditions to 64 

avoid discrepancies between the environment and the phenotype (Botero et al. 2015). 65 



However, reversible plasticity can change depending on early environmental conditions and 66 

might alter phenotypic responses to environmental variation (Beaman et al. 2016). The 67 

interaction between early- and late life plasticity has been supported by a few studies that 68 

show developmental differences in plasticity for a variety of traits including mitochondrial 69 

function (Shama et al. 2014), metabolic rate (Seebacher et al. 2014) and locomotor 70 

performance (Kazerouni et al. 2016). However, these studies solely focus on the 71 

developmental effects on acclimation, whereas the influence on phenotypic flexibility and 72 

variability of plastic responses is poorly known.  73 

 74 

It has long been recognised that individuals vary in their plasticity, with some 75 

responding more flexibly than others (Nussey et al. 2007; Dingemanse and Wolf 2013). 76 

Consistent among individual variation in plasticity may be heritable, but nonetheless, 77 

provides the phenotypic substrate for selective forces to act upon (Nussey et al. 2007; Araya-78 

Ajoy and Dingemanse 2017). Developmental environments, however, can influence 79 

phenotypic variation available for selection (Sultan and Stearns 2005). For example, zebra 80 

finches (Taeniopygia guttata) that experience nutritional stress as nestlings weigh less and 81 

have reduced growth rates contributing to increases in the repeatability of metabolism and 82 

behavioural traits (Careau et al. 2014a). Consistent among individual variation in plasticity 83 

has also been reported in other labile traits including aggressiveness in great tits (Parsus 84 

major) (Araya-Ajoy and Dingemanse 2017), explorative behaviour in chickadees (Thompson 85 

et al. 2018) and metabolic rate in amphipods (Réveillon et al. 2019). Whether developmental 86 

environments affect consistent variation in plasticity per se is still not well understood. 87 

Identifying the factors that impact repeatability is necessary for understanding the evolution 88 

of plasticity in changing environments.  89 

 90 



Energy metabolism is a key fitness related trait that is both consistently different among 91 

individuals and highly labile within individuals (Nespolo and Franco 2007; Norin and 92 

Metcalfe 2019). All organisms require energy for growth, maintenance and reproduction 93 

(Careau et al. 2014c). Numerous studies have investigated the influence of various 94 

developmental environments, such as temperature (Gangloff et al. 2015; Noble et al. 2018), 95 

ultra-violet (UV) exposure (Kazerouni et al. 2016), and dietary restriction (Careau et al. 96 

2014a) on metabolic rate, however, the impacts on plasticity of metabolic rate is not well 97 

established (but see Seebacher et al. 2014). Developmental environments are expected to 98 

influence metabolic plasticity, possibly through modifications in metabolic enzymes or 99 

cellular membrane structure that influence their function in different environments 100 

(Angilletta Jr 2016). Such changes imply that tolerance to environmental perturbations may 101 

be determined by the developmental environment a given cohort experiences. Furthermore, if 102 

repeatability of metabolic plasticity is also affected, then the capacity to respond to selection 103 

might also depend on early life conditions. Understanding how early life environments shape 104 

metabolic plasticity will be important for ectotherms where metabolic rate is closely 105 

intertwined with prevailing environmental conditions. 106 

 107 

Here we employed a ‘reaction norm approach’(sensu Via et al. 1995) to examine the impact 108 

of developmental temperature on metabolic rate plasticity in an oviparous skink 109 

(Lampropholis delicata). Specifically, we were interested in testing whether developmental 110 

temperature affects the shape and repeatability of metabolic thermal reaction norms. Over 3.5 111 

months, we repeatedly measured routine metabolic rate at six temperatures for lizards (nobs = 112 

3,818) that hatched from two incubation treatments (total individuals: nhot = 25, ncold = 26) to 113 

address the following key questions: (1) How does developmental temperature change the 114 

intercept and slope of the thermal reaction norm?; (2) How does the repeatability of 115 



metabolic plasticity (i.e. slope of the reaction norm) change with developmental temperature? 116 

(3) Do developmental temperature treatments differ in their repeatability of metabolic rate 117 

(intercept) at each acute temperature (i.e. temperature-specific repeatability)? Our 118 

experimental approach provides important insights into how development environments 119 

mediate the capacity for ectotherms to respond to thermal variation during early stages of life 120 

and the energetic consequences of such effects.121 



Materials and Methods 122 

Lizard collection and Husbandry 123 

We established a breeding colony of adult L. delicata (nfemales = 144, nmales = 50) using wild 124 

individuals collected across three sites throughout the Sydney region between 28 August and 125 

8 September 2015 (UNSW Kensington Campus: -33.92, 151.24; Sydney Park: -33.91, 126 

151.18, Macquarie Park: -33.77, 151.10). Three females were housed with a single male in 127 

opaque plastic enclosures measuring 35cm × 25cm × 15cm (L × W × H). Enclosures were 128 

kept under UV lights on a 12 hours light : 12 hours dark cycle in a temperature-controlled 129 

room set to 24ºC. Lizards had access to a heat lamp that elevated temperatures on one side of 130 

the enclosure to 32 ºC. Each enclosure was lined with newspaper and lizards had constant 131 

access to water and tree bark was used as refuge. Adult lizards were fed medium sized 132 

crickets (Acheta domestica) ad libitum dusted with calcium powder and multi-vitamin every 133 

two days. From the beginning of the egg laying season (October of each year), we replaced 134 

the newspaper lining with garden potting mix and placed an opaque plastic box (12 cm × 17.5 135 

cm × 4.3 cm) containing moistened vermiculite in each enclosure for females to oviposit their 136 

eggs. During this time, enclosures and vermiculite boxes were sprayed gently with water 137 

every other day to maintain a relatively humid environment. From October to November, 138 

vermiculite boxes were checked every day for eggs. Animal collection was approved by the 139 

New South Wales National Parks and Wildlife Service (SL101549) and all procedures were 140 

approved by the Macquarie University Ethics committee (ARA 2015/015) and University of 141 

New South Wales Animal Care and Ethics committee (ACEC 15/51A). 142 



Developmental Temperature Manipulations 143 

Eggs were collected between October 2017 – March 2018. When eggs were discovered, they 144 

were weighed using a digital scale to the nearest 0.01g (Ohaus Scout SKX123). We also 145 

measured egg length (distance between the furthest points along the longest axis of the egg) 146 

and egg width (distance between the widest points along the axis perpendicular to the longest 147 

axis of the egg) using digital callipers to the nearest 0.01 mm. Following measurements, each 148 

egg was placed in a plastic cup (80 ml) containing 3 g of vermiculite and 4 g of water and 149 

covered using cling wrap which was secured by an elastic band. Eggs from each clutch were 150 

pseudo-randomly assigned to one of two fluctuating incubation temperature treatments. We 151 

used two incubators to precisely control the temperature of eggs (LabWit, ZXSD-R1090). 152 

The ‘hot’ treatment was exposed to a mean temperature of 29ºC whereas the ‘cold’ treatment 153 

was exposed to a mean temperature of 23ºC. Both incubators fluctuated +/- 3ºC the mean 154 

temperature over a 24-hour period. These treatments represent the temperature extremes of 155 

natural nest sites of L. delicata (Cheetham et al. 2011). Egg cups were rotated within each 156 

incubator weekly to avoid uneven heat circulation within incubators. Incubators were also 157 

checked daily for hatchlings. On average, the incubation duration for the ‘hot’ treatment was 158 

30 days (SD = 1.40, range = 27 - 33) days and 47.7days (SD = 5.90, range = 25 - 53) for the 159 

‘cold’ treatment.  160 

Planned Missing Data and Metabolic Rate at Different Temperatures 161 

Metabolic measurements commenced in April 2018 and continued until August 2018. At the 162 

beginning of measurements, hatchlings were on average 88.68 days old (SD = 23.75, range = 163 

26 - 131). Due to the scale of our experiment, we used closed-system respirometry instead of 164 

flow-through respirometry. We quantified routine metabolic rate (hereafter referred to as 165 

metabolic rate [MR]) as our measurements likely included the energetic costs of random 166 

movements (Withers 1992; Mathot and Dingemanse 2015). MR was measured as the volume 167 



of CO2 production per unit time (�̇�!"! mL min-1) as CO2 production is less susceptible to 168 

fluctuations in water vapour and more feasible to detect in smaller organisms (Lighton 2008; 169 

Tomlinson et al. 2018). Nonetheless, CO2 production was strongly correlated with O2 170 

consumption (r =0.81, p < 2.2e-16) with RQ values averaging 0.77 (SD = 0.41, nobs = 198). 171 

Due to logistical constraints, lizards were randomly assigned to one of two blocks for MR 172 

measurements (block 1: n =26, block 2: n = 25). Each block was measured two days apart. 173 

We sampled lizards once a week for two-weeks consecutively and then allowed them to rest 174 

for one week before the next set of measurements. Each week of measurements was 175 

considered a sampling session (ten sampling sessions in total over the course of 14 weeks). 176 

We used the same incubators described above to precisely control the temperature at which 177 

MR measurements were taken (+/- 1ºC).  178 

 179 

Metabolic rate was measured at 24ºC, 26ºC, 28ºC, 30ºC, 32ºC and 34ºC in a randomised 180 

order. However, at each sampling session we intentionally missed measurements at two 181 

randomly selected temperatures using a planned missing data design (Nakagawa 2015; Noble 182 

and Nakagawa 2018). Missing data was imputed during analysis (see Statistical Analyses). 183 

At ~06:00, lizards were gently encouraged into an opaque respiratory chamber and then 184 

weighed. After which, chambers were placed inside preheated incubators set at the 185 

randomised temperature for 30 minutes to allow body temperatures to equilibrate. The lids of 186 

the chambers were left ajar during this time to minimise CO2 build up. After 30 minutes, each 187 

chamber was flushed with fresh air and sealed. A 3 mL ‘control’ air sample was immediately 188 

taken via a two-way valve to account for any residual CO2 that was not flushed from the 189 

chambers. The chambers were left in the incubator at the set temperature for lizards to respire 190 

for 90 minutes. After this time, two replicate air samples (3 mL) were taken from each 191 

chamber in order to estimate the change in CO2 relative to the control sample. Two samples 192 



were taken so we could explicitly estimate measurement error (see Statistical Analyses, Ponzi 193 

et al. 2018). Chambers were then reopened and flushed with fresh air before being placed 194 

back into the incubator for the second measurement temperature (2 temperatures / day) 195 

following the same procedure approximately two hours later. Overall, this sampling design 196 

enabled us to characterise the thermal reaction norm (four out of six temperatures for our 197 

planned missing data design) for each lizard 10 times while accounting for measurement 198 

error. This resulted in n = 4,080 measurements of MR ([2 air samples x 4 temperatures] × 10 199 

sampling sessions = 80 samples per lizard). However, additional missing data from 200 

equipment malfunction or human error meant that our total sample size was n = 3,818. 201 

 202 

All air samples were injected into the inlet line of a Sables System FMS (Las Vegas NV, 203 

USA) with the flow rate set to 200 mL min-1 to measure �̇�!"! and �̇�"!. Water vapour was 204 

scrubbed from the inlet air with Drierite. Output peaks were processed using the R package 205 

‘metabR’ (https://github.com/daniel1noble/metabR). The rate of CO2 produced by an 206 

individual was calculated following (Lighton, 2008):  207 

�̇�!"!mL	𝑚𝑖𝑛
#$ =

∆%𝐶𝑂% 	× 	(𝑉&'()*+, − 𝑉-./(,0)
𝑡  208 

where ∆%CO2 is the maximum percentage of CO2 in air sample above baseline, which was 209 

corrected by subtracting any ‘residual’ CO2 from the initial flush from the larger of the two 210 

air samples; Vchamber is the volume of the chamber (70 mL) and Vlizard is the volume of the 211 

lizard. We used the mass of the lizard as a proxy for its volume (1 g = 1 ml) because of their 212 

high correlation and increased accuracy and precision in mass measurements (Friesen et al. 213 

2017; Kar et al. 2021), and t is the duration of time in minutes after where the chamber has 214 

been sealed and the first air sample was taken (90 minutes). 215 



Statistical Analyses 216 

We fitted Bayesian linear mixed effect models in R (Core Team 2013) using the package 217 

‘brms’ (Bürkner 2017). Metabolic rate was log transformed then body mass was log 218 

transformed and then z-transformed. Age and temperature were z-transformed so parameter 219 

estimates of main effects and interaction terms were more interpretable (Schielzeth 2010). 220 

Our planned missing data design resulted in random missingness across temperatures (36% 221 

missingness in MR and body mass) The ‘brms’ package is capable of performing model-222 

based data imputation. As such, we performed imputation during model fitting in all of our 223 

analyses. Model-based imputation not only retains the hierarchical structure of the dataset but 224 

also increases statistical power (P. Bürkner, personal communication 25 October 2020, 225 

Nakagawa, 2015). Sensitivity analyses suggest that models with imputed data resulted in 226 

similar conclusions to complete case analyses. However, we present results from the 227 

imputation analysis in the main text as parameter estimates were more precise 228 

(Supplementary Materials). For all models we used default priors which are presented in 229 

Table S1. We ran four Markov Chain Monte Carlo (MCMC) chains; taking 800 samples from 230 

the posterior distribution after discarding the first 1,500 iterations. This gave a total of 3,200 231 

samples from the posterior distribution across all chains. We ensured chains were mixing by 232 

inspecting trace plots and checked that scale reduction factors were less than 1.01, which 233 

indicates that all chains had converged. Throughout we report posterior means and 95% 234 

credible intervals for all parameters. All data and code to reproduce our results are provided 235 

(see Data Accessibility). 236 

 237 

To test whether developmental temperatures changed the shape of reaction norms, we fitted a 238 

full model with MR as the response and temperature, treatment and an interaction between 239 

treatment and temperature as predictors. The model also included a random intercept for 240 



lizard identity and sampling session. We wanted to account for measurement error in all our 241 

models as it may conflate parameter estimates (Ponzi et al., 2018). Using the two replicate air 242 

samples, we estimated measurement error variance by including a nested random effect of 243 

lizard identity, sampling session and temperature in all our models (e.g. 244 

ID001_session1_temp24). This nested random effect (hereafter referred to as measurement 245 

error) estimates the variance attributed to differences among replicates. While we show in a 246 

previous study that measurement error can vary by temperature (Kar et al. 2021), here we 247 

assumed that measurement error was constant across temperatures by fitting it as a random 248 

intercept as estimating a random slope resulted in model convergence issues. Heterogeneous 249 

residual variance across temperatures can also influence parameter estimates (Careau et al. 250 

2014a). However, WAIC values indicated that a heterogeneous residual variance model was 251 

not well supported, therefore homogenous variance was used in all models (Table S2). 252 

Acclimation can influence metabolic plasticity and its effects can take place throughout the 253 

course of our study. Unfortunately, it was not possible to measure MR at hatching. However, 254 

we still tested whether there were treatment differences in thermal reaction norms in the first 255 

sampling session (~2.5 months of age) where acclimation effects were likely to have the 256 

weakest effect. 257 

 258 

We estimated adjusted repeatability of the reaction norm slope (Rslope) in each developmental 259 

temperature treatment by fitting separate models for each treatment group. MR was fitted as 260 

the response and temperature, body mass and age (days since hatching) as predictors. We 261 

included lizard identity, measurement error and a nested random effect of individual identity 262 

and sampling session (hereafter referred to as series, Araya-Ajoy et al. 2015). Lizard identity 263 

estimates among individual variance, whereas series partitions variance within individual 264 

across all sampling sessions which allows the estimation of slope repeatability. A random 265 



temperature slope was estimated for lizard identity and series. The repeatability of the slope 266 

is calculated as the proportion of total variance in slopes explained by among individual 267 

differences (Araya-Ajoy et al., 2015): 268 

𝑅1-23+ =
𝑉4,1-23+

(𝑉4,1-23+ + 𝑉1+,.+1,1-23+)
 269 

where: 𝑉4,1-23+ is the among-individual variance in the temperature slope term and the 270 

𝑉1+,.+1,1-23+ is the within-individual variance in the temperature slope.  271 

 272 

We estimated adjusted repeatability of average metabolic rate (i.e. intercept of the reaction 273 

norm) at each acute temperature by fitting separate models for each treatment group. Similar 274 

to above, MR was included as the response and temperature, body mass and age as 275 

predictors. We included lizard identity, sampling session and measurement error as random 276 

intercepts and temperature as a random slope for lizard identity. We calculated among 277 

individual variance in metabolic rate at each temperature It  following Schielzeth and 278 

Nakagawa (2020):  279 

𝐼6 = 𝑉4 + (𝑡%. 𝑉7) + (2𝑡. 𝐶𝑜𝑣4,7) 280 

where 𝑉4 is the among individual variance in intercepts, 𝑡 is the specific temperature at which 281 

repeatability is calculated for, 𝑉7 is the among individual variance in slope and 𝐶𝑂𝑉4,7 is the 282 

covariance between the intercept and slope at the among individual level. Temperature 283 

specific repeatability (𝑅6) is then calculated as follows: 284 

𝑅6 =
𝐼6

(𝐼6 + 𝑉1+11.28 + 𝑉+)
 285 

where: 𝑉1+11.28 is the variance due to sampling session and 𝑉+ is residual variance.  286 

 287 

We also wanted to estimate overall repeatability of average metabolic rate across all acute 288 

temperatures. We therefore fitted the same model as above for each treatment, but we omitted 289 



the random temperature slope for lizard identity, this estimates an average among individual 290 

variance across all acute temperatures. Similarly, we calculated repeatability as per the 291 

equation above but using just the single estimate of among individual variance. 292 

 293 

In order to test for differences in repeatability among the two developmental temperatures, 294 

we calculated contrasts by subtracting the posterior distributions of repeatability estimates of 295 

the cold treatment from the hot treatment (Hot – Cold). To test whether the magnitude of 296 

differences among treatments were significant by chance, we calculated probabilities of 297 

direction (pd) using the package ‘bayestestR’(Makowski et al. 2019b). The probability of 298 

direction is calculated relative to the posterior median and ranges from 50 -100%. The value 299 

of pd describes whether an effect is either positive or negative as it is always relative to the 300 

sign of the median (Makowski et al. 2019a). If the median is positive, then pd describes the 301 

proportion of the posterior distribution that is also positive (Makowski et al. 2019a). A pd 302 

value of 95% can be interpreted as the effect is positive with a probability of 95%.  303 

 304 



Results305 

 306 

Figure 1 Predicted thermal reaction norm of metabolic rate (VCO2 min-1 g-1) for the ‘cold’ 307 

developmental temperature group (blue line, nlizards = 26) and the ‘hot’ developmental 308 

temperature group (red line, nlizards = 25) Points are raw data and are coloured according to 309 

treatment groups, nobs = 3,818. Dashed lines represent the upper and lower bounds of 95% 310 

credible intervals. 311 

 312 

We found no evidence to suggest that metabolic rate or its response to acute temperature was 313 

influenced by early developmental temperature (Fig. 1, Table 1, Supplementary Materials 314 

Section 1 Table S3-5). Congruently, there were no treatment differences in thermal reaction 315 

norms at the first sampling session when acclimation effects are likely to have the least effect 316 
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(Supplementary Materials, Section 1). We therefore refitted the model with just the main 317 

effects (Supplementary Materials, Section 1, Table S4-S5). Across all models, temperature 318 

and body mass had positive effects on metabolic rate (Table 1, Supplementary Materials, 319 

Section 1, Table S3-5). Nonetheless, reaction norm slopes were significantly repeatable, 320 

albeit estimated with a large degree of error. Repeatability of slopes (Rslope) did not depend on 321 

developmental temperature treatments (Hot: Rslope = 0.42, 95% CI: 0.04 – 0.91; Cold: Rslope = 322 

0.46, 95% CI: 0.03 – 0.95; pd = 53.5%, Fig. 2, Supplementary Materials, Section 2). A pd 323 

value of 53.5% indicates that there is roughly equal probability that the difference in Rslope is 324 

positive or negative, indicating little difference among treatment groups.  325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

Figure 2 Thermal reaction norms of mass-adjusted metabolic rate for lizards reared at A) 337 

‘hot’ developmental temperatures (top, red lines, nlizards = 25) and B) ‘cold’ developmental 338 

temperatures (bottom, blue lines, nlizards = 26) at session number one, five and ten. Each 339 

uniquely coloured line represents an individual reaction norm. There is a random subset of 10 340 

individuals from each treatment.  341 
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 342 

Table 1 Model coefficients of the full model testing whether developmental 

temperature affects the elevation (intercept) and slope of the thermal reaction norm of 

metabolic rate. This model used an imputed dataset of nobs = 6,000, 36% of 

observations were imputed. The intercept is the cold developmental temperature. MR 

was log transformed and mass, age and temperature were z-transformed. Bolded 

estimates are significantly different from zero. Lower and upper bound of estimates 

represent 95% credible intervals. COV represents covariance. Main effects model is 

presented in Table S4 

Parameter Estimate Lower Upper 

Fixed effects    

Intercept MR -6.292 -6.372 -6.218 

Treatment 29 -0.003 -0.062 0.058 

Acute Temperature 0.262 0.246 0.278 

Treatment 29 × Acute Temperature -0.016 -0.039 0.007 

Age -0.035 -0.079 0.006 

Mass 0.128 0.105 0.151 

Random Effects    

Lizard Identity    

           Intercept 0.009 0.006 0.015 



           Temperature Slope 9.53e-5 1.54e-7 0.000479 

           COVIntercept – Slope -0.00018 -0.00122 0.000599 

Sampling Session    

           Intercept 0.01 0.003 0.026 

Measurement Error    

           Intercept 0.044 0.04 0.049 

Residual 0.041 0.038 0.043 

 343 

Overall, temperature-specific repeatability was relatively low, with the cold developmental 344 

treatment tending to have higher repeatability estimates compared to the hot developmental 345 

treatment (Fig. 3, Fig S1, Supplementary Materials, Section 3 Table S10). Irrespective of 346 

acute temperature, repeatability of average metabolic rate was on average 10% higher in cold 347 

incubated lizards (pd = 95.7%, Fig. 3B, C). There was a 95.7% probability that the difference 348 

in overall repeatability was negative, indicating that lizards from the cold treatment are more 349 

likely to have higher repeatability. Higher repeatability in the cold treatment was associated 350 

with significant increases in among individual and residual variance (Fig. S2).  351 

 352 



 353 

Figure 3 (A) Temperature-specific adjusted repeatability for average metabolic rate for the 354 

‘cold’ developmental temperature group (blue, nlizards = 26) and the ‘hot’ developmental 355 

temperature group (red, nlizards = 25). Error bars represent 95% credible intervals. (B) Violin 356 

and boxplot showing the posterior distribution of overall adjusted repeatability of each 357 

treatment group irrespective of acute temperature. (C) Posterior distribution of the difference 358 

in repeatability (Hot – Cold) overall and at each acute temperature. Point represents the 359 

median; thicker lines represent the interquartile range and thin lines represent the 95% 360 

credible intervals. The probability of direction is presented on each distribution and describes 361 

the probability that the difference in repeatability is either positive or negative. Grey regions 362 

of the distribution represent negative estimates indicating repeatability was greater in the cold 363 

treatment, whereas black regions represent positive estimates which indicates that 364 

repeatability was greater in the hot treatment. All values were calculated from imputation 365 

models (Supplementary Materials, Section 3 Table 11-14). Contrasts are presented in Table 366 

S10.  367 

0.0

0.1

0.2

0.3

0.4

24 26 28 30 32 34
Temperature

Re
pe

at
ab

ilit
y

0.0

0.2

0.4

Cold Hot

Overall

34

32

30

28

26

24

−0.4 −0.2 0.0 0.2
Difference in Repeatability

 (Hot − Cold)

96.5% 

96.25% 

95.95% 

94.25% 

91% 

85.95% 

95.7% 

A) B)

C)



Discussion 368 

Early developmental temperature did not change the intercept or slope of the 369 

population reaction norm in delicate skinks. Thermal plasticity of metabolic rate was 370 

unaffected by developmental temperature, however; variation in slope had relatively high 371 

repeatable (R > 0.4). Temperature-specific repeatability of metabolic rate (i.e., intercept) was 372 

lower among lizards that were reared in hot developmental temperatures. Our results suggest 373 

that, while individuals displayed consistent variation in their plasticity (Individual x 374 

Environment), how metabolic rate responds to acute temperature variation later in life was 375 

robust to thermal extremes of natural nest sites. Developmental temperatures did not have an 376 

impact on average metabolic rate but rather it changed the amount of consistent individual 377 

variation in average metabolic rate. Below we discuss the implications of our results for the 378 

evolution of thermal reaction norms. 379 

 380 

Thermal reaction norms of metabolic rate are robust to developmental temperature 381 

Developmental environments that affect later life plasticity may affect how 382 

individuals and populations respond to environmental fluctuations (Beaman et al. 2016). 383 

Epigenetic modifications during development that influence the physiological system are 384 

likely responsible for shaping plastic responses in complex ways (Hu and Barrett 2017; 385 

McCaw et al. 2020). However, our results suggest instead that thermal reaction norms for 386 

metabolic rate were robust to changes in incubation temperature. Results have been mixed 387 

among the few studies that have investigated the effects of pre- and post-hatching 388 

temperature on the plasticity of metabolic rate (Table 1, Beaman et al., 2016). For example, 389 

wild caught mosquitofish (Gambusia holbrooki) developing under more variable spring 390 

conditions exhibited steeper thermal reaction norms for metabolic scope compared to fish 391 



born in summer (Seebacher et al., 2014). In contrast, incubation temperature did not affect 392 

plasticity in metabolic rate of striped marsh frog tadpoles (Seebacher and Grigaltchik 2014). 393 

Given that our lizards were reared in a common environment post hatching, the lack of 394 

difference we observed may be the result of reversible plasticity from acclimation in 395 

metabolic rate to the laboratory conditions. It is possible that acclimation capacities may have 396 

overwhelmed any developmental differences in thermal reaction norms. Generally, 397 

acclimation of physiological function takes approximately three to four weeks to complete, so 398 

it is likely that acclimation had already taken place by the time we began the study when 399 

lizards were about ~2.5 months old (Seebacher, 2005). Nonetheless, it is clear that whether 400 

acclimation homogenised possible developmental effects, developmental environments may 401 

have little long-term impacts on reaction norms. Future studies should employ cross factorial 402 

designs where post-hatch environments are deliberately matched and mismatched with early 403 

environmental conditions to disassociate acclimation effects (Schnurr et al. 2014; Kazerouni 404 

et al. 2016).  405 

 406 

Stable thermal reaction norms of metabolic rate across both developmental 407 

temperatures have key evolutionary implications. Our results imply that population reaction 408 

norms may be robust to temperature variation within the thermal range of natural nests 409 

(Cheetham et al., 2011). Past thermal regimes encountered by ancestors may have canalized 410 

population responses so that they are less sensitive to fluctuations in developmental 411 

temperature (Liefting et al. 2009). Canalization may reduce the costs of phenotypic plasticity 412 

during development if environmental variation is predictable across generations (Aubret and 413 

Shine 2010). In support of this, damselflies undergoing range expansions exhibit geographic 414 

variation in thermal reaction norms that align with past climatic conditions (Lancaster et al. 415 

2015). Population comparisons across environmental gradients might reveal whether local 416 



adaptation shapes developmental plasticity of population reaction norms that lead to 417 

canalisation (Toftegaard et al. 2015). Developmental environments may play a stronger role 418 

in shaping population plastic responses in areas that experience greater thermal variability, 419 

such as those in temperate or high elevation regions (Bonamour et al. 2019). While our 420 

incubation treatments represent thermal extremes of natural nest sites, they may not have 421 

been severe enough to induce changes in the thermal reaction norms, particularly given that 422 

we used more realistic fluctuating incubation temperatures. Developmental stress is thought 423 

to lead to the recruitment of heat shock proteins thereby changing reversible plasticity later in 424 

life (Beaman et al. 2016; Chevin and Hoffmann 2017). Recent work has shown lizard 425 

embryos exposed to extreme heat produce higher levels of heat shock proteins and have 426 

greater thermal tolerance as juveniles, however this subsequently reduces thermal tolerance 427 

later in life (Gao et al. 2014). This implies there may be constraints in how thermal responses 428 

can be shaped by extreme developmental environments.  429 

 430 

Developmental temperatures and repeatable thermal plasticity of metabolic rate 431 

Repeatability of reaction norm slopes did not change with developmental temperature, 432 

but lizards reared in hot temperatures had reduced repeatability in metabolic rate (intercept). 433 

Variation in developmental time has important consequences on hatching condition and may 434 

contribute to differences in consistent variation in hatchling phenotypes. Developmental time 435 

exhibits a negative nonlinear relationship with temperature, such that development times are 436 

considerably shorter at hotter temperatures (Noble et al. 2018; Marshall et al. 2020). 437 

Consequently, eggs reared in warmer environments are expected to be more constrained in 438 

their developmental rates, thus hatching phenotypes are more likely to be less variable 439 

compared to eggs reared in cooler environments (Pettersen et al. 2019). Indeed, incubation 440 

duration was short and less variable in our hot developmental treatment (Hot: 30 days, SD = 441 



1.40, range = 27 - 33; Cold: 47.7 days, SD = 5.90, range = 25 – 53). Shortened development 442 

times may restrict embryo yolk assimilation that is needed for growth (Oufiero and Angilletta 443 

2006; Storm and Angilletta 2007). Elevated mitochondrial proton leak at hot developmental 444 

temperatures may also lead to less efficient energy production and may explain why 445 

metabolic rate did not differ among treatments despite changes in repeatability (Chamberlin 446 

2004). Lower repeatability under hot nest temperatures may be problematic as global 447 

temperatures continue to rise (Botero et al. 2015). Provided that some of the repeatable 448 

phenotypic differences in metabolic rate are heritable (Dohm 2002; Falconer and Mackay 449 

2009), our results suggest that the evolutionary potential of metabolic rate may be dampened 450 

for populations incubating in warming environments. However, metabolic plasticity may still 451 

be able to evolve under rising temperatures (Ghalambor et al., 2007).  452 

 453 

We found that individuals consistently vary in metabolic plasticity in response to acute 454 

temperatures to a certain extent. While several studies have reported significant among 455 

individual variation in thermal plasticity slopes (Careau et al. 2014b; Briga and Verhulst 456 

2017), its repeatability is rarely estimated as it requires a study design that allows partitioning 457 

of within and between individual variance of slopes (Araya-Ajoy et al., 2015). Our 458 

repeatability estimates for reaction norm slopes were consistent with a previous study of the 459 

same species (R = 0.23, Kar et al. 2021). Similarly, moderate repeatability of thermal 460 

sensitivity of metabolic rate has also been observed in amphipods (R = 0.38, Réveillon et al. 461 

2019). Assuming that repeatable reaction norm slopes have a heritable basis (Driessen et al. 462 

2007), our work implies that thermal plasticity has the potential to be selected upon and 463 

evolve (Falconer, 1952; but see Dohm, 2002).  464 

 465 



Consistent individual differences in metabolic rate were stable across acute 466 

temperatures. This result demonstrates that temperatures within the operable range of L. 467 

delicata maintains consistent individual differences in MR (Matthews et al. 2016). 468 

Repeatability in metabolic rate may be an important mechanism that promotes consistent 469 

variation in thermoregulation, behaviour and life history (Sæther 1987; Réale et al. 2010; 470 

Goulet et al. 2017). Overall, our estimates for the repeatability of MR ranged from 0.09 – 471 

0.22. Our results are in line with a meta-analysis showing that repeatability decreases with 472 

time between repeated measurements (White et al. 2013). Specifically, the average 473 

repeatability of MR in ectotherms from studies that had a measurement interval that was 474 

equal or larger than our study (≥ 8.5 days) was R = 0.33 (SD = 0.21, n = 18). Interestingly, 475 

repeatability of average MR in wild caught adult L. delicata (R = 0.3 – 0.5, Kar et al. 2021) 476 

was comparatively larger relative to our results. This is likely due to life stage differences in 477 

environmental effects that shape phenotypic variation. As individuals mature, their 478 

experiences in different microhabitats (diet, thermal preferences) can promote among-479 

individual variation in traits (Kruuk and Hadfield 2007). Such common (micro) environment 480 

effects could further increase repeatability and may explain differences between lab and wild 481 

studies (Auer et al. 2016). 482 

Conclusion 483 

The role of developmental temperature on phenotypic plasticity exhibited later in life is 484 

complex. At the population level, thermal plasticity of metabolic rate was robust to changes 485 

in temperature during embryonic development suggesting that thermal reaction norms may be 486 

canalised. In contrast, the impact of developmental temperature manifested as a change in the 487 

repeatability of temperature-specific metabolic rate. This has important evolutionary 488 

implications. Reduced among individual variation in hot temperatures may alter a 489 



population’s ability to respond to selection under warming climate. However, population 490 

thermal reaction norms could still respond to selective processes to some extent (assuming 491 

they are heritable), allowing populations to persist. Elucidating the role of developmental 492 

environments on shaping plastic responses may require more stressful incubation conditions 493 

and cross-factorial experimental designs to disassociate the effects of acclimation from 494 

developmental plasticity.  495 
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