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Abstract 15 

The incidence of emerging infectious diseases (EIDs) has increased in wildlife 16 

populations in recent years and is expected to continue to increase with global change. Marine 17 

diseases in particular are relatively understudied compared to terrestrial disease, but they can 18 

disrupt ecosystem resilience, cause economic loss, or threaten human health. While there are 19 

many existing tools to combat the direct and indirect consequences of EIDs, these management 20 

strategies are often insufficient or ineffective in marine habitats compared to their terrestrial 21 

counterparts, often due to fundamental differences in marine and terrestrial systems. Here, we 22 

first illustrate how the marine environment and marine organism life history present challenges 23 

or opportunities for wildlife disease management. We then assess the application of common 24 

disease management strategies to marine versus terrestrial systems to identify those that may be 25 

most effective for marine disease outbreak prevention, response, and recovery. Finally, we 26 

recommend multiple actions that will enable more successful management of marine wildlife 27 

disease emergencies in the future. These include prioritizing marine disease research and 28 

understanding its links to climate change, preventatively increasing marine ecosystem health, 29 

forming better monitoring and response networks, developing marine veterinary medicine 30 

programs, and enacting policy that addresses marine and other wildlife disease. Overall, we 31 

encourage a more proactive rather than reactive approach to marine conservation in general and 32 

to marine wildlife disease in particular and emphasize that multi-disciplinary collaborations are 33 

key to managing marine wildlife health. 34 

Key words: marine wildlife, disease ecology, marine conservation 35 



3 

Introduction  36 

In the last 40 years, wildlife populations have experienced a pronounced increase in 37 

emerging infectious diseases (EID) occurrence across terrestrial (Daszak et al. 2000), 38 

freshwater (Reid et al. 2019), and marine environments (Tracy et al. 2019). When an EID 39 

disrupts ecosystems, causes economic loss, or threatens human health, it becomes a disease 40 

emergency (Groner et al. 2016). For marine wildlife in particular, mitigating disease 41 

emergencies is critical because of direct or indirect effects on fisheries, a $US400 billion dollar 42 

industry, with 10% of the global human population dependent upon fisheries for their livelihood 43 

(FAO 2020), and due to the vast potential for marine organisms to enable technological and 44 

biomedical advances (Blasiak et al. 2020).   45 

Despite significant recent increases in marine wildlife disease (Harvell et al. 2004, Tracy 46 

et al. 2019), and the profound direct and indirect consequences of EIDs, there are few examples 47 

of large-scale wildlife management programs or mandates (see Management Recommendations). 48 

Accordingly, identifying, developing, and implementing tractable management tools targeted to 49 

marine ecosystems is an urgent priority for scientists, managers, and policymakers alike. 50 

Interdisciplinary collaborations between human, animal, and ecosystem health professionals are 51 

essential to effectively understand and manage marine disease emergencies (Groner et al. 2016). 52 

Terrestrial wildlife disease has been managed for many decades, and the successes and 53 

challenges in these systems serve as a jumping off point for developing successful management 54 

strategies in marine systems. Fundamental features of life in the marine environment can have 55 

profound consequences for disease dynamics, research, and management (Mccallum et al. 2004). 56 

Here, we: (1) briefly describe the relatively unique features of marine compared to terrestrial 57 

environments that are pertinent for applying or developing marine disease management 58 
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strategies; (2) assess the application of terrestrial disease management strategies to the 59 

management of marine disease emergencies; and (3) make recommendations to improve marine 60 

disease management. While we focus on terrestrial and marine disease systems, we recognize 61 

that this dichotomy leaves out freshwater and estuarine habitats. The intent of this manuscript is 62 

not to provide a complete review of marine disease ecology (for a thorough investigation of this 63 

topic, see (Behringer et al. 2020). Rather, we highlight examples of relevant marine disease 64 

management strategies and give examples of systems in which they can be useful. Further, 65 

though some of our recommendations are focused on the US, many could be easily applied in 66 

any jurisdiction. We aim to identify useful management tools, aid in the development of novel 67 

strategies in marine systems and facilitate interdisciplinary collaboration between marine and 68 

terrestrial disease researchers and managers. 69 

Disease Dynamics in the Marine Environment and Implications for Management 70 

Pathogen dynamics, host susceptibility, and environmental conditions that affect host 71 

health and pathogen viability/transmission all contribute to an organism entering a disease state 72 

(Fig. 1, McNew 1960, Scholthof 2007, Thrusfield and Christley 2018). Each of these three 73 

variables make up the disease triangle, which can be modulated in turn to prevent or treat 74 

disease. We organize the relatively unique effects of life in the marine environment on disease 75 

dynamics into these vertices (for a more thorough review of marine versus terrestrial 76 

epidemiology, see Mccallum et al. 2004).   77 

Pathogen dynamics 78 

As marine disease systems are historically understudied, disease-causing agents are 79 

relatively uncatalogued (Harvell et al. 2004, Mccallum et al. 2004). First, pathogen transmission 80 

is different in water versus air. Airborne pathogens are typically viable for minutes to hours and 81 
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are typically transported a few meters at most (e.g., Wells 1934, Olsen et al. 2003, Booth et al. 82 

2005). In contrast, marine pathogens can remain viable in seawater from days to weeks (Hawley 83 

and Garver 2008, Oidtmann et al. 2018), moving hundreds of miles in ocean currents (McCallum 84 

et al. 2003). Together, these variables facilitate rapid transmission -- accordingly marine diseases 85 

have been documented to spread an order of magnitude faster than those on land (Cantrell et al. 86 

2020). Extended viability, long-distance transport, and rapid transmission complicates the ability 87 

for managers to geographically contain marine pathogens. 88 

In both water and air, diffusive spread dilutes pathogens and reduces exposure. Pathways 89 

that reduce dilution and increase transmission are common in terrestrial systems and include near 90 

direct contact between hosts, indirect contact with fomites like soil and vegetation, or vectors 91 

such as mosquitoes. On the other hand, the majority of marine pathogens documented to date are 92 

transmitted as free-living (Ben-Horin et al. 2015), despite the potential for dilution. Some marine 93 

pathogens use suspended particulate matter as fomites and zooplankton as vectors (Frada et al. 94 

2014, Kough et al. 2014, Kramer et al. 2016, Certner et al. 2017) but few marine vectors have 95 

been identified (Harvell et al. 2004). Overall, there is still much to learn about pathogen biology 96 

and transmission in the ocean and, accordingly, how to modulate pathogen dynamics for marine 97 

disease management.  98 

Host dynamics 99 

A number of characteristics of marine hosts contribute to the complexity of 100 

understanding marine disease dynamics, including abundant colonial and sessile species, the 101 

importance of pelagic larvae, and different host immunity traits. Colonial and sessile life stages 102 

are more common in marine environments and many foundational species exhibit these traits 103 

(e.g., corals, sponges, and bivalves, Costello and Chaudhary 2017). Behavioral strategies used by 104 
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more mobile species, such as avoiding sick individuals, are not employable by sessile organisms 105 

(Behringer et al. 2018), and the tendency of many species to grow in close proximity facilitates 106 

rapid pathogen transmission. However, if measures are taken before an outbreak causes infection 107 

of all hosts, these organisms are typically easier to capture, quarantine, or even breed in 108 

captivity. Many sessile and colonial animals are also filter feeders that can sequester rich 109 

assemblages of pathogenic microbes, offering a management tool unique to aquatic systems 110 

(Burge et al. 2016a). 111 

Many marine taxa have pelagic larval phases, where propagules travel long distances 112 

before settling into adult habitat (Cowen and Sponaugle 2009). This bipartite life history 113 

strategy decouples local birth rates from death rates as young can be transported far from adult 114 

populations, creating complex population and disease dynamics that are challenging to predict 115 

(Williams and Hastings 2013). While similar long-distance propagule transport occurs in many 116 

terrestrial plants, this strategy is common among marina taxa, including fish, corals, crustaceans, 117 

mollusks, and echinoderms. This strategy often results in decoupled gamete production and 118 

larval settlement, creating complex population dynamics that are challenging to predict 119 

(Williams and Hastings 2013). Movement of highly mobile larvae between populations can have 120 

two potential outcomes for disease transmission: 1) Transport can allow offspring to escape 121 

infected hotspots or 2) larvae can in turn act as vectors, spreading pathogens to new communities 122 

(Kough et al. 2014). Larval export can also repopulate or establish new host populations (Carr et 123 

al. 2003) especially if the larvae acquire trans-generational immunity (Little et al. 2003). 124 

Pelagic larval strategies are often coupled with very high numbers of offspring, which increases 125 

the adaptation potential at the population level (e.g., Schiebelhut et al. 2018). On the other hand, 126 

if the pathogen remains in the population, the consistent arrival recruitment of larvae to an 127 
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infected population may maintain a fuel outbreaks by repopulating pools of susceptible hosts 128 

(Behringer et al. 2020). 129 

There are two branches of the host immune system, the presence and complexity of 130 

which vary among taxa. All organisms utilize innate immunity, which is a non-specific immune 131 

response that is widely activated upon detection of pathogen invasion (Mydlarz et al. 2006, 132 

Cooper 2018). Vertebrates also utilize adaptive immunity, where antibodies are created in 133 

response to antigens, creating pathogen-specific immunological memory (Pastoret et al. 1998). 134 

As the majority of terrestrial wildlife disease management has focused on vertebrates, some of 135 

the most effective and commonly used strategies capitalize on antibody responses for disease 136 

diagnostics (e.g., serological assays) and prevention (e.g., vaccination). Invertebrates make up 137 

the majority of animal taxa in the ocean (Mather 2013) requiring alternative and/or novel 138 

management strategies for many marine disease emergencies.  139 

A Changing Environment: Climate Change and Disease Dynamics in the Sea 140 

Organisms in marine and terrestrial environments are experiencing changing average 141 

temperatures and increased variability in local weather patterns, and marine organisms are 142 

additionally experiencing hypoxia and ocean acidification. Across systems, elevated 143 

temperatures increase virulence, growth rates, reproductive window, and overwintering success 144 

of many pathogens (Harvell et al. 2002, Shields 2019). Further, heat stress in host organisms 145 

increases the amount of energy devoted to metabolic demands and respiration, leaving fewer 146 

resources for immunological function (Shields 2019). In the sea, ocean acidification and hypoxia 147 

further deplete host energy reserves and damage tissue, ultimately increasing susceptibility to 148 

infection (Hernroth and Baden 2018, Shields 2019, Schwaner et al. 2020). These stressors often 149 

occur simultaneously, with consequences ultimately compounded (Burge et al. 2014, Gobler and 150 
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Baumann 2016). These multiple stressors are especially threatening for sessile marine species 151 

that cannot escape their habitat when faced with rising temperatures, ocean acidification, or 152 

hypoxia. Thus, immediate study of the effects of climate change on marine disease dynamics is 153 

critical and ongoing. Disease forecasting is especially important for predicting and mitigating 154 

long-term disease impacts (see Forecast Outbreaks below and Cantrell et al. 2020). 155 

 156 

Limited Access 157 

Humans do not inhabit marine ecosystems and are always temporary visitors. Certainly, 158 

there are many terrestrial systems that are quite inaccessible (e.g., jungles, polar environments, 159 

deserts), but this is a nearly universal feature of marine environments. This has rendered marine 160 

disease systems relatively understudied compared to terrestrial systems (Harvell et al. 2004, 161 

Mccallum et al. 2004). Also, the feasibility of managing disease is diminished because disease 162 

emergencies are harder to detect and because accessing populations or individuals for disease 163 

management is generally quite limited or nigh impossible in some cases (e.g., the deep sea).  164 

Management Strategies for Marine Disease Emergencies 165 

In light of the fundamental differences in disease dynamics and the implications for 166 

management that we cover above, we now assess the application of myriad terrestrial disease 167 

management strategies to the management of marine disease emergencies. For each management 168 

strategy, we assigned a score between 1 and 4 based on potential utility (Fig. 2a). We group the 169 

strategies according to the timeframe during which they may be useful (surveillance, response 170 

and recovery) and the specificity to a given disease system (targeted or general) (Fig. 2b).  171 
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Outbreak Surveillance  172 

Monitor Outbreaks (Score: 4) 173 

Infectious disease surveillance in wild populations includes the ongoing systematic 174 

collection, analysis, and interpretation of data to detect and monitor the status of diseases (WHO 175 

2006). In all systems, active surveillance programs (i.e. surveilling for a particular disease, 176 

Sleeman et al. 2012) are limited by high costs and complex logistics. This is especially true in 177 

marine systems where it is typically more expensive and more challenging to sample organisms 178 

directly than on land. Since pathogens in the ocean are relatively undescribed compared to those 179 

on land, surveillance is also limited by the availability of specific diagnostic tools (see 180 

Diagnostics below). However, there are several successful examples of active marine 181 

surveillance programs including: corals (Coral Reef Evaluation and Monitoring Project, 182 

(CREMP)) and abalone (California Department of Fish and Wildlife Shellfish Health 183 

Laboratory). Potential strategies for overcoming difficulties sampling focal species include 184 

sampling sentinel species (Halliday et al. 2007), filter feeders (Burge et al. 2016a), 185 

environmental DNA (Michaels et al. 2016, Sato et al. 2019). When pathogens have not been 186 

fully described, active surveillance could be accomplished via non-specific or broadly specific 187 

pathogen detection tools (e.g., biochemistry of innate immune markers (Glidden et al. 2018), 188 

high-throughput amplicon sequencing (Huang et al. 2019), and metagenomics (Gu et al. 2019).  189 

Effective passive surveillance programs (i.e. studying animals found sick or dead,  190 

Sleeman et al. 2012) are contingent upon a network of observers (e.g., Rocky Mountain wildlife: 191 

Duncan et al. 2008), which again is likely more challenging in less-accessible marine systems. 192 

However, there are some excellent examples of these programs for marine taxa or habitats (e.g., 193 

West Coast Marine Mammal Stranding Network, Local Environmental Observer (LEO) 194 

https://myfwc.com/research/habitat/coral/cremp/
https://myfwc.com/research/habitat/coral/cremp/
https://wildlife.ca.gov/Conservation/Laboratories/Shellfish-Health/Disease
https://wildlife.ca.gov/Conservation/Laboratories/Shellfish-Health/Disease
https://www.fisheries.noaa.gov/west-coast/marine-mammal-protection/west-coast-marine-mammal-stranding-network
https://www.leonetwork.org/en/#lat=62.90022269985726&lng=-149.89746093750003&zoom=7&showing=D1061866-B2EB-4552-B3D9-A779870A11B7
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Network, Wildlife Health Information Sharing Partnership (WHISPers)). Increasing connectivity 195 

among people or entities that study marine wildlife health, creating or augmenting reporting 196 

systems and databases to include marine organisms, and engaging public participation in 197 

surveillance would substantially increase the effectiveness of passive surveillance in marine 198 

systems. Generally, passive and active disease surveillance is a key component of identifying 199 

and responding to marine disease outbreaks, and advances in sequencing and sampling 200 

technology continue to improve utility in all systems. 201 

Forecast Outbreaks (Score: 3) 202 

Disease forecasting relies on model-based early warning systems that combine 203 

environmental and epidemiological data to predict if, when, and where outbreaks may occur 204 

(Maynard et al. 2016). Long- and short-term forecasting has been particularly successful for 205 

human diseases when vector or reservoir host biology is linked to environmental conditions, as 206 

is the case for ectotherms (Chaves and Pascual 2007, Muñoz et al. 2020). Given that most marine 207 

wildlife are ectotherms and thus particularly sensitive to environmental variation, existing 208 

forecasting strategies for terrestrial systems have great potential to be applied in marine systems, 209 

with a few existing successful examples (coral disease outbreaks: Caldwell et al. 2016); lobster 210 

epizootic shell disease: (Maynard et al. 2015, 2016). Current applications in marine systems are 211 

limited by environmental monitoring capacity underwater. However, this is rapidly improving 212 

for key variables like temperature (Trevathan et al. 2012, Piermattei et al. 2018). Further, 213 

mechanistic models (see Epidemiological Models) describing environmental response curves 214 

(i.e., thermal response curves) have demonstrated the most promise at effectively predicting 215 

disease emergence (Kirk et al. 2020). Determining causal relationships between environmental 216 

https://www.leonetwork.org/en/#lat=62.90022269985726&lng=-149.89746093750003&zoom=7&showing=D1061866-B2EB-4552-B3D9-A779870A11B7
https://whispers.usgs.gov/home
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variability, pathogen biology, and host physiology will continue to improve disease forecasts. In 217 

many marine systems, host, and even pathogen, thermal response has been explored in laboratory 218 

settings. Future work should aim to incorporate host and pathogen thermal and other 219 

environmental responses into mechanistic, predictive models. With more research and 220 

development of environmental monitoring systems, forecasting outbreaks is of great utility to 221 

marine systems, especially as the climate changes. Pairing forecasting with some of the outbreak 222 

prevention and response strategies we outline below could be especially effective.  223 

Outbreak Response Strategies 224 

Diagnostics (Score: 3) 225 

Disease diagnostics characterize and identify the causative agent of disease in a host, and 226 

these diagnostics are critical for tracking and mitigating an outbreak. Many classic (gross 227 

observations, cell culture, microscopy, histopathology) and modern diagnostic tools (quantitative 228 

PCR, amplicon sequencing, metagenomics, analytical biochemistry) that are utilized in terrestrial 229 

settings are directly applicable to marine settings and have been used successfully (reviewed in 230 

(Burge et al. 2016b). However, there is a comparative dearth of knowledge of marine disease 231 

agents (Harvell et al. 2004, Behringer et al. 2020), which makes diagnostics challenging.  232 

Further, in organisms that lack adaptive immune systems, diagnostics are limited to tools that 233 

directly identify the pathogen (e.g., histology, PCR) rather than an immune response. When 234 

pathogens are not quickly identified, many of the management strategies we cover elsewhere are 235 

hamstrung. For example, the cause of Sea Star Wasting Syndrome is still unclear (Hewson et al. 236 

2018, 2019) and many proposed recovery efforts hinge on diagnosing the disease agent (Gravem 237 

et al. 2020). Overall, diagnostics must be an integral part of outbreak response, and techniques 238 
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developed in terrestrial systems are a directly transferable and promising source of solutions in 239 

marine systems. 240 

Isolation Strategies (Score: 2) 241 

 Isolation strategies include quarantine and geographic restriction. Although contentious, 242 

geographic restriction using fencing is widely employed in terrestrial systems for ungulates and 243 

other large species to  prevent disease spread (Mysterud and Rolandsen 2019). However, 244 

geographic restriction is typically not possible in marine systems due to pathogen transmission 245 

through water and logistical challenges of limiting host movement in the water.  246 

There are two primary quarantine strategies: isolating infected individuals until they are 247 

not infectious or isolating healthy animals until their reintroduction poses little risk of infection. 248 

Both can be employed quickly and without extensive knowledge of a disease process. Quarantine 249 

has had marginal success, but is generally restricted to wildlife that can be easily contained, are 250 

small, or do not migrate (e.g., frogs during chytridiomycosis outbreaks; Woodhams et al. 2011, 251 

isolation of fishes carrying viral hemorrhagic septicemia; Håstein et al. 1999). For marine 252 

species in particular, self-contained seawater facilities are needed. While these facilities do exist, 253 

(e.g., US Geological Survey field stations) they are primarily used for economically valuable 254 

species (e.g., fishes, corals). To make quarantine a viable option for marine wildlife disease 255 

outbreaks, infrastructure and expanded partnerships with existing institutions are necessary (e.g., 256 

zoos and aquariums: Ocean Wise Research- Vancouver Aquarium). Overall, quarantine only has 257 

utility for a limited range of marine taxa. 258 
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 Antimicrobials (Score: 1) 259 

Antimicrobial treatments are used extensively in human and veterinary medicine to 260 

combat disease (Schwarz et al. 2001, Rohayem et al. 2010, Woods and Knauer 2010, Foy and 261 

Trepanier 2010). Similar to terrestrial wildlife disease, the use of antimicrobials in marine 262 

disease may be contraindicated because of challenges associated with drug distribution and 263 

delivery in large open water systems. Only localized distribution in small, accessible marine 264 

populations is likely to prove effective (e.g., Stony Coral Tissue Disease in small coral 265 

populations; Neely et al. 2019). Furthermore, antimicrobials are being replaced by preventative 266 

measures, such as probiotics (see Natural Therapeutics), due to an increasing awareness of the 267 

importance of the microbiome and concerns of antibiotic resistance (Bachère 2003, Cabello et al. 268 

2013). Antibiotic resistance has already been documented in marine mammal species (Schaefer 269 

et al. 2009, Wallace et al. 2013) and sea turtles (Foti et al. 2009). Antimicrobials have extremely 270 

limited utility in marine systems at this time. 271 

Culling (Score: 2)  272 

Targeted culling is the selected killing or removal of wildlife and is applicable to both 273 

outbreak response and prevention. Culling of infected hosts can prevent pathogen spread 274 

between populations and has historically been used in terrestrial systems to slow disease 275 

transmission (Daszak et al. 2000). Culling is commonly focused on reservoir hosts in terrestrial 276 

systems (e.g., African buffalo culled to control bovine tuberculosis; le Roex et al. 2016). In 277 

marine systems, culling has been employed to prevent spread of viral hemorrhagic septicemia 278 

(VHS) in hatchery salmon to wild populations (Amos et al. 1998) and proposed to reduce spread 279 

of withering syndrome in aquacultured red abalone (Ben-Horin et al. 2016). Culling reservoir 280 

hosts may be effective in marine systems, particularly if they are easy to access and capture (e.g., 281 
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filter-feeding bivalves that accumulate pathogens; Burge et al. 2016a). However, culling should 282 

be exercised with caution since it can often have unintended consequences for disease 283 

transmission (e.g., Bolzoni and De Leo 2013, Bielby et al. 2014). Successful management 284 

requires mechanistic understanding of how host population and community ecology influences 285 

disease transmission as well as the ability to locate and cull diseased individuals and/or 286 

populations. Culling has been overshadowed by other more effective management strategies in 287 

terrestrial systems (Sokolow et al. 2019), and is likely not useful in marine systems under most 288 

circumstances. 289 

Epidemiological Models (Score: 4) 290 

 Epidemiological models broadly refer to a wide range of mathematical tools used to track 291 

temporal and spatial distribution of infected hosts and disease-induced mortality. They are 292 

extensively used in terrestrial disease systems to understand disease dynamics, evaluate efficacy 293 

of intervention strategies, and predict outbreak outcomes (e.g., Beeton and McCallum 2011, 294 

Craig et al. 2014, Viana et al. 2015, Silk et al. 2019). While some techniques have been 295 

successful in marine systems, application of epidemiological models has been hindered by lack 296 

of understanding of pathogen transmission and host susceptibility (Powell and Hofmann 2015, 297 

Shore and Caldwell 2019). However, incorporating within-host processes (Bidegain et al. 2017), 298 

among host heterogeneity (intra- and inter- specific; Bidegain et al. 2016, 2017), environmental 299 

conditions (Zvuloni et al. 2015, Lu et al. 2020), and physics and oceanographic data to map 300 

pathogen spread (e.g., Ferreira et al. 2014, Pande et al. 2015, Aalto et al. 2020) has substantially 301 

advanced marine disease models. Epidemiological models are best used when output can be 302 

applied to surveillance (see Forecasting Outbreaks), prevention, and response. Overall, 303 
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epidemiological models are a powerful tool and their application to marine disease management 304 

has great potential as new data streams and computational methods emerge. 305 

Targeted Recovery Strategies After a Host Decline 306 

Translocations (Score: 4) 307 

  Translocation involves taking individuals from larger or healthier populations and 308 

moving them to smaller populations that have been severely reduced by disease (e.g., Kawai’i 309 

thrush, Puaiohi; Switzer et al., 2014). This strategy can be used successfully in marine systems, 310 

provided there is enough understanding of epidemiology and natural history to ensure the 311 

translocated animals will stay in the area, remain healthy, and increase the breeding pool. 312 

However, when organisms are highly mobile or live in groups with complex social structures, 313 

translocations can fail (e.g., sea otters; Jameson et al. 1982, Lafferty and Tinker 2014). Further, 314 

careful maintenance of genetic diversity to minimize bottleneck effects in small populations is 315 

key (Willoughby et al. 2015). Additional considerations after an outbreak include avoiding 316 

disease reintroduction in the target area and avoiding moving healthy organisms to areas where 317 

disease is present (Stabili et al. 2010). These challenges make many translocations of terrestrial 318 

wildlife logistically and financially prohibitive, but they may be more tenable in marine systems 319 

because many invertebrates and fishes have high numbers of offspring and little or no maternal 320 

care, meaning that sufficient numbers may be rapidly obtained and that maintenance of social or 321 

family groups is less important. Overall, translocations are a useful tool for marine wildlife 322 

managers to bolster vulnerable populations when conditions are met, and can be especially 323 

effective when combined with other direct management strategies like Captive Breeding, 324 

Diagnostics, and Habitat Restoration. 325 
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Captive Breeding and Reintroduction (Score: 3) 326 

 Captive breeding and reintroduction involves the maintenance of adult breeding 327 

populations in captivity, with the goal of producing healthy offspring that can be successfully 328 

reintroduced to the wild. This method can help recover populations that have been severely 329 

reduced by disease (e.g., blackfooted ferret; Thorne and Williams 1988) or are experiencing low 330 

genetic diversity after disease. Captive breeding has been successful for many species in zoos, 331 

aquariums, and research and private facilities (Association of Zoos and Aquariums (AZA) 332 

Reintroduction Programs, Fraser 2008, Wasson et al. 2020). As with quarantine, implementation 333 

of this strategy for marine wildlife is contingent on increased availability of facilities. 334 

Additionally, captive breeding must be carefully employed to align with conservation goals, 335 

maintain genetic diversity and avoid disease introduction (Williams and Hoffman 2009, Albert et 336 

al. 2015, Grogan et al. 2017, Wacker et al. 2019). Well-designed programs can be utilized to 337 

increase the adaptive capacity of a population, including selective breeding for resistance to 338 

pathogens, applying prophylactic treatments to help prevent disease spread (see Natural 339 

Therapeutics), and bioaugmentation (Harris et al. 2009, Grant et al. 2016). In cases where the 340 

population decline is so severe that few remain in the wild, captive breeding may be the only 341 

way to maintain the population (The IUCN policy statement on captive breeding 1987, Snyder et 342 

al. 1996).  343 

There are successful examples of reintroduction of captive bred animals in terrestrial and 344 

freshwater systems (e.g., California condor, Ohio river basin freshwater mussels, Oregon frog, 345 

AZA Reintroduction Programs), but their success in marine systems is highly variable and 346 

poorly understood (Fraser 2009). Reintroducing captive bred animals to the wild has many of the 347 

same limitations and considerations mentioned for translocations (i.e. high risk of failure, need to 348 

https://www.aza.org/reintroduction-programs?locale=en
https://www.aza.org/reintroduction-programs?locale=en
https://www.aza.org/reintroduction-programs?locale=en
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maintain genetic diversity, avoiding disease introduction, financial cost). The pelagic larval 349 

phase common to many marine species poses further challenges. However, the abundant 350 

reproductive capacity of many species, and partnerships with commercial aquaculture facilities 351 

may be two pathways to successful implementation. Ultimately, captive breeding and 352 

reintroduction is a key tool for marine wildlife managers, but more investment in infrastructure 353 

and research s is needed before this is a scalable option for most species. 354 

Targeted Habitat Restoration (Score: 2) 355 

Targeted habitat restoration, which involves renewing or restoring degraded ecosystems, 356 

has been generally used to aid recovery of species experiencing severe population declines, 357 

including Pacific salmonids in the Columbia River Basin (Barnas et al. 2015) and birds in 358 

woodlands of Victoria, Australia (Vesk et al. 2015). Targeted restoration benefits from 359 

strategically identifying optimal locations (Geist and Hawkins 2016) with access to a source 360 

population. Habitat restoration may protect a site from new outbreaks (Sokolow et al. 2019), but 361 

does not typically protect a species from disease re-emergence if the pathogen has not been 362 

extirpated from the area. The ubiquity of larval stages in the marine environment may be either a 363 

challenge or an advantage for a successful habitat restoration project: recruitment of larvae is 364 

often sporadic and unpredictable, but high population connectivity means that larvae may easily 365 

settle in newly restored habitats. One way to circumvent this uncertainty is to pair habitat 366 

restoration with translocation or captive breeding and reintroduction. Because of the relative 367 

inaccessibility of marine compared to terrestrial environments, marine habitat restoration can be 368 

logistically intensive and expensive, especially on a large scale (e.g., kelp forest restoration; Eger 369 

et al. 2020). However, many economically and ecologically important marine habitats have been 370 

successfully restored, including mangroves, seagrass meadows, and oyster reefs (Hashim et al. 371 
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2010, Orth et al. 2012, Lipcius and Burke 2018). As such, additional research and adequate 372 

resources are needed to ensure viability of marine habitat restoration for aiding species recovery 373 

following a disease outbreak. 374 

Reduce Harvest (Score: 2) 375 

Limiting harvest of organisms can speed species recovery from a disease outbreak and 376 

restrict transmission facilitated by harvesting (e.g., movement of individuals due to baiting or 377 

transport of infectious material). This method is used sporadically to recover populations in both 378 

marine and terrestrial systems and involves limits on fishing, hunting, or harvesting. In marine 379 

and terrestrial environments, reducing take is only useful if the species is harvested directly or as 380 

bycatch, and it does not ameliorate disease itself. Additionally, in disease systems with high 381 

density-dependent transmission or overpopulation, allowing lethal take may slow 382 

parasite/pathogen transmission by decreasing host density (see Culling) (McCallum et al. 2005, 383 

Wood et al. 2010). Overall, reducing harvest is a useful strategy if take is the primary factor 384 

inhibiting recovery but is not directly a disease management tool. 385 

Endangered Species Lists (Score: 4) 386 

Listing species as threatened or endangered offers direct protection for that species and 387 

facilitates restoration efforts by providing funding and resources for terrestrial and marine taxa 388 

alike. A major driver of listing is to increase visibility of a declining species. For example, the 389 

International Union for the Conservation of Nature (IUCN) Red List can increase public 390 

awareness, help generate funding, and facilitate effective management actions (e.g., Gravem et 391 

al. 2020). When tied to legislation (e.g., the United States Endangered Species Act), listing can 392 

criminalize harvest or other detrimental activities by humans (see Reduce Harvest). However, 393 
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listing does not ameliorate disease outcomes. Further, it can be slow, politically fraught, and 394 

protections are dependent on enforcement. In some cases, listing can limit basic research and 395 

hinder recovery (Miller et al. 1994). Overall, endangered species listing is a useful strategy in 396 

situations where individual species are already recovering from disease and would further benefit 397 

from funding, attention, and policy action (e.g., black abalone; Balsiger 2009).  398 

Targeted Outbreak Prevention Strategies 399 

Vaccines (Score: 1) 400 

Vaccination exposes organisms to a deactivated, live attenuated, or recombinant antigen 401 

that elicits an antibody response in the host’s adaptive immune system and defends against 402 

subsequent infection (Sallusto et al. 2010). Vaccines are used in terrestrial wildlife (reviewed in 403 

Langwig et al. 2015), aquaculture of many fishes (reviewed in Sommerset et al. 2005), and 404 

marine mammals (Robinson et al. 2018). Three prerequisites must be met before vaccination is 405 

feasible. First, taxa must generally have an adaptive immune response. This is lacking in the 406 

majority of invertebrates, which comprise a huge portion of marine taxa (Roch 1999). There is 407 

some research to suggest that priming of the innate immune system may work as a partially 408 

effective, moderately specific vaccine, however, this has only been demonstrated for White Spot 409 

Syndrome Virus in shrimp (Syed Musthaq and Kwang 2014). Second, vaccines are often 410 

delivered via injections and bait, sometimes with multiple doses required (Sharma and Hinds 411 

2012). For marine wildlife, lack of access to individuals and dispersal of bait reduces the 412 

feasibility of these methods. Third, vaccines are expensive to develop, and with the exception of 413 

charismatic megafauna, funding to develop vaccines for wildlife is limited. Ideal vaccination 414 

campaigns in wildlife confer herd immunity (Fine 1993). At this time, vaccines are primarily 415 
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useful in marine systems for vertebrates that have small, easy to access populations (e.g., monk 416 

seals; Robinson et al. 2018).  417 

Natural Therapeutics (Score: 2) 418 

 In wild systems, hosts are typically simultaneously infected with multiple commensal, 419 

symbiotic, and parasitic organisms that comprise the microbiome and parasitome. The 420 

composition and stability of these “omes” is inherent to disease resistance and tolerance across 421 

all taxa (Kueneman et al. 2016, Pollock et al. 2019, Hoyt et al. 2019, Carthey et al. 2020, Hoarau 422 

et al. 2020, Vega Thurber et al. 2020). Understanding the role of the microbiome and parasitome 423 

in preventing or causing disease may unlock a deeper understanding of disease dynamics as well 424 

as management strategies in all wildlife, including marine species. 425 

The microbiome and parasitome can be manipulated to prevent or treat disease via three 426 

tools: phage therapy, probiotics, and coinfection (Inal 2003, Newaj-Fyzul et al. 2014, 427 

Rynkiewicz et al. 2015, Vaumourin et al. 2015). Phage therapy is a developing treatment for 428 

multidrug-resistant bacterial infections in humans, crops, and some animals (reviewed in Doss et 429 

al. 2017). In marine systems, phage coinfection has been documented to reduce withering foot 430 

syndrome in black abalone, and has been successfully used to experimentally treat several 431 

bacterial diseases in aquaculture (Friedman et al. 2014, Doss et al. 2017). While in its early 432 

stages, the characterization of marine phages is rapidly accelerating due to the development of 433 

new “omics” tools (reviewed in Thurber 2009). Probiotics are widely used to improve health and 434 

prevent disease in aquacultured organisms (reviewed by Martínez Cruz et al. 2012), and 435 

probiotic inoculation has successfully prevented disease in wild coral (Peixoto et al. 2017). 436 

Notably, disease may arise from complex microbiome shifts as opposed to infection by a single 437 

agent (Mera and Bourne 2018, Vega Thurber et al. 2020). As such, the microbiome should be 438 
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studied to elucidate disease-causing assemblages without probiotic treatment. In a direct 439 

preventative management application, coinfection with flukes has been shown to reduce bacterial 440 

virulence in aquaculture salmonids (Karvonen et al. 2019). Altogether, coinfection is difficult to 441 

employ and has not been used as a preventative measure in marine wildlife. However, it does 442 

consistently affect the efficacy of surveillance and response tools in terrestrial and marine 443 

systems through a number of processes such as reducing sensitivity and specificity of diagnostic 444 

tools and influencing mortality and transmission rates (e.g., Stokes and Burreson 2001, Gibson et 445 

al. 2011, Ezenwa and Jolles 2015, Beechler et al. 2015, Figueroa et al. 2017), underscoring the 446 

importance of  coinfection to disease management. 447 

Due to similar administration challenges as antimicrobials and vaccines, natural 448 

therapeutics are only feasible in small, accessible populations at this time. Further, these tools 449 

necessitate specific knowledge of the infectious agent, the natural therapeutic that benefits the 450 

host, and the ability to produce the therapeutic (e.g., culturing a co-infecting parasite). On the 451 

other hand, developing some natural therapeutics, particularly probiotics, may be less costly and 452 

time-consuming than developing vaccines or synthetic antimicrobials and can be effective in 453 

hosts that lack adaptive immunity. Overall, our understanding of healthy baseline microbiomes 454 

and parasitomes is rudimentary with the notable exception of a few intensively studied marine 455 

disease systems-- namely corals, abalone (Wang et al. 2017), and fishes in aquaculture (reviewed 456 

in Richards 2014). More research on this topic is necessary before natural therapeutics can be 457 

widely employed for marine disease management, especially in wildlife. 458 

Biological Control (Score: 1) 459 

Broadly, biological control is the introduction of novel organisms to the environment to 460 

suppress undesirable populations, including disease vectors and invasive species. To specifically 461 



22 

manage disease, biological control has been studied in human disease systems to control vector 462 

abundance and competence (e.g., Wolbachia and mosquito-borne disease; Iturbe-Ormaetxe et al. 463 

2011). In marine systems, biological control has been proposed to control bacterial pathogens in 464 

aquaculture but has not been applied to wildlife (Stabili et al. 2010). Biological control is likely 465 

less practical for marine wildlife because vectors are apparently less common (Harvell et al. 466 

2004), fluid ecological boundaries make targeted control less feasible (Lafferty and Kuris 1996), 467 

and food web complexity challenges predicted outcomes (Simberloff and Stiling 1996). Further, 468 

biological control efforts for invasive species have resulted in unexpected and severe negative 469 

consequences to non-target populations or to the environment (Forrester et al. 2006, Saunders et 470 

al. 2009). Thus, the utility of biological control as a management strategy in marine systems is 471 

unclear, and any undertaking should be extremely well-vetted before implementation.  472 

General Outbreak Prevention Strategies 473 

Increase Biosecurity (Score: 3) 474 

Movement of hosts and invasive species are commonly associated with novel disease 475 

introductions (Vilcinskas 2019), and biosecurity measures aim to prevent these occurrences. 476 

Many of the same biosecurity measures used in terrestrial and freshwater management can be 477 

implemented in marine ecosystems through policy, legislation, and informational campaigns 478 

(e.g., enforced border management of overseas goods in New Zealand, Champion 2018; 479 

firewood restrictions for fungal pathogens, Diss-Torrance et al. 2018). The aquarium trade and 480 

ballast water discharge are two major sources of anthropogenic pathogen movement in coastal 481 

systems. Movement of popularly-traded ornamental species is a common source of pathogen 482 

introduction even in systems with strict quarantine regulation (Whittington and Chong 2007). 483 
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Further challenges are posed by the overall fragmented nature of wildlife trade regulation and 484 

documentation among countries, and increased efforts in this area have high potential to reduce 485 

biosecurity risk globally (Smith et al. 2017). Release of ballast (water held in tanks and cargo 486 

ships and released in harbors) is a well-known point source of invasive species, novel pathogens, 487 

and pollutants (Aguirre-Macedo et al. 2008). Enforceable, international policy intervention is 488 

needed to ameliorate the multifaceted impacts of ballast water discharge on coastal ecosystems. 489 

We consider this to be a feasible, if challenging, goal with high potential to have widespread 490 

positive effects.  491 

Reduce Spillover (Score: 2)  492 

In marine systems, aquaculture and wastewater are sources of pathogen spillover to 493 

adjacent natural populations. In land-based aquaculture facilities, vaccination and sterilization of 494 

outflow water decrease spillover and are effective, feasible management tools (Sung et al. 2011). 495 

However, many aquaculture facilities are in open water or coastal systems (e.g., net pens) where 496 

uncontrolled water exchange occurs between facilities and the environment. This exchange can 497 

facilitate transmission of novel pathogens to native species, especially when non-native species 498 

are being cultured, and increase pathogen prevalence in the area around facilities (Lafferty and 499 

Hofmann 2016, Krkošek 2017, Klinger et al. 2017). As in terrestrial systems, preventative 500 

treatment like vaccination (which is only feasible for some species, like fishes), antimicrobials, 501 

natural therapeutics, or targeted culling may reduce spillover. Unique to marine systems is the 502 

potential to control pathogen abundance by co-culturing aquaculture species with filter feeders 503 

that can consume pathogens but do not serve as reservoirs (Burge et al. 2016a, see Natural 504 

Ecosystem Filters). Management and reduction of spillover is challenging in open marine 505 
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systems, but successful large-scale aquaculture of many species is contingent upon improving 506 

understanding of and reducing spillover. 507 

Additionally, waste-water runoff is a significant source of pathogen introduction from 508 

terrestrial to marine environments. For example, etiological agents of sea otter and coral diseases 509 

can originate from terrestrial effluent (Baskin 2006). Additionally, pollution can increase disease 510 

susceptibility and worsen infectious disease outcomes (Randhawa et al. 2015). Increased 511 

regulation of wastewater through local policy and informational campaigns are feasible strategies 512 

for improving biosecurity. Some ecosystems, including sea grasses, may also serve as natural 513 

filters for wastewater runoff, reducing prevalence (Lamb et al. 2017, see Natural Ecosystem 514 

Filters). Targeting these habitats for conservation and restoration will provide a number of 515 

ecosystem services including climate mitigation, storm surge protection, and disease resistance 516 

(see Targeted Habitat Restoration & Biodiversity and Habitat Conservation). 517 

Natural Ecosystem Filters (Score: 3) 518 

Natural filtering processes in aquatic ecosystems can reduce pathogen abundance (Stabili 519 

et al. 2010, Granada et al. 2016, Buck et al. 2018). Natural characteristics of aquatic biomes and 520 

the filter-feeding species that inhabit them have been used as a source of biological filtration in 521 

freshwater and marine systems, presenting unique opportunities for marine wildlife disease 522 

management (Yang et al. 2008, reviewed in Burge et al. 2016a, Wu et al. 2016). Mangroves, 523 

seagrass beds, and salt marshes act as passive filters by trapping microbes, changing water 524 

chemistry, and removing nutrients. Mangroves and seagrass beds have been shown to reduce 525 

levels of pathogenic bacteria in marine environments (Yang et al. 2008, Lamb et al. 2017). As a 526 

management strategy, utilization of passive filtering ecosystems has high potential to reduce 527 
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disease risk, especially when the pathogen source is “upstream” of the affected host population 528 

(see Reduce Spillover).  529 

Filter-feeding taxa, such as bivalves, sponges, and polychaetes, actively filter pathogens 530 

in the water column, accumulating them in their tissues or in sediment via pseudofeces (Burge et 531 

al. 2016a). Filter-feeders serve as a viable option for inactivating or eliminating harmful 532 

microbes from the environment. However, if pathogens are not inactivated, filter feeders can 533 

serve as reservoirs for pathogens, accumulating them from the water column and serving as a 534 

source of infection for the primary host. Although active filter-feeders have been used to treat 535 

aquaculture effluents (Vaughn and Hoellein 2018), they have not yet been widely implemented 536 

for mitigating marine disease transmission in open systems. However, use of active filter feeders 537 

is a useful and feasible option for preventing local disease transmission and as sentinel species 538 

when target hosts are challenging to sample (see Monitoring Outbreaks).  539 

Biodiversity and Habitat Conservation (Score: 3) 540 

Biodiversity conservation aims to preserve the variety of species necessary to maintain 541 

naturally functioning ecosystems, and habitat conservation accomplishes these goals by 542 

protecting the habitats in which those species live. Biodiversity and habitat conservation may 543 

protect wildlife from anthropogenic disturbances that increase disease susceptibility and 544 

pathogen exposure even in degraded ecosystems (Shapiro et al. 2010, Lamb et al. 2017). They 545 

may also enable host populations to recover from disease more quickly by alleviating human-546 

associated mortality (Groner et al. 2016, and see Reduce Lethal Take). Further, they can provide 547 

a source population for nearby areas affected by disease (Carr et al. 2003). Reducing biodiversity 548 

loss can also decrease disease transmission, and the risk of EIDs, through a number of processes 549 

including increasing the relative abundance of non-competent hosts or increasing predation on 550 
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vectors or reservoirs (Young et al. 2017, Rohr et al. 2020). However, in some cases, loss of 551 

biodiversity can lead to a reduction in disease transmission. As such, biodiversity conservation 552 

may buffer the spread of EIDs, but with the magnitude and direction of the relationship 553 

dependent upon pathogen biology (mode of transmission, host specificity), host composition, 554 

spatial scale, and context of the change in biodiversity (Halliday et al. 2020(Young et al. 2017, 555 

Rohr et al. 2020, Halliday et al. 2020).  556 

Biodiversity and habitat conservation are already key components of marine conservation 557 

efforts (see the United Nations’ Sustainable Development Goals & the UN Convention on 558 

Biological Diversity’s ‘30 by 30’ campaign). Marine protected areas (MPAs) and marine 559 

spatial planning are two key conservation tools that are used widely to achieve various 560 

conservation goals. In a disease context, there is a need for additional research into the 561 

relationship between biodiversity and disease transmission in marine biomes and how 562 

conservation areas may aid in species recovery after a disease outbreak (but see review by 563 

Davies 2020). Elucidating these relationships will facilitate the incorporation of disease 564 

management into existing conservation frameworks and infrastructure. 565 

Recommendations 566 

 The nuance and complexity of the strategies we discuss above broadly emphasizes the 567 

challenges marine disease researchers and managers face. Below, we outline preliminary 568 

recommendations to guide scientists, managers, and funding bodies to prepare for the expected 569 

future increases in the frequency and severity of marine disease outbreaks.  570 
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Increase Basic Research on Marine Disease Systems  571 

Terrestrial disease systems have historically received large amounts of research attention 572 

and funding, largely due to their use in elucidating general disease dynamics applicable to human 573 

disease, livestock, and agriculture. Despite the importance of marine wildlife for supporting 574 

human livelihoods and ecosystem services, there is less available funding which leads to a 575 

general dearth of knowledge with the possible exceptions of corals, eelgrasses and some 576 

aquacultured species. Multiple initiatives have been undertaken in the last decade to increase this 577 

knowledge base, including an NSF-supported Research Coordination Network (RCN) on the 578 

Ecology and Evolution of Infectious Disease in Marine Systems, a resulting special issue in the 579 

Philosophical Transactions of the Royal Society B: Biological Sciences on Marine Disease (Issue 580 

371, 2015), the recent inclusion of marine systems in Ecology and Evolution of Infectious 581 

Diseases  NSF grants (EEID), and the recent publication of a Marine Disease Ecology textbook 582 

(Behringer et al., 2020). To better monitor, manage, and ideally prevent or mitigate marine 583 

disease emergencies, we first need to better define variation in baseline distributions of 584 

pathogens across host species, environmental gradients, and time. Further, an improved 585 

mechanistic understanding of interactions between hosts, pathogens and the environment that 586 

form the disease triangle (Fig. 1) will facilitate a comprehensive and hopefully predictive 587 

understanding of major marine disease systems. Improved funding for basic marine disease 588 

ecology, advancement of molecular tools (Titcomb et al. 2019), and development of disease 589 

models (e.g., Ovaskainen et al. 2017) should enable scientists to more accurately construct this 590 

baseline, understand disease dynamics and subsequently utilize many of the management tools 591 

highlighted above. 592 

 593 
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Understand the Links Between Climate Change and Disease 594 

Climate change is one of the greatest threats to both human and wildlife health and is expected to 595 

cause a marked increase in wildlife disease emergencies. Slowing climate change is a crucial 596 

component of improving marine wildlife health. While addressing climate change itself is well 597 

beyond the scope of most marine disease researchers and managers actionable management 598 

strategies, ameliorating it is one of the most important long-term goals for improving marine 599 

wildlife health. Over the short term, we recommend prioritizing research that improves the 600 

understanding of the effects of climate on host-pathogen relationships in marine ecosystems. For 601 

example, explicitly incorporating climate change-related stressors in Epidemiological Models of 602 

disease transmission or in models that Forecast Outbreaks is of high importance. Further, we 603 

suggest incorporating long-term ecological studies on consequences of climate change on marine 604 

disease systems, at community and ecosystem scales, into programs that Monitor Outbreaks.  605 

 606 

Improve Marine Ecosystem Health 607 

Current funding for disease management at state and federal levels is typically dominated 608 

by mammals, birds, or those that have other economic value (e.g., fisheries). While this is 609 

logical, these “valuable” organisms do not exist in a vacuum, and they fundamentally depend on 610 

broader ecosystem health for survival. Furthermore, our own health as humans is tied to 611 

ecosystem health. Therefore, we recommend an increase in holistic approaches to disease 612 

management that are focused on entire ecosystems rather than isolated target species. This is 613 

exemplified by the OneHealth Initiative for the Center for Disease Control, which aims to 614 

achieve optimal health outcomes by recognizing the interconnection between people, animals, 615 

plants, and their shared environment. We emphasize that marine ecosystem health is similarly 616 
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important to humans as terrestrial ecosystem health, because a huge proportion of our global 617 

population relies on marine systems as their primary food source (FAO 2020). An increasingly 618 

popular and effective approach for increasing marine ecosystem health is to designate marine 619 

protected areas (see Biodiversity and Habitat Conservation). Additional management strategies 620 

that also increase ecosystem health include Targeted Habitat Restoration, Increasing 621 

Biosecurity, Reducing Spillover, and Natural Ecosystem Filters. 622 

 623 

Form Marine Disease Monitoring and Response Networks 624 

To enable timely detection and response to marine disease emergencies, infrastructure 625 

must be in place before an emergency begins (see Monitor Outbreaks). The excellent models of 626 

the West Coast Marine Mammal Stranding Network and the LEO Network , should be expanded 627 

to encompass more taxa over larger areas. For example, the recently formed PRIMED Network 628 

(Primary Responders in Marine Emergent Disease, https://www.primednetwork.org/) covers a 629 

wide range of wildlife taxa with the goal of increased disease surveillance and responsiveness to 630 

marine disease emergencies on the North American West Coast. We believe these types of 631 

networks are crucial for effectively detecting and responding to marine disease outbreaks. 632 

However, clear long-term funding pathways for this and other potential networks are not clear. 633 

We recommend that state and federal agencies further incorporate marine wildlife disease 634 

monitoring and response initiatives into their priorities. Federal-level agency programs like the 635 

USGS National Wildlife Health Center or NOAA Fisheries are well-situated to sustain 636 

monitoring and response programs for a wider range of marine wildlife and to create the 637 

infrastructure necessary to employ marine disease management tools such as Diagnostics, 638 

Isolation Strategies, and Captive Breeding. For example, diagnostic approaches have already 639 

https://www.primednetwork.org/
https://www.primednetwork.org/
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been developed for many marine diseases that affect aquacultured or fished species (e.g., World 640 

Organization for Animal Health 2016) and a similar approach could be undertaken for more 641 

marine wildlife disease systems.  642 

 643 

Develop Marine Veterinary Medicine Programs in the US 644 

Another pathway to increased research on marine disease systems and toward forming 645 

monitoring and response networks is through an increase in marine wildlife veterinary experts. 646 

However, there are currently no American Veterinary Medical Association-accredited Doctor of 647 

Veterinary Medicine (DVM) programs with a focus on aquatic and/or marine wildlife medicine. 648 

Programs that do incorporate marine wildlife are skewed toward marine mammals. Marine-649 

focused internships and residency programs for veterinarians are few in number (but see 650 

programs associated with the International Association of Aquatic Animal Medicine and World 651 

Aquatic Veterinary Medical Association), and few funded positions for wildlife veterinarians 652 

exist. Legislation addressing these deficits has not received support (see the rejected Wildlife 653 

VET Act 2019 by Representative Alcee Hastings of Florida (Hastings et al. 2019)). Policy 654 

actions supporting experts are key to wildlife disease management and response, and it is critical 655 

that they explicitly include resources and support for marine wildlife veterinarians. This support 656 

will improve capacity for nearly all management strategies described in the Outbreak Response 657 

Strategies and Targeted Outbreak Prevention Strategies.  658 

 659 

Enact Policy that Addresses Marine Wildlife Disease 660 

A major pathway to increased research on marine disease systems and toward forming 661 

monitoring and response networks is through legislation. However, to the best of our knowledge, 662 
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there is currently no enacted legislation in the US or globally that addresses wildlife disease 663 

emergencies. Wildlife population health is an underlying concern of multiple state and federal 664 

agencies and the time-sensitive nature of disease emergencies has inspired multiple federal-level 665 

legislative proposals, but none have been successful. Examples include the Marine Disease 666 

Emergency Act of 2015 introduced in response to SSWS by Representative Dennis Heck of 667 

Washington (Heck et al. 2015), the Wildlife Disease Emergency Act of 2018 introduced by 668 

Representative Carol Shea-Porter (Shea-Porter et al. 2018) and the Global Wildlife Health and 669 

Pandemic Prevention Act of 2020 introduced by Senator Christopher Coons of Delaware (Coons 670 

and Graham 2020). This type of legislation would increase our capacity to identify and declare 671 

wildlife disease emergencies and to coordinate rapid responses, with benefits to the economy and 672 

human health. We recommend that continued efforts be undertaken to achieve the goals outlined 673 

in these pieces of legislation. That said, marine wildlife disease occurs worldwide and both hosts 674 

and pathogens disregard political boundaries. So, it is important that countries coordinate their 675 

monitoring and response programs whenever possible. At the international level, incorporating 676 

marine wildlife disease management into existing international agreements such as the United 677 

Nations’ Sustainable Development Goals is recommended.  678 

 679 

Conclusion 680 

Active management of high value or charismatic megafauna, particularly terrestrial 681 

wildlife species, has been practiced for over a century (Leopold 1987, Bolen and Robinson 682 

2003). In marine systems, the will to embrace these management practices is more modest and is 683 

typically focused on managing commercial and recreational fisheries. For other wildlife, we have 684 

been more inclined to adopt geographically specific, ecosystem-level management such as the 685 
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creation of Marine Protected Areas (Lubchenco and Grorud-Colvert 2015). Recently, active 686 

management and rehabilitation efforts have been slowly “moving seaward” into estuarine 687 

ecosystems, mangroves and coral reefs (Barbier et al. 2011). But the considerable efforts that 688 

managers regularly undertake for terrestrial wildlife, such as rehabilitating wolves in 689 

Yellowstone or condors in California, are rarely considered for threatened marine species 690 

(exception: sea otter reintroduction, Jameson et al. 1982 and Southern Resident Orcas, Clevenger 691 

2020). In the event of a marine wildlife species decline, the types of strategies outlined in this 692 

manuscript may become crucial in marine systems. Adopting active management may be 693 

especially pressing as we are witnessing the collapse of entire coral reefs ecosystems (Hughes et 694 

al., 2018) and the outbreaks of marine epizootics on a global scale (Groner et al. 2016, Gravem 695 

et al. 2020).  696 

 Proactive rather than reactive approaches to marine disease management are needed to 697 

avoid catastrophic population loss. This approach will require a collaborative effort across 698 

academic institutions, federal agencies, and nonprofits. It will require people with expertise 699 

across disciplines spanning marine sciences, disease ecology, and veterinary medicine. We 700 

encourage broad collaboration, and for marine managers to follow the lead of their terrestrial 701 

counterparts to proactively manage marine systems.  702 
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Box 1. Definitions box 1272 

Adaptive capacity: the capacity of a species or its populations to cope with or respond to a given change through 

genetic diversity and potential for evolutionary adaptation via natural selection. 

Adaptive immunity: immune response developed in response to specific features of a pathogen. It creates 

immunological “memory” in case of future exposure to the same pathogen. 

Antibodies: proteins produced in response to and counteracting an antigen by directly or indirectly neutralizing 

their target. Antibodies form a critical part of immunological memory and can rapidly increase in concentration 

upon repeated pathogen exposure. 

Antigen: a foreign substance that induces an immune response, especially the production of antibodies. 

Bioaugmentation: the inoculation of cultured microbial organisms into a host to increase adaptive capacity. 

Bipartite life history: a life history strategy characterized by two disparate forms. Many marine invertebrates, 

including many shellfish, echinoderms, and worms, have a free-floating, planktonic, and pelagic larval stage and 

undergo metamorphosis into a sessile adult stage. 

Coinfection: the occurrence of at least two genetically different infectious agents in the same host. Can be 

defined as simultaneous infection, mixed infection, multiple infections, concomitant infection, concurrent 

infection, poly infection, polyparasitism, and multiple parasitism (Hoarau et al. 2020). 

Disease emergency: emerging infectious disease outbreak that disrupts ecosystem and/or ecological community 

resilience, causes economic loss, or threatens human health (Groner et al. 2016). 

‘Disease Triangle’: A conceptual disease triangle, where pathogen dynamics, host dynamics and favorable 

environments intersect to create disease and (B) management action reduce overlap of pathogen and host 

dynamics to reduce disease risk (Robinson et al. 2018). 

Emerging infectious disease: disease associated with infectious agents that are newly identified, have spread to a 

new population, or whose incidence or geographic range is rapidly increasing. 

Fomites: object or material that carries an infectious agent. 

Herd immunity: the protection of populations from infection by the presence of immune individuals (Fine 1993). 

Innate immunity: systems of immune response that are not pathogen-specific and do not require extensive 

development within the host prior to employment. 

Marine protected area: a clearly defined geographical space, recognized, dedicated and managed, through legal 

or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and 

cultural values (Day et al. 2012). 

Microbiome: the collection of microbes - bacteria, fungi, protozoa and viruses - that live on and inside animals 

and plants. 

Non-competent host: cannot generate new infections in other susceptible hosts, even after pathogen exposure. 

Parasitome: the ubiquitous community of parasites - including micro- and macroparasites- found living in close 

conjunction with animals, plants, and fungi. 
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Pathogen: Broadly defined as disease causing micro- and macro- organisms. 

Pelagic larvae: planktonic larval stages that drift in the open ocean until they attain metamorphic competency. 

Phage therapy: the use of bacteriophages or bacteria-specific viruses (which are not harmful to the host) to fight 

off pathogenic bacteria. 

Probiotics: live microorganisms which, when administered in adequate amounts, confer a health benefit to the 

host. 

Reservoir hosts: Hosts that become infected by a pathogen and maintain infections in the ecosystem (with or 

without disease). They transmit the pathogen to susceptible hosts; often identified in reference to a defined target 

population. 

Trans-generational immunity: inherited immune resistance of offspring due to exposure of parents to local 

pathogens. 

Vectors: Living organisms that transmit pathogens between their animal or plant host. 

 1273 

  1274 
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 1275 

Figure 1. (A) A conceptual disease triangle, where pathogen dynamics, host dynamics and 1276 

favorable environments intersect to create disease and (B) management action reduce 1277 

overlap of pathogen and host dynamics to reduce disease risk. Robinson et al. 2018 1278 

vaccinated monk seals (host) against Canine Distemper Virus (pathogen)and used network 1279 

science to target vaccination at seals with the most contacts, ultimately reducing disease 1280 

prevalence. 1281 

  1282 
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 1283 

Figure 2. a) The scale used to classify a 1284 

given management strategy according to its utility in managing marine disease emergencies. A 1285 

high score of 4 (green) indicates that the strategy is useful in most marine disease systems. 3 1286 

(yellow) indicates the strategy is potentially useful in most marine disease systems with more 1287 

research and/or resources. 2 (orange) indicates the strategy is useful in some marine disease 1288 

systems depending on the taxon or circumstances, and 1 (red) indicates the strategy is not useful 1289 

in most marine disease systems. b) Summary of management strategies and their utility score, 1290 

according to color and scale in (a) in marine disease emergencies. Management strategies are 1291 

grouped by the time frame during which they may be useful and the specificity to a given disease 1292 

system in blue.  1293 
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