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Abstract 18 

Global change has altered biodiversity and impacted ecosystem functions and services around 19 

the planet. Understanding the effects of anthropogenic drivers like human use and climate 20 

change on biodiversity change has become a key challenge for science and policy. However, 21 

our knowledge of biodiversity change is limited by the available data and their biases. Over land 22 

and sea, we test the representation of three worldwide and multi-taxa biodiversity databases 23 

(Living Planet, BioTIME and PREDICTS) across spatial and temporal variation in global change 24 

and across the tree of life. We find that variation in global change drivers is better captured over 25 

space than over time around the world and across the previous 150 years. Spatial representation 26 

of global change was as high as 78% in the marine realm and 31% on land. Our findings suggest 27 

ways to improve the use of existing biodiversity data and better target future ecological 28 

monitoring. 29 

 30 

One sentence summary 31 

Biodiversity data capture most of the variation in global change but filling the remaining data 32 

gaps will allow us to better understand ongoing change and predict future trajectories for Earth’s 33 

biota. 34 

 35 

Introduction 36 

Human activities are reshaping the planet from the tropics to the poles and across land and sea1–37 

3, and the Earth’s biodiversity is shifting in response4. Parallel with this rapid biotic reorganization, 38 

an ecological data revolution is underway with more open-access data available now than ever 39 

before5,6. Large-scale data compilations (e.g., Living Planet7, BioTIME8, PREDICTS9, GBIF10, 40 

TetraDensity11) have been analyzed to test general patterns of biodiversity change across the 41 

world and under impacts of anthropogenic drivers4,12–16. Such studies have revealed a wide 42 
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spectrum of biodiversity change, including both increases and decreases of species richness 43 

and abundance, with trends quantified over time17–20, space16,21 and taxa22,23. The biodiversity 44 

data underlying many of these syntheses (e.g., time series, occurrence records and space-for-45 

time surveys) have already been shown to be biased geographically and taxonomically24–27. 46 

Surprisingly, much less attention has been given to whether the data are also biased with respect 47 

to the overall variation in global change drivers. Yet, knowing to what degree the sampling of 48 

biodiversity databases captures global change is vital for interpreting results derived from data 49 

syntheses and identifying future data gaps to be filled. The next stage of biodiversity syntheses, 50 

scenarios and conservation goals will be brought together in the Convention on Biological 51 

Diversity’s Post-2020 Global Biodiversity Framework. We argue that post-2020, biodiversity 52 

science needs to move towards improved representation in biodiversity data, including the 53 

heterogeneous distribution and sampling of global change. 54 

 55 

Insights from large-scale data syntheses inform trajectories of past, current and future change 56 

in the Earth’s biota4,7,28,29, as well as the development of indicators for global conservation 57 

policies30,31. To upscale the findings of syntheses of local-scale data to estimates of global or 58 

mean biodiversity change, the underlying data should be representative across multiple 59 

dimensions: space, time, taxonomic variation, as well as variation in the drivers of biodiversity 60 

change32–35. There is already recognition of the biases associated with space and 61 

geography24,26,32,34, time and historical baselines24,26,36,37 and taxonomy33,37,38. In contrast, sampling 62 

biases with respect to drivers of change are rarely emphasized in the existing literature (but see 63 

39 for spatio-taxonomic biases in North American butterfly occurrence records). At smaller spatial 64 

scales, sampling biases are well-documented in national monitoring schemes and citizen 65 

science data (e.g., showing over-representation of urban areas40 or under-representation of 66 

regions undergoing rapid climate change39). In contrast, at the larger spatial scales of data 67 
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syntheses, sampling biases associated with global change drivers remain unknown. Such 68 

knowledge gaps compromise our ability to draw broad inferences from the outcomes of 69 

syntheses and to quantify the shape of the relationship between driver intensity, such as extent 70 

of land-use change, and biodiversity, in order to identify ecological tipping points35,41–43. Thus, to 71 

interpret the findings of any data synthesis, we need to consider if the underlying data are 72 

sampled from sites with the full range of different driver intensities, or rather mostly include 73 

heavily impacted sites or intact wilderness areas4,35,44. Understanding the representativeness of 74 

biodiversity data across global change axes is essential to interpret estimates of regional or 75 

global-scale biodiversity change from compilations of local-scale data. 76 

 77 

Here, we quantify global change representation in biodiversity databases, present our 78 

perspective on capturing the representativeness of biodiversity data in large-scale syntheses 79 

and discuss implications for interpreting their findings. We focus on four aspects of 80 

representativeness – global change intensity over space, global change intensity over time, 81 

geography, and taxonomy. Particularly, we highlight the patterns in spatial and temporal 82 

sampling of global change drivers as under-explored types of bias. Our perspective serves two 83 

important purposes: 1) to highlight the variation in global change drivers that is already captured 84 

by global datasets and hence the driver impacts that we can quantify in ongoing studies, and 2) 85 

to identify the gaps in data representativeness that future studies, monitoring and data 86 

mobilization actions should target. By building biodiversity databases that are more 87 

representative of multiple axes of natural and anthropogenic variation, we can improve 88 

predictions of the global state and trends of biodiversity.  89 

 90 

We combined three of the largest, currently existing, open-access biodiversity databases (Living 91 

Planet7 - marine and terrestrial; BioTIME8 - marine and terrestrial; and PREDICTS9 - terrestrial) 92 
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with maps of global change drivers3. To measure how well each database captures variation in 93 

global change intensity over space, we first estimated driver variation around the world. We used 94 

data indicating the five big drivers of climate change, human use, human population density, 95 

pollution and invasive species pressure3 - and determined the ‘global change space’ using the 96 

dominant orthogonal axes of change (similar to the concept of trait or niche space45). We then 97 

mapped the sampling sites within each database onto the global change space to highlight the 98 

sampled region, as well as regions with under- or over- representation. To quantify the 99 

representation of global change intensity over time, we focused on climate change and land 100 

cover change across terrestrial sites with time series data from the Living Planet and BioTIME 101 

databases. At each site, we compared the amount of change that occurred before relative to 102 

during the periods of biodiversity monitoring. To estimate geographic representation, we 103 

mapped site locations of the three databases and determined sampling intensity across a spatial 104 

grid covering the planet. Finally, to estimate taxonomic representation, we calculated the 105 

percentage of known species included in the three databases.  106 

 107 

Biodiversity data capture spatial variation in global change space at sea, but not on land 108 

Overall, we found that biodiversity data from the Living Planet, BioTIME and PREDICTS 109 

databases capture a surprisingly high amount of the spatial variation in global change intensity 110 

around the planet, especially in the marine realm (Figure 1). There was between 71% and 78% 111 

overlap between global change space and the variation sampled by biodiversity databases in 112 

the marine realm, versus 17% to 31% in the terrestrial realm (Figure 1). Among the five global 113 

change drivers we tested, climate change and pollution in the marine realm were sampled the 114 

most representatively, suggesting that we can test the effects of these drivers with higher 115 

confidence and the underlying data could be used when creating global scenarios for the future 116 

(Figure 2, Extended Data Table S1). The terrestrial global change space was less well sampled 117 
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and the highest overlap with global change was 31% for the Living Planet Database (Figure 1). 118 

In fact, all three databases predominantly sampled places with medium to high human use and 119 

lacked data from regions with low land-use change and pollution. Similarly, across both realms, 120 

but particularly strongly over land, all databases were lacking sites that have experienced high 121 

amounts of climate change, reflecting geographic gaps in data collection in places like the Arctic 122 

(Figure 4). Following experimental design principles, manipulative studies to determine treatment 123 

effects often include a range of treatment levels from low to high in order to have sufficient 124 

statistical power46. We propose extending experimental design thinking to syntheses of 125 

observation studies that aim to attribute change to a driver by ensuring data are included from 126 

sites experiencing a range of driver intensities.  127 

 128 

Figure 1. Biodiversity data capture spatial variation in global change space better in the 129 

marine versus terrestrial realm. Figure shows Principal Component Analysis of the terrestrial 130 
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(panel a) and marine (panel b) magnitudes of human use, climate change, human population 131 

density, pollution and invasion potential across the locations of the Living Planet, BioTIME and 132 

PREDICTS databases as well as one million randomly sampled locations across the full extent 133 

of the globe (in grey). PCA axes omitted for visual clarity. Arrows show direction and magnitude 134 

of PCA scores. Human use, pollution and invasion potential were correlated with human 135 

population density. For details on the global change driver layers, see Bowler et al. 2020. 136 

Annotations show sample size (N) and the percentage overlap between the 95% prediction 137 

ellipses covered by random sampling of global change space and the variation in global change 138 

sampled by the different databases. 139 

 140 
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Figure 2. Higher magnitudes of global change drivers are overrepresented in biodiversity 141 

data. Panels a and b show distributions of the raw global change driver data from random 142 

sampling spanning the globe and sites from existing biodiversity databases. Panels c and d 143 

show effect sizes of general linear models comparing the magnitude of global change drivers 144 

(response variable) across the Living Planet, BioTIME and PREDICTS databases and a random 145 

sampling of the planet (categorical explanatory variable). Positive effect sizes indicate higher 146 

average magnitudes at the sampled sites within databases than in the random global sampling, 147 

and negative effect sizes indicate lower average magnitudes. Because of the large sample sizes 148 

included in the statistical models, the 95% credible intervals around the effect sizes were too 149 

small to be visualized in the figure. 150 

 151 

Biodiversity data often miss the temporal peaks of land cover change, but capture those 152 

of climate change 153 

We found mismatches between when global change occurred and the timing of biodiversity data 154 

collection, which were more frequent for land-use change than for climate change (Figure 3). 155 

While it is well-known that peak land-use conversion often predates ecological monitoring by 156 

centuries to millennia (e.g., 1,47,48), studies rarely quantify the magnitude of this mismatch or 157 

account for the long-term trajectory or historic baseline (but see 13,21). For drivers such as forest 158 

loss, the peak often occurred decades to centuries before the start of most biodiversity 159 

monitoring (Figure 3a-b, 13). In contrast, for climate warming, a driver that is more pronounced in 160 

more recent decades, we found that the majority of the Living Planet and BioTIME time series 161 

(76% and 56% of terrestrial time series, and 64% and 59% of marine time series, respectively) 162 

have experienced larger magnitudes of warming during the period of monitoring when compared 163 

to the same length of time preceding data collection. Thus, biodiversity data better captured 164 
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contemporary warming relative to other global change drivers (Figure 3c-f). Our results suggest 165 

that weaker or stronger relationships between biodiversity time series and drivers such as forest 166 

loss and climate change likely reflect differences in the time periods when each driver was most 167 

intense.  168 

 169 

The sampled variation in global change driver intensity over time can influence the strength of 170 

relationships detected in attribution analyses13,35,43 and can obscure assessment of biodiversity 171 

trends in ecosystems with tipping points49. Monitoring schemes that start well after the peak 172 

magnitude of a global change driver will likely underestimate that driver’s impact on 173 

biodiversity35. Equally, lagged biodiversity change might mean that the effects of land-use drivers 174 

like forestry or agriculture persist decades after harvest or farming has ceased13,43. These 175 

interactions between lagged biodiversity responses to disturbance and temporal variability of 176 

global change have produced heterogeneous and often non-linear biodiversity trends, as have 177 

been reported for many taxa, including birds50, moths20 and wasps51. Additionally, analyses of 178 

observational datasets with both short durations and little variation in global change intensity 179 

over time have reduced statistical power and thus might fail to detect the effect of global change 180 

drivers52. The temporal mismatch of ecological monitoring and global change drivers is hard to 181 

alleviate because new data collection cannot fill historic data gaps. To move forward, we suggest 182 

mobilizing as much existing data as possible and improving data accessibility, developing 183 

methods to infer data we cannot observe and including baselines and variation in driver intensity 184 

over time in statistical models. 185 
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 186 

Figure 3. The majority of primary forest was lost by the time ecological monitoring began 187 

whereas high magnitudes of climate warming predominantly occurred during the time 188 
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series. Panels a and b show the temporal trajectory of primary forest loss across sites part of 189 

the Living Planet (N = 4640) and BioTIME (N = 2191) databases. The primary forest cover 190 

estimates show proportions based on the LUH database47 and were calculated for cells of 191 

approximately ~96km2 around the centerpoint of each site. Historic human use time series data 192 

of sufficient duration were not available for the marine realm. The periods for comparison in 193 

panels c-e were the same as the duration of each time series and were always more than five 194 

years (for example for a time series starting in 2000 and ending in 2010, we used 1990-2000 as 195 

the comparison period). Slope values on the axes of panels c-e show changes in temperature in 196 

degrees Celsius per year, derived from general linear models estimating temperature as a 197 

function of year. For the terrestrial realm, surface air temperature was obtained from the CRU TS 198 

v4.05 database53 and for the marine realm, the sea surface temperature data was extracted from 199 

the NOAA Extended Reconstructed SST v5 database54. Slope and credible interval annotations 200 

on panels c-e show the posterior mean for the average temperature change in the period during 201 

monitoring relative to before monitoring.  202 

 203 

Geographic gaps in biodiversity data do not always result in gaps in global change space  204 

Underrepresentation in geographic space did not directly translate into gaps in global change 205 

space and thus an incomplete geographic sample can capture a surprising amount of variation 206 

in global change driver intensity (Figures 1-2, 4). Geographic gaps exist across all three 207 

databases we tested, particularly in tropical and high latitudes and in the deep sea. Regions 208 

including Northern Asia, Africa and South America had fewer sample sites than Europe and North 209 

America across all three databases. For example, there were twice as many European records 210 

as there were South American ones in the PREDICTS database, despite South America being 211 

almost twice the size of Europe. Europe and North America not only had more sampling across 212 

space, but repeat sampling was also more frequent (Figure 4a-e). Ecoregions in the marine realm 213 
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were better represented than those in the terrestrial realm, with data sampled in 69% and 48% 214 

of marine ecoregions in the Living Planet and BioTIME databases, compared with the same in 215 

16%, 30% and 32% of terrestrial ecoregions in the Living Planet, BioTIME and PREDICTS 216 

databases, respectively (Figure 4). Geographic biases are well-known caveats of biodiversity 217 

data (e.g., 24,26,55) and can be particularly problematic when extrapolating from patchy local-scale 218 

data to broad macroecological patterns4. For example, studies of insect biodiversity trends from 219 

a limited sample of geographic locations have found steep declines (e.g. 63 sites in Germany 220 

and 73 sites in predominantly North America and Europe in 56,57, respectively), whereas studies 221 

from larger and more geographically representative datasets have found no net change58. This 222 

nuance around the source locations of biodiversity data is often lost in media and public 223 

communication of population and biodiversity change, sometimes leading to misinterpretation 224 

of local declines as ubiquitous worldwide59–62. We suggest targeting future ecological monitoring 225 

to fill in the gaps in not just geographic but also global change space to better capture and 226 

communicate the variety of ways in which humans are altering biodiversity around the world. 227 
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 228 

Figure 4. Geographic and ecoregion gaps in biodiversity data exist in both the marine and 229 

terrestrial realms but they do not directly translate to gaps in global change variation. Maps 230 

on panels a-e show locations of sites from the Living Planet, BioTIME and PREDICTS databases 231 

with darker colors indicating higher numbers of sites. Panel f shows the intensity of cumulative 232 

global change (climate change, human use, human population density, pollution and invasion 233 

pressure combined) across the terrestrial and marine realms, based on3. Ecoregions are based 234 
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on the classification of 63. Number annotations on panel f show the number of ecoregions 235 

represented by at least one record and the total number of marine and terrestrial ecoregions on 236 

Earth. 237 

 238 

More and less well represented taxa may respond differently to global change drivers 239 

Taxonomic representation in biodiversity analyses could influence the detected global change 240 

responses, with certain taxa being more or less sensitive to global change64–67. For example, 241 

longer-lived species may have greater lagged responses to global change drivers such as land-242 

use change when compared with species with shorter generation times13. We found that birds 243 

were the best-, and arthropods the worst-represented taxa across the Living Planet, BioTIME 244 

and PREDICTS databases (Figure 5), as commonly found in ecological datasets8,9,65. Recently, 245 

invertebrates and in particular insects have been highlighted as a taxon experiencing potential 246 

steep declines in abundance and biomass56,57, yet such findings are confounded by the general 247 

paucity of invertebrate data60–62 (but see 68 for a recent effort in compiling insect data). In contrast, 248 

birds are the focus of many national and international monitoring schemes and for many species, 249 

research has established how populations are changing over time69. Concurrently, there are 250 

frequent calls for better sampling across the tree of life to capture the variety of ways in which 251 

species from the smallest ant to the biggest sequoias are being impacted by the Anthropocene 252 

(e.g.,70–76). Without representative taxonomic coverage, we could be failing to characterize the 253 

full balance between the winners and losers of particular global change driver77. While our 254 

findings show that the spatial variation in global change is broadly well-sampled by the three 255 

databases we tested (Figure 1), it is important to highlight that the majority of those biodiversity 256 

records are for mammals, birds and plants. Consequently, global change space remains poorly 257 

represented for less studied taxa like terrestrial invertebrates for which representation was only 258 

3.2% for time-series data (BioTIME) and 29.4% for space-for-time data (PREDICTS, Extended 259 
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Data Figure 1). Extending findings from the limited representation of the planet’s diversity to 260 

cross-taxa scenarios of future change should be done with caution and placed in the context of 261 

which species have the most records within the database78–80. 262 

 263 
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Figure 5. Taxonomic representation of biodiversity data is highest for birds and mammals 264 

and lowest for arthropods. The data available across biodiversity databases do not reflect the 265 

taxonomic diversity of the tree of life and millions of species are not represented by even a single 266 

record (b). Percentages in a show how many of the known species in each taxon are represented 267 

by at least one record in the Living Planet, BioTIME and PREDICTS databases. Panel b shows 268 

how monitored species fit within the larger tree of life and is based on catalogued and predicted 269 

species in 81. The “Monitored” category combines the species represented in the Living Planet, 270 

BioTIME and PREDICTS databases and the percentages show how many of the predicted 271 

species feature at least once in biodiversity databases. The numbers of known species per taxa 272 

were extracted from the 2019 edition of the Catalogue of Life (http://www.catalogueoflife.org). 273 

The values for the birds and mammals in the Living Planet and BioTIME database include both 274 

marine and terrestrial species. Note that the BioTIME database additionally include records for 275 

marine invertebrates, benthos, marine plants, freshwater plants, freshwater invertebrates and 276 

freshwater fish.  277 

 278 

Recommendations for capturing the spectrum and distribution of global change across 279 

space, time and the tree of life 280 

Understanding ongoing and future biodiversity change can be improved by quantitatively 281 

accounting for the representation of biodiversity data across global change space, over the 282 

temporal trajectory of drivers, across geographic regions and across the tree of life. Together, 283 

our four recommendations provide guidance on using existing observational data, determining 284 

where to locate future ecological monitoring and designing experimental studies of novel global 285 

change space without modern day analogues. 286 

 287 

Recommendation 1: Test the global change representation of databases and syntheses 288 
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Extending our thinking beyond just geographic, temporal and taxonomic bias to include global 289 

change variation can contextualize research findings from biodiversity data. The different relative 290 

positions of the current forms of global biodiversity databases within global change space might 291 

explain some of the differences in research findings. For example, predominantly negative 292 

impacts of intensifying land-use change have been found using PREDICTS16, both negative and 293 

positive influences of forest loss based on Living Planet and BioTIME13 and stronger impacts of 294 

temperature change on richness, composition and abundance trends in BioTIME14. In this study, 295 

we present a framework to test data representation across different global change drivers over 296 

space and time that can be applied to other datasets. We recommend that future syntheses 297 

explicitly include tests of the representation of their data for the global change drivers being 298 

tested in addition to highlighting other data gap26,33,38,65,71–74. 299 

 300 

Recommendation 2: Account for data representation across multiple axes in existing 301 

syntheses of observational data 302 

Beyond testing for global change representation, studies should ideally account for the 303 

representation of their data for the global change driver(s) of interest. A variety of approaches 304 

could be used, including the following: 1) Randomized subsampling can help balance uneven 305 

data where certain types of global change are overrepresented while others are 306 

underrepresented37, however, this has the disadvantage of discarding potentially valuable data. 307 

2) Statistical weightings have been used to adjust the representativeness of the data sample 308 

e.g., by up-weighting under-represented regions or taxa (e.g., as employed by the Living Planet 309 

Index82 and often with citizen science data31,73) but this approach can over emphasize the effect 310 

of very small portions of the overall data83 and potentially inflate errors associated with those 311 

data36,60,83,84. 3) Bias can be explicitly modelled using fixed effects for continuous variables of 312 

driver intensity and random effects to represent geographic, temporal and taxonomic structure 313 
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(e.g., as in 85), but care must be taken to ensure all uncertainties are propagated through to the 314 

global mean estimate86–89. 4) Baselines, time since disturbance and changing intensity of impact 315 

of global change drivers can be explicitly incorporated into analyses of time series data13,43. 316 

Analyses that explicitly incorporate global change representation will provide more accurate 317 

attribution of biodiversity change to global change drivers. 318 

 319 

Recommendation 3: Prioritize new data collection for underrepresented parts of the global 320 

change spectrum 321 

A lot of the focus in the literature is on filling geographic24,26,32,34, temporal24,26,36,37, and 322 

taxonomic33,37,38 biodiversity data gaps, but this focus should be shifted towards prioritizing 323 

regions that undersample global change. For example, we are currently lacking biodiversity data 324 

from places with high magnitudes of climate change including Arctic and boreal forest regions, 325 

as well as tropical regions that are currently entering non-analog climate spac90. These data are 326 

important not just for understanding current effects of climate change, but also as sentinels of 327 

future change around the world90–92. Another underrepresented part of the global change 328 

spectrum is relatively intact sites with low human impact (Figures 1-2), which provide a necessary 329 

comparator for testing the impacts of human use, pollution and other global change drivers. 330 

Although we cannot achieve greater global change representation of historic and current data, 331 

the monitoring programs of the future can prioritize global change representation, while also 332 

filling geographic and taxonomic gaps. 333 

 334 

Recommendation 4: Design experiments to study novel global change space 335 

Global change space is not static and to make scenarios for future biodiversity trends, we need 336 

to sample not only current variation in global change drivers, but also future combinations of 337 

global change drivers93. We suggest that using projections for climate change and human 338 
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impact, such as IPCC2 and HYDE48, we can compute future global change space and determine 339 

novel environments without current-day analogues and where those novel environments will 340 

most likely occur. Designing lab and field experiments that test novel combinations and 341 

magnitudes of global change drivers can provide a preview of biodiversity responses to future 342 

environmental conditions. Prioritizing biodiversity monitoring where novel environments will likely 343 

develop will ensure that future biodiversity syntheses and impact assessments will represent 344 

future as well as current global change. 345 

 346 

Conclusion and ways forward 347 

Predicting future biodiversity change and its consequences for ecosystem functions and 348 

services to society is an urgent scientific challenge. Global biodiversity monitoring needs to 349 

capture a representative sample of the world over both space and time, as well as the full 350 

spectrum of global change drivers. In this study, we quantified four types of representativeness 351 

- global change intensity over space, global change intensity over time, geography, and 352 

taxonomy (Figures 1-5). Together, our findings demonstrate that global biodiversity datasets 353 

capture a large proportion of the intensity of global change, but not uniformly. Over space, 354 

existing data capture up to 78% of the spatial variance in global change drivers, but more so at 355 

sea than on land (78% versus 31%). Over time, monitoring often starts after the peak intensity 356 

in environmental change for drivers like primary forest loss13, but more closely coincides with the 357 

period of rapid climate change (Figure 3). We identify four recommendations to test and account 358 

for current and future global change representation: 1) test the global change representation of 359 

databases and syntheses, 2) Account for data representation across multiple axes in existing 360 

syntheses of observational data, 3) Prioritize new data collection for underrepresented parts of 361 

the global change spectrum, and 4) Design experiments to study novel global change space. 362 

 363 
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The biodiversity synthesis literature must progress beyond merely discussing bias to instead 364 

quantify and account for the global change representation of biodiversity data. By considering 365 

all axes of the global change spectrum, we can strengthen the empirical evidence for the next 366 

stage of IPBES global biodiversity assessments and the global biodiversity indicators for the 367 

Post-2020 Global Biodiversity Framework. With continued calls for more biodiversity data 368 

(e.g.,4,94,95), we especially advocate for future biodiversity monitoring to target not just geographic 369 

and taxonomic gaps, but also improved representation of global change.370 

371 

Methods 372 

Databases of ecological monitoring 373 

We combined three of the largest biodiversity databases - Living Planet (7,340 time series 374 

spanning 1970-2014), BioTIME (44,532 time series spanning 1858-2017) and PREDICTS (468 375 

studies spanning 1984-2013). The Living Planet database7 includes time series data of individual 376 

species’ abundance for vertebrate taxa for the terrestrial, marine and freshwater realms 377 

(freshwater realm data were excluded for the purposes of this analysis because of lack of global 378 

change driver data for freshwater environments). The BioTIME database8 is also a compilation 379 

of time series but of ecological assemblages for vertebrate, invertebrate and plant taxa across 380 

the marine and terrestrial realms. The PREDICTS database9 includes space-for-time comparison 381 

studies testing the effects of land-use change on vertebrates, invertebrates and plants and thus 382 

focuses on the terrestrial realm. 383 

 384 

Databases of global change 385 

We used the 16 marine and terrestrial global change driver layers compiled by Bowler et al. 20203 386 

(Extended Data Table S2). We selected these layers because they had been harmonized across 387 

both realms and hence were most suitable for our global analysis. As in Bowler et al., these 388 
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layers were grouped into five focal drivers: human use (land-use for the terrestrial realm, and 389 

exploitation for the marine realm), climate change, human population density, pollution and 390 

invasion potential. The driver data were harmonized to a standard spatial grid with a resolution 391 

of 100 km2 and were aggregated over the time period between 1990 and 2010. With the 392 

exception of forest loss and climate change, the driver data were not available on an annual time 393 

step. Data limitations are particularly pronounced for the marine realm, as it is harder to monitor 394 

global change at sea than over land. For details on the individual layers forming the global change 395 

data, including their resolutions and temporal coverage, see Extended Data Table S2. We used 396 

the Land Use Harmonisation (LUH) database of reconstructed historical land cover at a 0.25° 397 

resolution47 to extract primary forest cover estimates over a long historic period (from the year 398 

800 to 2014). For the terrestrial realm, we obtained monthly surface air temperature at a spatial 399 

resolution of 0.5° from the CRU TS v4.05 database53 and for the marine realm, we extracted sea 400 

surface temperature at a spatial resolution of 2° from the NOAA Extended Reconstructed SST 401 

v5 database54. For both surface air temperature and sea surface temperature, we aggregated 402 

the monthly data into yearly averages for time periods matching the timing of biodiversity time 403 

series as well as the period of same duration preceding the monitoring (e.g., for a time series 404 

from 2000 to 2010, we extracted data from 1990 to 2000 and from 2000 to 2010). 405 

 406 

Mapping ecological monitoring in global change space 407 

We combined the geographical coordinates of all spatially-explicit monitoring sites in the Living 408 

Planet, BioTIME and PREDICTS databases. For each sampling site, we extracted the intensity 409 

of 16 global change layers as well as their cumulative magnitudes. The driver data matching the 410 

sites in each database are available in an open-access repository (see Code and Data Availability 411 

section). The estimates for the magnitudes of each driver were standardized between 0 and 1 to 412 

make them comparable. We used a Principal Component Analysis (PCA) to map global change 413 
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space within the two dominant orthogonal axes (similar to trait space45), which explained 81% 414 

of the variation, and visualized the sampled sites in this global change space. We extracted driver 415 

intensity for one million simulated random locations spanning the globe to represent an unbiased 416 

sample of the marine and terrestrial surface of the world. We used this random sample as a 417 

comparison for quantifying the representation of global change variation in biodiversity data. To 418 

calculate the percentage overlap between global change space and the area within it occupied 419 

by the three databases, we used the package SIBER v.2.1.6.996 and 95% prediction ellipses. 420 

The overlap was calculated using ellipses based on the climate change and human use variables, 421 

since human population density, pollution and invasion pressure were positively correlated with 422 

human use. We visualized marine and terrestrial global change space separately because of 423 

known differences in the global change driver variables capturing human impact across realms 424 

and suspected differences in the patterns of sampling effort3. 425 

 426 

To statistically compare the intensity of global change drivers around the world and in locations 427 

with biodiversity data, we used two Bayesian general linear models (one for the marine and one 428 

for the terrestrial realm) with driver intensity as the response and an interaction term between 429 

driver type and database as the predictor. Driver intensity values for each driver were 430 

standardized between zero and one to make them comparable. Database represented a four-431 

level categorical variable (Random global sampling, Living Planet, BioTIME or PREDICTS 432 

database; in the marine model the PREDICTS database was omitted since it only covers the 433 

terrestrial realm). The ‘Random global sampling’ level was used as the reference so the 434 

coefficients for the three databases represent differences from the random global sampling. We 435 

fitted our model using the package brms v.2.15.097 and the default weakly informative priors. We 436 

considered credible intervals around the effect size (posterior mean) that do not overlap zero to 437 

indicate that global change on sites with existing biodiversity data differs from random sampling. 438 
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When effect sizes are negative this indicates that sites with existing biodiversity data 439 

underestimate driver intensity and when effect sizes are positive this indicates that sites with 440 

existing biodiversity data overestimate driver intensity. 441 

 442 

Quantifying mismatches between peak driver intensity and ecological monitoring 443 

To quantify how well biodiversity captured variation in global change over time, we focused on 444 

changes in primary forest cover derived from the LUH database47 and in temperature, derived 445 

from the CRU TS v.4.05 database53 for the terrestrial realm and from the NOAA Extended 446 

Reconstructed SST v5 database54 for the marine realm. We chose these focal drivers because 447 

they explain large amounts of the variation in global change in the terrestrial realm3 and they 448 

have long-enough temporal data to allow us to determine the trajectory of change and assess 449 

its match with the timing of biodiversity data collection.  450 

 451 

We visualized primary forest cover from the year 800 to 2014 for the location of each terrestrial 452 

site in the Living Planet and BioTIME databases and indicated when the monitoring began at 453 

each site. We were unable to complete a similar analysis for the marine realm because there are 454 

no available temporal data for human use drivers like fishing of a sufficiently high temporal and 455 

spatial resolution. We extracted monthly mean temperature data for the same locations and 456 

summarized it as yearly averages. We then compared the slopes of temperature change during 457 

the biodiversity monitoring with the slopes of temperature change in the period preceding the 458 

monitoring (the two comparison periods were of equal length and always more than five years). 459 

For the comparison, we used general linear models predicting temperature change as a function 460 

of period, a two-level categorical variable with the levels of before and during monitoring. 461 

 462 

Determining geographic and ecoregion representation 463 
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We mapped the location of sampling sites within the Living Planet, BioTIME and PREDICTS 464 

databases. Ecoregion polygons were retrieved for the terrestrial98 and marine99 realms. We then 465 

counted the number of ecoregions that were sampled by each database (sampling indicates at 466 

least one record in a given ecoregion). 467 

 468 

Determining taxonomic representation 469 

To quantify taxonomic representation, we extracted the numbers of known species per taxa from 470 

the 2019 edition of the Catalogue of Life (http://www.catalogueoflife.org) and then compared 471 

them to the numbers of distinct species recorded in the Living Planet, BioTIME and PREDICTS 472 

databases. We quantified taxonomic representation as percentages of species which have at 473 

least one record in the respective databases. 474 

 475 

Data availability 476 

All data are publicly available. Population and biodiversity time-series data are freely available in 477 

the Living Planet and BioTIME Databases (see references for details on data collection). The 478 

Living Planet Database can be accessed on http://www.livingplanetindex.org/data_portal. The 479 

BioTIME Database can be accessed on Zenodo (https://doi.org/10.5281/zenodo.1211105) or 480 

through the BioTIME website (http://biotime.st-andrews.ac.uk/). PREDICTS can be downloaded 481 

from https://www.predicts.org.uk/pages/outputs.html. The database of biodiversity data 482 

locations and associated global change driver magnitudes we compiled is available on GitHub 483 

(https://github.com/gndaskalova/GlobalChangeSpace).  484 

 485 

Code availability 486 

The R code for data manipulation, analyses and data visualization is available on GitHub 487 

(https://github.com/gndaskalova/GlobalChangeSpace). 488 
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