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Despite having established its usefulness in the last ten years, the decomposition of ecological networks
in components allowing to measure their 𝛽-diversity retains some methodological ambiguities. No-
tably, how to quantify the relative effect of mechanisms tied to interaction rewiring vs. species turnover
has been interpreted differently by different authors. In this contribution, I present mathematical ar-
guments and numerical experiments that should (i) establish that the decomposition of networks as
it is currently done is indeed fit for purpose, and (ii) provide guidelines to interpret the values of the
components tied to turnover and rewiring.

Ecological networks are variable both in time and space (Poisot et al. 2015; Trøjelsgaard &Olesen 2016)
- this variability motivated the emergence of methodology to compare ecological networks, including
in a way that meshes with the core concept for the comparison of ecological communities, namely
𝛽-diversity (Poisot et al. 2012). The need to understand network variability through partitioning in
components equivalent to 𝛼, 𝛽, and 𝛾 diversities is motivated by the prospect to further integrate the
analysis of species interactions to the analysis of species compositions. Because species that make up
the networks do not react to their environment in the same way, and because interactions are only
expressed in subsets of the environments in which species co-occurr, the 𝛽-diversity of networks may
behave in complex ways, and its quantification is likely to be ecologically informative.

Poisot et al. (2012) and Canard et al. (2014) have suggested an approach to 𝛽-diversity for ecological
networks which is based on the comparison of the number of shared and unique links among species
within a pair of networks. Their approach differentiates this sharing of links between those established
between species occurring in bothnetworks, and those establishedwith at least oneunique species. This
framework is expressed as the decomposition 𝛽𝑤𝑛 = 𝛽𝑜𝑠+𝛽𝑠𝑡 , namely the fact that network dissimilarity
(𝛽𝑤𝑛) has a component that can be calculated directly from the dissimilarity of interactions between
shared species (𝛽𝑜𝑠), and a component that cannot (𝛽𝑠𝑡). Presumably, the value of these components for
a pair of networks can generate insights about the mechanisms involved in dissimilarity.

This approach has been widely adopted since its publication, with recent examples using it to under-
stand the effect of fire on pollination systems (Baronio et al. 2021); the impact of rewiring on spatio-
temporal network dynamics (Campos-Moreno et al. 2021); the effects of farming on rural and urban
landscapes on species interactions (Olsson et al. 2021); the impact of environment gradients on multi-
trophic metacommunities (Ohlmann et al. 2018); and as a tool to estimate the sampling completeness
of networks (Souza et al. 2021). It has, similarly, received a number of extensions, including the ability
to account for interaction strength (Magrach et al. 2017), the ability to handle probabilistic ecological
networks (Poisot et al. 2016), and the integration into the Local Contribution to Beta Diversity (Legen-
dre & De Cáceres 2013) approach to understand how environment changes drive network dissimilarity
(Poisot et al. 2017).
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Figure 1 The dissimilarity of two networks
(green and orange) of equal richness 𝑆 (this
also holds for unequal richness) depends on
three families of interactions: those that are
unique because of species turnover (in a
pale color), those that are unique because of
rewiring (in a saturated color), and those that
are shared (in black). Assuming that the
chance of sharing a species between the two
networks is 𝑝, then there can be at most 𝑝2×𝑆2
shared links – for this reason, overall network
dissimilarity (𝛽𝑤𝑛) will have a component tied
to species turnover, which is 𝛽𝑠𝑡 .

Yet, the precise meaning of 𝛽𝑠𝑡 , namely the importance of species turnover in the overall dissimilarity,
has been difficult to capture, and a source of confusion for some practitioners. This is not particularly
surprising, as this component of the decomposition responds to unique species introducing their unique
interactions both between themselves, and with species that are common to both networks fig. 1. For
this reason, it is important to come up with guidelines for the interpretation of this measure, and how
to use it to extract ecological insights.

Furthermore, much like the definition of 𝛽-diversity in all its forms is a contentious topic amongst com-
munity ecologists (see e.g. Tuomisto 2010), the 𝛽-diversity of networks has been submitted to method-
ological scrutiny over the years. A synthesis of some criticisms, related to the correct denominator to
use to express the proportion of different links, has recently been published (Fründ 2021). It argues
that the calculation of network dissimilarity terms as originally outlined by Poisot et al. (2012) is in-
correct, as it can lead to over-estimating the role of interactions between shared species in a network
(“rewiring”), and therefore underestimate the importance of species turnover across networks. Asmist-
understanding either of these quantities can lead to biased inferences about themechanisms generating
network dissimilarity, it is important to assess how the values (notably of 𝛽𝑜𝑠, and therefore of 𝛽𝑠𝑡) react
to methodological choices.

Here, I present a mathematical analysis of the Poisot et al. (2012) method, explain how information
about species turnover and link rewiring can be extracted from its decomposition, and conduct numer-
ical experiments to guide the interpretation of the 𝛽-diversity values thus obtained (with a specific focus
on 𝛽𝑠𝑡). These numerical experiments establish three core facts. First, the decomposition adequately
captures the relative roles of species turnover and interaction rewiring; second, the decomposition re-
sponds to differences in network structure (like connectance) as expected; finally, the decomposition
more accurately captures rewiring than the proposed alternative using a different denominator put forth
by Fründ (2021).

0.1. Partitioning network dissimilarity The approach to quantifying the difference between pairs of
networks established in Poisot et al. (2012) is a simple extension of the overall method by Koleff et al.
(2003) for species dissimilarity based on presence-absence data. The objects to compare, 𝑋1 and 𝑋2, are
partitioned into three values, 𝑎 = |𝑋1∪𝑋2|, 𝑏 = |𝑋2 ⧵𝑋1|, and 𝑐 = |𝑋1 ⧵𝑋2|, where | ⋅ | is the cardinality
of set ⋅ (the number of elements it contains), and ⧵ is the set substraction operation. In the perspective
of species composition comparison, 𝑋1 and 𝑋2 are the sets of species in either community, so that if
𝑋1 = {𝑥, 𝑦, 𝑧} and 𝑋2 = {𝑣, 𝑤, 𝑥, 𝑦}, we have 𝑋1 ∪ 𝑋2 = {𝑣, 𝑤, 𝑥, 𝑦, 𝑧}, 𝑋1 ∩ 𝑋2 = {𝑥, 𝑦}, 𝑋2 ⧵ 𝑋1 = {𝑣, 𝑤},
and 𝑋1 ⧵𝑋2 = {𝑧}. The core message of Koleff et al. (2003) is that the overwheling majority of measures
of 𝛽-diversity can be re-expressed as functions that operate on the cardinality of these sets – this allows
to focus on the number of unique and common elements, as outlined in fig. 1.
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0.1.1 Re-expressing networks as sets Applying this framework to networks requires a few addi-
tional definitions. Although ecologists tend to think of networks as their adjacency matrix (as is pre-
sented in fig. 1), this representation is not optimal to reach a robust understanding of which elements
should be counted as part of which set whenmeasuring network dissimilarity. For this reason, we need
fall back on the definition of a graph as a pair of sets, wherein 𝒢 = (𝑉, 𝐸). These two components𝑉 and
𝐸 represent vertices (nodes, species) and edges (interactions), where 𝑉 is specifically a set containing
the vertices of 𝒢, and 𝐸 is a set of ordered pairs, in which every pair is composed of two elements of 𝑉;
an element {𝑖, 𝑗} in 𝐸 indicates that there is an interaction from species 𝑖 to species 𝑗 in the network 𝒢.
The adjancency matrix 𝐀 of this network would therefore have a non-zero entry at 𝐴𝑖𝑗 .

In the context of networks comparison (assuming the networks to compare are ℳ and 𝒩), we can
further decompose the contents of these sets as

ℳ = (𝑉𝑐 ∪ 𝑉𝑚, 𝐸𝑐 ∪ 𝐸𝑠𝑚 ∪ 𝐸𝑢𝑚) ,

and

𝒩 = (𝑉𝑐 ∪ 𝑉𝑛, 𝐸𝑐 ∪ 𝐸𝑠𝑛 ∪ 𝐸𝑢𝑛) ,

where 𝑉𝑐 is the set of common species, 𝑉𝑚 and 𝑉𝑛 are the species belonging only to network 𝑚 and 𝑛
(respectively), 𝐸𝑐 are the common edges, and 𝐸𝑠𝑚 and 𝐸𝑢𝑚 are the interactions unique to 𝑘 involving,
respectively, only species in 𝑉𝑐, and at least one species from 𝑉𝑚 (the same notation applies for the
subscript 𝑛).

0.1.2 Defining the partitions from networks as sets The metaweb (Dunne 2006), which is to say
the entire regional species pool and their interaction, can be defined asℳ ∪𝒩 (this operation is com-
mutative), which is to say

ℳ ∪𝒩 = (𝑉𝑐 ∪ 𝑉𝑚 ∪ 𝑉𝑛, 𝐸𝑐 ∪ 𝐸𝑠𝑚 ∪ 𝐸𝑢𝑚 ∪ 𝐸𝑠𝑛 ∪ 𝐸𝑢𝑛) .

This operation gives us an equivalent to 𝛾-diversity for networks, in that the set of vertices contains all
species from the two networks, and the set of edges contains all the interactions between these species.
If, further, we make the usual assumption that only species with at least one interaction are present in
the set of vertices, then all elements of the set of vertices are present at least once in the set of edges,
and the set of vertices can be entire reconstructed from the set of edges. Although measures of network
𝛽-diversity operate on interactions (not species), this property is maintained at every decomposition we
will describe next.

We can similarly define the intersection (also commutative) of two networks:

ℳ ∩𝒩 = (𝑉𝑐, 𝐸𝑐) .

Thedecomposition of𝛽-diversity fromPoisot et al. (2012) uses these components tomeasure𝛽𝑜𝑠 (“rewiring”),
and 𝛽𝑤𝑛 (the overall dissimilarity including non-shared species). We can express the components 𝑎, 𝑏,
and 𝑐 of Koleff et al. (2003) as the cardinality of the following sets:

Component 𝑎 𝑏 𝑐

𝛽𝑜𝑠 𝐸𝑐 𝐸𝑠𝑛 𝐸𝑠𝑚
𝛽𝑤𝑛 𝐸𝑐 𝐸𝑠𝑛 ∪ 𝐸𝑢𝑛 𝐸𝑠𝑚 ∪ 𝐸𝑢𝑚

It is fundamental to note that these components can be measured entirely from the interactions, and
that the number of species in either network are never directly involved.

In the following sections, I present a series of calculations aimed at expressing the values of 𝛽𝑜𝑠, 𝛽𝑤𝑛,
and therefore 𝛽𝑠𝑡 as a function of species sharing probability (as a proxy for mechanisms generating
turnover), and link rewiring probability (as a proxy for mechanisms generating differences in interac-
tions among shared species). These calculations are done using Symbolics.jl (Gowda et al. 2021),
and subsequently transformed in executable code for Julia (Bezanson et al. 2017), used to produce the
figures.
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0.1.3 Quantifying the importance of species turnover The difference between 𝛽𝑜𝑠 and 𝛽𝑤𝑛 stems
from the species dissimilarity betweenℳ and𝒩, and it is easier to understand the effect of turnover
by picking a dissimilarity measure to work as an exemplar. We will use 𝛽 = (𝑏+ 𝑐)∕(2𝑎+ 𝑏+ 𝑐), which
in the Koleff et al. (2003) framework is (Wilson & Shmida 1984). This measure returns values in [0, 1],
with 0meaning complete similarity, and 1meaning complete dissimilarity.

Based on a partition between three sets of cardinality 𝑎, 𝑏, and 𝑐,

𝛽𝑡 =
𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
.

So as to simplify the notation of the following section, I will introduce a series of new variables. Let
𝐶 = |𝐸𝑐| be the number of links that are identical between networks (as a mnemonic, 𝐶 stands for
“common”); 𝑅 = |𝐸𝑠𝑛 ∪𝐸𝑠𝑚| be the number of links that are not shared, but only involve shared species
(i.e. links fromℳ∪𝒩 established between species fromℳ∩𝒩; as amnemonic, 𝑅 stands for “rewired”);
and 𝑇 = |𝐸𝑢𝑛 ∪ 𝐸𝑢𝑚| the number of links that are not shared, and involve at least one unique species
(as a mnemonic, 𝑇 stands for “turnover”).

There are two important points to note here. First, as mentionned earlier, the number or proportion of
species that are shared is not involved in the calculation. Second, the connectance of either network
is not involved in the calculation. That all links counted in e.g. 𝑈 come from ℳ, or that they are
evenly distributed betweenℳ and𝒩, has no impact on the result. This is a desirable property of the
approach: whatever quantitative value of the components of dissimilarity can be interpreted in the light
of the connectance and species turnover without any risk of circularity; indeed, I present a numerical
experiment where connectance varies independently later in this manuscript, reinforcing this point.

The final component of network dissimilarity in Poisot et al. (2012) is 𝛽𝑠𝑡 , i.e. the part of 𝛽𝑤𝑛 that is
not explained by changes in interactions between shared species (𝛽𝑜𝑠), and therefore stems from species
turnover. This fraction is defined as 𝛽𝑠𝑡 = 𝛽𝑤𝑛 − 𝛽𝑜𝑠. The expression of 𝛽𝑠𝑡 does not involve a partition
into sets that can be plugged into the framework of Koleff et al. (2003), because the part ofℳ and𝒩 that
are composed of their unique species cannot, by definition, share interactions. One could, theoretically,
express these asℳ ⧵𝒩 = (𝑉𝑚, 𝐸𝑢𝑚) and𝒩 ⧵ℳ = (𝑉𝑣 , 𝐸𝑢𝑛) (note the non-commutativity here), but
the dissimilarity between these networks is trivially maximal for the measures considered.

Using the 𝛽𝑡 measure of dissimilarity, we can re-write (using the notation with 𝐴, 𝑆, and 𝑈)

𝛽𝑜𝑠 =
𝑅

2𝐶 + 𝑅 ,

and

𝛽𝑤𝑛 =
𝑅 + 𝑇

2𝐶 + 𝑅 + 𝑇 .

Note that 𝛽𝑜𝑠 has the form 𝑥∕𝑦 with 𝑥 = 𝑆 and 𝑦 = 2𝐴 + 𝑆, and 𝛽𝑤𝑛 has the form (𝑥 + 𝑘)∕(𝑦 + 𝑘), with
𝑘 = 𝑈. As long as 𝑘 ≥ 0, it is guaranteed that 𝛽𝑤𝑛 ≥ 𝛽𝑜𝑠, and therefore that 0 ≥ 𝛽𝑠𝑡 ≥ 1; as 𝐶, 𝑇, and 𝑅
are cardinalities of sets, they are necessarily satisfying this condition.

We can get an expression for 𝛽𝑠𝑡 , by bringing 𝛽𝑜𝑠 and 𝛽𝑤𝑛 to a common denominator and simplifying the
numerator:

𝛽𝑠𝑡 =
2𝐶𝑇

(2𝐶 + 𝑅)(2𝐶 + 𝑅 + 𝑇)
.

Note that this value varies in a non-monotonic way with regards to the number of interactions that are
part of the common set of species – this is obvious when developing the denominator into 4𝐶2 + 𝑅2 +
4𝐶𝑅 + 2𝐶𝑇 + 𝑅𝑇. As such, we expect that the value of 𝛽𝑠𝑡 will vary in a hump-shaped way with the
proportion of shared interactions. For this reason, Poisot et al. (2012) suggest that 𝛽𝑠𝑡∕𝛽𝑤𝑛 (alt. 1 −
𝛽𝑜𝑠∕𝛽𝑤𝑛) is a better indicator of the relative importance of turnover processes on network dissimilarity.
This can be calculated as

𝛽𝑠𝑡
𝛽𝑤𝑛

= 2𝐶𝑇
(2𝐶 + 𝑆)(2𝐶 + 𝑅 + 𝑇)

× 𝑅 + 𝑇
2𝐶 + 𝑅 + 𝑇 ,
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which reduces to

𝛽𝑠𝑡
𝛽𝑤𝑛

= 2𝐶𝑇
(2𝐶 + 𝑅)(𝑅 + 𝑇)

.

The roots of this expression are 𝐶 = 0 (the turnover of species has no contribution to the difference
between 𝛽𝑤𝑛 and 𝛽𝑜𝑠 if there are no shared species, and therefore no rewiring), and for 𝑇 = 0 (the
turnover of species has no contribution if all species are shared).

0.2. Quantifying the response of network beta-diversity to souces of variation

0.2.1 The relative effect of species turnover and link rewiring As the decomposition of beta di-
versity into sets presented above reveals, the value of the components 𝛽𝑜𝑠 and 𝛽𝑠𝑡 will respond to two
family of mechanisms: the probability of sharing a species between the two networks, noted 𝑝, which
will impose bounds on the value of 𝑇; and the probability of an interactions between shared species not
being rewired, noted 𝑞, which will impose bounds on the value of 𝐶. These two probabilities represent,
respectively, mechanisms involved in species turnover and link turnover, as per Poisot et al. (2015),
and the aim of this numerical experiment is to describe how these families of processes drive network
dissimilarity.

In order to simplify the calculations, I make the assumptions that the networks have equal species
richness (noted 𝑆), so that 𝑆1 = 𝑆2 = 𝑆, and the same connectance (noted 𝜌), so that 𝜌1 = 𝜌2 = 𝜌. As a
consequence, the two networks have the same number of links 𝐿 = 𝜌× 𝑆21 = 𝜌× 𝑆22 . The assumption of
equal connectance will be relaxed in a subsequent numerical experiment. These simplifications allow
to express the size of 𝐶, 𝑅, and 𝑇 only as functions of 𝑝 and 𝑞, as they would all be multiplied by 𝐿,
which can therefore be dropped from the calculation.

The value of 𝐶 is the proportion of shared species 𝑝2, as per fig. 1, times the proportion of shared links,
𝑞, giving 𝐶 = 𝑞𝑝2. Each network has 𝑟 = 𝑝2 − (𝑞𝑝2) rewired links, which leads to 𝑅 = 2𝑟 = 2𝑝2(1 − 𝑞).
Finally, we can get the number of unique links in each network 𝑡 by substracting 𝐶 + 𝑟 from the total
number of links (which, since we scale everything by 𝐿, is 1), yielding 𝑡 = 1 − 𝑞𝑝2 − 𝑝2 + 𝑞𝑝2, which
is 𝑡 = 1 − 𝑝2. The total number of unique links due to turnover is 𝑇 = 2𝑡 = 2(1 − 𝑝2). It is important
to note that 𝐶 and 𝑅, namely the number of links that are kept or rewired, depends on species sharing
(𝑝), as the possible size of the overlap between the two networks does, but the quantity of links that are
different due to turnover does not depends on rewiring.

With the values of 𝐶, 𝑅, and 𝑇, we can write

𝛽𝑜𝑠 =
2𝑝2(1 − 𝑞)

2𝑝2𝑞 + 2𝑝2(1 − 𝑞)
=

1 − 𝑞
𝑞 + 1 − 𝑞 = (1 − 𝑞) .

This is a first noteworthy result: the value of 𝛽𝑜𝑠, in the ideal scenario of equal links and richness, is
the probability of link re-wiring. Because this is true regardless of the value of 𝑝 (species turnover), this
makes 𝛽𝑜𝑠 a strongly ecologically informative component.

Similarly, we can write

𝛽𝑤𝑛 =
2𝑝2(1 − 𝑞) + 2(1 − 𝑝2)

2𝑝2𝑞 + 2𝑝2(1 − 𝑞) + 2(1 − 𝑝2)
=

𝑝2(1 − 𝑞) + (1 − 𝑝2)
𝑝2𝑞 + 𝑝2(1 − 𝑞) + (1 − 𝑝2)

= 1 − 𝑞𝑝2 .

The overall dissimilarity responds to 𝑞 (rewiring) linerarly, and to 𝑝 quadratically (which is expected
assuming unipartite networks, in which species are present on both sides).

Expressing 𝛽𝑜𝑠 and 𝛽𝑤𝑛 as functions of 𝑝 and 𝑞 trivializes the search for the expression of 𝛽𝑠𝑡 , which is

𝛽𝑠𝑡 = 1 − 𝑝2𝑞 − 1 + 𝑞 = 𝑞 × (1 − 𝑝2) .

It is worth examining this solution in some detail. 𝛽𝑠𝑡 scales linearly with the probability that a link
will not be rewired – in other words, in a pair of networks for which rewiring is important (𝑞 goes to 0),
species turnover is going to be a relatively less importantmechanism to dissimilarity. 𝛽𝑠𝑡 increases when
turnover is important (𝑝 goes to 0), and therefore 𝛽𝑠𝑡 represents a balance between species turnover and
link rewiring. These three values, as well as 𝛽𝑠𝑡∕𝛽𝑤𝑛, are represented in fig. 2.
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Figure 2 Values of 𝛽𝑜𝑠 , 𝛽𝑤𝑛, 𝛽𝑠𝑡 , and 𝛽𝑠𝑡∕𝛽𝑤𝑛
as a function of the probability 𝑞 or sharing a
link (𝑥-axis), and the probability 𝑝 of sharing
a species (𝑦-axis). Larger values indicate more
dissimilarity, such that for 𝑝 = 𝑞 = 1 the dis-
similarity as measured by 𝛽𝑤𝑛 = 0, and for
𝑝 = 𝑞 = 0 the dissimilarity as measured by
𝛽𝑤𝑛 = 1. As expected, the relative importance
of turnover (𝛽𝑠𝑡) is maximal when there is no
rewiring, and when turnover increases.
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0.2.2 Sensibility of the decomposition to differences in connectance The results presented in fig. 2
include the strong assumption that the two networks have equal connectance. Although the range of
connectances in nature tends to be very strongly conserved within a system, we can relax this assump-
tion, by letting one network have more interactions than the other. Note that for the sake of notation
simplicity, I maintain the constraint that the two networks are equally species rich. Therefore, the sole
variation in this numerical experiment is that one network has 𝐿1 = 𝜌 × 𝑎 × 𝑆2, and the other network
has 𝐿2 = 𝜌 × 𝑆2; in other words, 𝐿1 = 𝑎 × 𝐿 and 𝐿2 = 𝐿. As one step of the components calculations
involves a min operation, I will add the constraint that 𝐿1 ≤ 𝐿2, which is to say 0 < 𝑎 ≤ 1. The value
of 𝑎 is the ratio of connectances of the two networks, and the terms 𝑆2 and 𝜌 being shared across all
factors, they will be dropped from the calculations.

The maximal number of links that can be shared is 𝑎𝑝2 (i.e. min(𝑝2, 𝑎𝑝2)), as we cannot share more
links than are in the sparsest of the two networks. Of these, 𝑞 are not rewired, leading to 𝐶 = 𝑎𝑞𝑝2.
The number of links that are rewired in network 1 is the number of its links between shared species
minus 𝐶, i.e. 𝑟1 = 𝑎𝑝2 − 𝑎𝑞𝑝2 = 𝑎𝑝2(1 − 𝑞), and similarly 𝑟2 = 𝑝2 − 𝑎𝑞𝑝2 = 𝑝2(1 − 𝑎𝑞), leading to
𝑅 = 𝑟1 + 𝑟2 = 𝑝2 [𝑎(1 − 𝑞) + 1]. Using the same approach, we can get 𝑡1 = 𝑎(1 − 𝑝2) and 𝑡2 = (1 − 𝑝2),
leading to 𝑇 = 𝑡1 + 𝑡2 = (1 − 𝑝2)(1 + 𝑎).

As in the previous section, we can use these values to write

𝛽𝑜𝑠 = 1 − 2
𝑎𝑞
1 + 𝑎 ,

𝛽𝑤𝑛 = 1 − 2
𝑎𝑝2𝑞
1 + 𝑎 ,

and

𝛽𝑠𝑡 = 2𝑎𝑞
(1 − 𝑝2)(1 + 𝑎)
𝑎2 + 2𝑎 + 1

.

The values of these components are visualized in fig. 3. The introduction of the connectance ratiomakes
these expressions marginally more complex than in the case without differences in connectance, but
the noteworthy result remains that in the presence of differences of connectance, the value of 𝛽𝑜𝑠 is
still independent from species turnover. In fact, there is an important conclusion to be drawn from
this expression. The shared species component is by definition square, meaning that from an actual
measurement of 𝛽𝑜𝑠 between two networks for which we know the connectance, noted 𝐛𝑜𝑠, we can get
the probability of rewiring by reorganizing the terms of 𝐛𝑜𝑠 = 1 − 2𝑎𝑞∕(1 + 𝑎) as

𝑞 ≈
(1 − 𝐛𝑜𝑠)(𝑎 + 1)

2𝑎 ,

which gives the probability of rewiring as 1 − 𝑞; note that this is an approximation, as it assumes that
the connectances of the entire network and the connectances of the shared components are the same.

0.3. Does the partition of network dissimilarity needs a new normalization? One of the argu-
ments put forth in a recent paper by Fründ (2021) is that the decomposition outlined above will over-
estimate the effect of rewiring; I argue that this is based on a misunderstanding of what 𝛽𝑠𝑡 achieves.
It is paramount to clarify that 𝛽𝑠𝑡 is not a direct measure of the importance of turnover: it is a quantifi-
cation of the relative impact of rewiring to overall dissimilarity, which, all non-turnover mechanisms
being accounted for in the decomposition, can be explained by turnover mechanisms. In this section, I
present two numerical experiments showing (i) that the 𝛽𝑜𝑠 component is in fact an accuratemeasure of
rewiring, and (ii) that 𝛽𝑠𝑡 captures the consequences of species turnover, and of the interactions brought
by unique species.

0.3.1 Illustrations on arbitrarily small networks are biased We can re-calculate the illustration
of Fründ (2021), wherein a pair of networks with two shared interactions (𝐶 = 2) receive either an
interaction in 𝑇, in 𝑅, or in both:
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Figure 3 Consequences of changing the ratio
of connectances between two equally species-
rich networks on the decomposition of net-
work beta-diversity, assuming 𝑝 = 0.8. Net-
workswith stronger differences in connectance
will tend to be more similar, because the dif-
ferences in number of links becomes extreme
enough that the chances of all the links in the
sparser network being in the denser network
increases.
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𝐶 𝑇 𝑅 𝛽𝑜𝑠 𝛽𝑤𝑛 𝛽𝑠𝑡 𝛽𝑠𝑡∕𝛽𝑤𝑛
2 0 0 0 0 0
2 1 0 1∕5 1∕5 0 0
2 0 1 0 1∕5 1∕5 0
2 1 1 1∕5 1∕3 2∕15 2∕5

The over-estimation argument hinges on the fact that 𝛽𝑠𝑡 < 𝛽𝑜𝑠 in the last situation (one interaction
as rewiring, one as turnover). Reaching the conclusion of an overestimation from this is based on a
mis-interpretation of what 𝛽𝑠𝑡 means. The correct interpretation is that, out of the entire network dis-
similarity, only three-fifths are explained by re-wiring. The fact that this fraction is not exactly one-half
comes from the fact that the Wilson & Shmida (1984) measure counts shared interactions twice (i.e. it
has a 2𝐶 term), which over-amplifies the effect of shared interactions as the network is really small.
Running the same calculations with 𝐶 = 10 gives a relative importance of the turnover processes of
47%, and 𝛽𝑠𝑡 goes to 1∕2 as 𝐶∕(𝑇 + 𝑅) increases. As an additional caveat, the value of 𝛽𝑠𝑡 will depend
on the measure of beta-diversity used. Measures that do not count the shared interaction twice are not
going to amplify the effect of rewiring.

Based on the arguments presented above, I do not think the suggestion of Fründ (2021) to change the
denominator of 𝛽𝑜𝑠 makes sense as a default; the strength of the original approach by Poisot et al. (2012)
is indeed that the effect of turnover is based on a rigorous definition of networks as graphs (as opposed
to networks as matrices), in which the induction of vertices from the edgelist being compared gives rise
to biologically meaningful denominators. The advantage of this approach is that at no time does the
turnover of species itself (or indeed, as shown inmany places in this manuscript, the network richness),
or the connectance of the network, enter into the calculation of the beta-diversity components. As such,
it is possible to use 𝛽𝑜𝑠 and 𝛽𝑤𝑛 in relationship to these terms, calculated externally (as was recently done
by e.g. Higino & Poisot 2021), without creating circularities.

Therefore the argument of Fründ (2021), whereby the 𝛽𝑜𝑠 component should decrease with turnover,
and be invariant to connectance, does not hold: the very point of the approach is to provide measures
that can be interpreted in the light of connectance and species turnover. Adopting the perspective de-
veloped in the previous section, wherein networks are sets and the measures of 𝛽-diversity operates on
these sets, highlights the conceptual issue in the Fründ (2021) alternative normalization: they are using
components (namely, interactions) of the networks that are not directly part of the two networks being
compared.

0.3.2 Using an alternative normalization trivializes the results In this numerical experiment,
we reproduce the results in fig. 2, but using the alternative normalization described above. The results
are presented in fig. 4. Producing the analytical solutions for the various components, following the
expressions for𝐶, 𝑇, and𝑅 given for fig. 2, yields a similar value for 𝛽𝑤𝑛 (i.e. the two approaches estimate
the same value for total dissimiliarity), but different values for 𝛽𝑠𝑡 and 𝛽𝑜𝑠. Specifically, 𝛽𝑜𝑠 becomes
𝑝2(1−𝑞), which becomes dependent on species turnover. This, from an ecological point of view, makes
no sense: the quantification of howmuch shared species interact in a similar way should not depend on
howmuch species actually overlap. The opposite problem arises for 𝛽𝑠𝑡 , which becomes 1−𝑝2. In short,
the relative importance of species turnover is simply species turnover itself, and has no information on
interaction dissimilarity. Therefore the core issue of the Fründ (2021) alternative is that, by attempting
to fix a non-issue (namely the over-estimate of the importance of re-wiring, which is only true in trivially
small networks), it blurs the meaning of 𝛽𝑜𝑠, and renders 𝛽𝑠𝑡 useless as it is a re-expression of species
beta-diversity.

0.4. Measuring network beta-diversity: recommendations Based on the numerical experiments
and the derivations presented in this paper, we can establish a number of recommendations for the
measurement and analysis of network dissimilarity. First, 𝛽𝑜𝑠 allows to estimate the rate of rewiring,
which is an important ecological information to have; quantifying it properly can give insights as to how
networks differ. Second, 𝛽𝑠𝑡 captures both turnover and rewiring mechanisms, but its interpretation
is easier to accomplish in the context of total network dissimilarity, and therefore 𝛽𝑠𝑡∕𝛽𝑤𝑛 should be
interpreted more thoroughly. Finally, because the alternative denominator from Fründ (2021) removes
the interesting property of 𝛽𝑜𝑠 (independent estimate of rewiring rate), and trivializes the meaning of
𝛽𝑠𝑡 (by turning it into species dissimilarity), there seems to be no valid reason to use it.
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Figure 4 Reproduction of fig. 2 with the
alternative denominators proposed by Fründ
(2021).
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