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ABSTRACT 12 

As individual animals are exposed to varying environmental conditions, phenotypic plasticity 13 

will occur in a vast array of physiological traits. For example, shifts in factors such as 14 

temperature and oxygen availability can affect the energy demand, cardiovascular system, 15 

and neuromuscular function of animals that in turn impact individual behaviour. Here, we argue 16 

that non-linear changes in the physiological traits and performance of animals across 17 

environmental gradients - known as physiological performance curves - may have wide-18 

ranging effects on the behaviour of individual social group members and the functioning of 19 

animal social groups as a whole. Previous work has demonstrated how variation between 20 

individuals can have profound implications for socially living animals, as well as how 21 

environmental conditions affect social behaviour. However, the importance of variation 22 

between individuals in how they respond to environmental conditions has so far been largely 23 

overlooked in the context of animal social behaviour. First, we consider the broad effects that 24 

individual variation in performance curves may have on the behaviour of socially living 25 

animals, including changes in the rank order of performance capacity among group mates 26 

across environments, environment-dependent changes in the amount of among- and within-27 

individual variation, and differences among group members in terms of the environmental 28 

optima, the critical environmental limits, and the peak capacity and breath of performance. We 29 

then consider the ecological implications of these effects for a range of socially mediated 30 

phenomena, including social foraging, within-group conflict, collective movement, within- and 31 

among group assortment, disease and parasite transfer, and predator-prey interactions. We 32 

end by outlining the empirical work required to test the implications for physiological 33 

performance curves in social behaviour.  34 
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INTRODUCTION 35 

Within species there exists considerable among-individual variation in numerous physiological 36 

traits associated with energy demand (Burton et al., 2011; Metcalfe et al., 2016a), 37 

cardiorespiratory systems (Brijs et al., 2019; Walsberg et al., 1986), and neuromuscular 38 

function and movement (Marras et al., 2010; Wilson et al., 2004). A major aim in the field of 39 

ecophysiology is to understand how these traits are linked with organismal performance and 40 

behaviour in an ecological context, including the ability to escape predators and obtain 41 

resources (Jablonszky et al., 2017; Killen et al., 2017a; Mathot et al., 2017). More recently, 42 

there has been growing interest in how among-individual heterogeneity in physiological traits 43 

can modulate animal social behaviour, including social hierarchies (Kochhann, 2017), social 44 

networks (Moyers et al., 2018), and emergent collective behaviour (Jolles et al., 2017; Jolles 45 

et al., 2020).  46 

Social grouping ranges from pairs of animals to large scale communities and enormous 47 

aggregations consisting of millions of individuals. Variation in this tendency to group, both at 48 

the individual and species level, can be explained by the balance between the benefits of 49 

reducing predation risk, improving foraging and saving energy during locomotion, versus the 50 

costs of competition within groups over food and the opportunity to breed, and a greater 51 

exposure to socially-transmitted diseases. These benefits and costs can be shifted, however, 52 

by individuals’ behaviour within groups, with effects on social interactions and group 53 

functioning (del Mar Delgado et al., 2018; Jolles et al., 2017). However, increasing evidence 54 

suggests that social behaviour is also related to physiological traits associated with metabolic 55 

phenotype (Cooper et al., 2018; Killen et al., 2017b), stress responsiveness (Spencer, 2017), 56 

cognition (Wascher et al., 2018), locomotor performance and speed (Hansen et al., 2020; 57 

Jolles et al., 2017), and immune function (Raulo et al., 2018). Physiological traits associated 58 

with bioenergetics and locomotion may be especially important in this regard, because they 59 

are sensitive to environmental factors and can also influence performance in a social context, 60 

affecting both the capacity and motivation to express various behaviours. Metabolic rate, for 61 

example, has been linked with dominance and risk-prone behaviours (Mathot et al., 2019), 62 

which in turn have links with individual sociability (Jolles et al., 2017). There is also evidence 63 

of direct links between metabolic demand and sociability, with individuals with a higher 64 

metabolic rate being perhaps less social and therefore less likely to associate with 65 

conspecifics (Cooper et al., 2018; Killen et al., 2016b; but see Killen et al., 2021). 66 

Social interactions can be influenced by environmental factors such as food 67 

abundance and potential predation risk (Beauchamp, 2004; Schaerf et al., 2017), but also by 68 

many aspects of the abiotic environment, including light levels (Ginnaw et al., 2020), 69 
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temperature (Bartolini et al., 2015), hypoxia (Domenici et al., 2017), turbidity (Chamberlain 70 

and Ioannou, 2019), and habitat structure (Takada and Minami, 2021), and by anthropogenic 71 

changes such as acoustic noise (Currie et al., 2020), and pollutants (Armstrong et al., 2011). 72 

While environmental factors can impact behaviour through the masking of cues and signals 73 

(McNett et al., 2010) and shifting attention to other tasks (Chan et al., 2010), environmental 74 

conditions can also affect behaviour via physiological changes. The effects of environmental 75 

variables on social behaviour via physiological changes can be indirect by inducing stress via 76 

stress hormones, or can directly affect the physiological traits associated with locomotor 77 

performance and movement speed, such as muscular function and aerobic and anaerobic 78 

capacity (Ord and Stamps, 2017). As movement speed plays a fundamental role in leadership, 79 

cohesion, and alignment (Pettit et al., 2015; Jolles et al., 2020b), these aspects of social 80 

behaviour may be sensitive to environmental perturbations. Hence, the ways in which 81 

physiological traits influence social behaviour, as well as the degree of among-individual trait 82 

variation and trait repeatability (Huang et al., 2020), may also vary with the environment (Killen 83 

et al., 2016a). These effects of environmental conditions on social behaviour are becoming 84 

increasingly important to understand due to human-induced rapid environmental change 85 

(Barrett et al., 2019; Fisher et al., 2021; Sih, 2013). 86 

Breakthroughs in our understanding of the mechanistic underpinnings of sociality could 87 

be facilitated by studying the effects of individual performance curves on social dynamics. 88 

Performance curves depict shifts in physiological performance across the gradient of a 89 

continuous environmental variable. Such curves are generally determined for specific 90 

physiological traits or performance indices, such as maximum locomotor speed or aerobic 91 

capacity, with performance defined as the capacity to express a given trait across a range of 92 

environmental conditions. Performance curves are usually non-linear – though they may 93 

appear linear within narrow environmental ranges – with their exact shape depending on the 94 

trait and environmental variable being considered (Kingsolver et al., 2014) (Figure 1A). As an 95 

example, in ectotherms a typical performance curve for maximum locomotor speed would be 96 

a gradual increase with temperature, a peak level of performance at an optimal temperature, 97 

followed by a decline in performance capacity with further warming (yellow line in Figure 1A). 98 

It is important to note that performance curves are informationally richer and arguably more 99 

ecologically relevant than reaction norms, which are assumed to be linear in nature 100 

(Kingsolver et al., 2014). Performance curves often depict the change of a physiological trait 101 

in response to the environment and can therefore reflect environmental sensitivity (Jutfelt et 102 

al., 2018; Kingsolver and Gomulkiewicz, 2003; Lefevre, 2016). This sensitivity may, in turn, 103 

affect the capacity or motivation to perform specific behaviours, but these links are often 104 
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uncertain and the focus of study to provide insight into intra- and intergenerational responses 105 

to environmental stressors (Metcalfe et al., 2016b; Norin and Metcalfe, 2019). 106 

Here we argue that performance curves, and especially individual variation in 107 

performance curves within groups (Figure 1B), may be key in understanding how social 108 

behaviours are affected by shifting environmental conditions. In their natural environment, 109 

socially grouping animals can experience environmental changes at a scale of minutes, days, 110 

or months, but will also experience environmental changes over more protracted timeframes 111 

in response to broadscale phenomena such as climate change. For example, many animal 112 

species accommodate seasonal changes in temperature that are consistent across years, but 113 

due to human-induced climate change, such changes are becoming more extreme (IPCC, 114 

2012). A more mechanistic, physiologically-based approach to the study of social behaviour 115 

will be key for understanding both how routine environmental shifts affect social behaviours 116 

as well as understand and predict how social behaviour may change or evolve in response to 117 

anthropogenic disturbances.  118 

The study of animal social systems and particularly the study of collective behaviour 119 

has transitioned from a focus on uncovering universal mechanisms underpinning emergent 120 

behaviour and self-organisation (Couzin et al., 2002), to an increasing recognition that among-121 

individual heterogeneity plays a critical role in these processes (del Mar Delgado et al., 2018; 122 

Jolles et al., 2020). We suggest that a promising next step in this line of research will be to 123 

examine how the degree of heterogeneity itself can change depending on the environment -- 124 

as is dictated by individual performance curves -- and how this will influence various 125 

dimensions of animal social behaviour. We first discuss the broad effects that individual 126 

variation in performance curves within social groups may have on the relative physiological 127 

capacity and behavioural motivation of individuals within social groups. Next, we discuss the 128 

specific consequences of these effects for an array of ecological phenomena related to social 129 

behaviour including within-group conflict, leader-follower dynamics, predator avoidance, and 130 

social foraging. Our aim is to highlight the enormous potential for performance curves to alter 131 

social behaviour at the individual, group, and community level and outline priority areas for 132 

future research. 133 

INDIVIDUAL VARIATION IN PERFORMANCE CURVES  134 
A key factor to consider when assessing the impact of performance curves on social behaviour 135 

is among-individual variation in how animals physiologically respond to changes in their 136 

environment (Bulté and Blouin-Demers, 2006). For example, different individuals can show 137 

different physiological sensitivities to factors such as temperature (Navas et al., 1999), or 138 

requirements in terms of oxygen (Killen et al., 2012b; Pang et al., 2015) or nutrition (Killen et 139 
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al., 2011), with direct effects on among-individual variation in bioenergetics and capacity for 140 

locomotor performance. Such variation has traditionally been examined in the context of 141 

reaction norms whereby individuals are repeatedly measured for traits at around 2 or 3 142 

environmental levels and modelled using mixed-models with random slopes (Dingemanse et 143 

al., 2010). However, assumptions of linearity may not be appropriate for all traits and 144 

particularly over broader environmental ranges. Therefore, to properly assess intra-individual 145 

variation in environmental sensitivity, the assessment of individual performance curves may 146 

be required (Gilbert and Miles, 2017). This work is still in its infancy, but investigations to date 147 

indicate that, similar to the case with linear reaction norms (Roche et al., 2016; van de Pol, 148 

2012), individuals within species show variation in performance curves (Bartheld et al., 2017; 149 

Careau et al., 2014; Childress and Letcher, 2017; Nowakowski et al., 2020). There is also 150 

evidence that there may be within-individual variation in performance curves, in response to 151 

factors such as recent feeding history (Gilbert and Miles, 2016), which adds an extra layer of 152 

complexity. 153 

If individual animals show variable degrees of behavioural and physiological plasticity 154 

in response to environmental variables, this has a wide range of potential consequences for 155 

social behaviour. To illustrate this, consider among-individual variability in performance curves 156 

for a physiological trait (e.g. aerobic capacity, movement speed) relevant to social behaviour, 157 

in relation to some environmental variable (e.g. temperature; Figure 1B; (van Berkum, 1988)). 158 

There are numerous effects that emerge from individual variation in environmental sensitivity 159 

that could have important consequences for how individuals interact with each other within 160 

social groups, which we discuss in detail below. Important to consider for any of these effects 161 

is the influence of acclimation to environmental conditions. During acute environmental 162 

changes, such as in temperature or oxygenation, individual animals tend to show much 163 

stronger changes in the expression of their physiology or behaviour (Guderley, 1990). These 164 

responses generally dampen with physiological acclimation to the new conditions, resulting in 165 

an overall “flattening” of the performance curve. Depending on the acclimation response of 166 

each individual groupmate and on the timescale of exposure to a given environment, the 167 

relative importance of each of the following considerations may change in prominence. 168 

  169 
Changes in the rank order of performance capacity 170 

Differences in sensitivity to the environmental variable in question may generate differences 171 

in the rank order of performance capacity among individuals within a social group, that directly 172 

depends on where along the environmental gradient performance is being measured (Figure 173 

2). All else being equal, differences in this rank order could mean that, for example, the 174 

individual most likely to be dominant or a leader at one temperature may be subordinate or a 175 

follower at another temperature. Aside from having a direct effect on the social behaviour 176 



6 
 

displayed by individuals, changes in trait rank order will also decrease trait repeatability and, 177 

potentially, the ability of that trait to be a target for selection in a social context. Another key 178 

consideration is that, if relative differences in energy demand (related to food-acquisition) or 179 

locomotor ability (related to predator avoidance) change among individuals, then the 180 

fundamental costs and benefits of sociality and group membership could change differently 181 

for individual group members depending on the current environmental conditions (Cooper et 182 

al., 2018). For example, if an individual has a relatively low energy demand (mediated via 183 

metabolic rate) or reduced escape performance at a low temperature, it may be more 184 

motivated to remain with its social group under these conditions. If the group moves to a 185 

warmer environment, however, that same individual may become less social and shift to a 186 

more independent foraging strategy, due to increased escape ability (via increased muscle 187 

contractile ability and nervous stimulation at warmer temperatures (Johnson and Bennett, 188 

1995)) and decreased motivation to share or compete for discovered resources. 189 

  190 
Change in among-individual variation 191 

As individual performance curves diverge or converge along the environmental gradient, the 192 

amount of phenotypic variation among individuals will correspondingly change. At a low 193 

temperature, for example, there may be a modest degree of among-individual variation in 194 

movement speed while at a higher temperature there may be wider variation (Killen et al., 195 

2013) (Figure 3). This change in the degree of variation among-individual within a social group 196 

could have consequences for group coordination, cohesion, or intra-group conflict (Jolles et 197 

al., 2020). Changing environmental conditions and among-individual variation may therefore 198 

cause groups to split or merge, which in turn may increase the degree of phenotypic 199 

differences among groups. Importantly, changes in the amount of among-individual variation 200 

are fundamental in exposing traits to selective pressures in the social context (Farine et al., 201 

2015). 202 

  203 

Change in within-individual variation 204 

The effects of environmental conditions on variation among individuals may extend to 205 

physiological and behavioural flexibility within individuals. Depending on the environment, 206 

individuals may become more or less flexible in their behavioural expression. Physiological 207 

constraints at very low or high temperatures, for example, may limit the behavioural options 208 

available to individuals. At temperatures around their individual optimum, however, individuals 209 

should be less constrained and more able to express behaviour based on moment-to-moment 210 

changes in their motivation (Jolles et al., 2020) (Figure 4). Changes in within-individual 211 

variation along performance curves could also have consequences for the ability of natural 212 
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selection to act on that trait, if there are changes in across- or within-context trait repeatability 213 

(Killen et al., 2016a).  214 

  215 

Among-individual differences in optimal environments 216 

Different individuals within a social group are likely to have different environmental conditions 217 

at which their individual performance is optimised (green and blue lines in Figure 5A). It is also 218 

possible that the environmental conditions selected by the individual (or the group as a whole) 219 

may have nothing to do with optimising their performance within a social group. For example, 220 

a group may choose to occupy a given location based solely on the availability of food or some 221 

other resource. In that case, the environmental conditions present at that point in space in 222 

time will determine how close each individual is operating to their individually optimal 223 

conditions and maximum capacity (Figure 5A and B). One possible consequence is that 224 

individuals may fit into vastly different social niches depending on the physiological constraints 225 

they end up facing within the group’s chosen environment. 226 

  227 

Among-individual differences in peak performance regardless of optima 228 

Even if measured at their optimum environmental conditions, individual group members will 229 

show different absolute peak levels of performance (orange and purple lines in Figure 6). 230 

Individuals are likely to try and take advantage of an increased performance potential and 231 

consequently influence their behaviour and decision making within the context of the group. 232 

For example, an individual may choose to occupy a microhabitat within their group that brings 233 

that individual closer to its own peak performance capacity, or direct group movements to 234 

areas where that individual will derive an advantage due the local environmental conditions. 235 

For example, an individual that is relatively robust to variation in environmental oxygen 236 

availability (i.e. hypoxia; (Killen et al., 2012b)) could conceivably thrive socially in a moderately 237 

hypoxic environment if the competitive ability of its group-mates are reduced (although, the 238 

overall benefits of grouping for predator avoidance may decrease if overall group cohesion is 239 

impaired). 240 

  241 

Among-individual differences in performance breadth and critical limits 242 

Differences in performance curve shape may generate differences in the breadth over which 243 

individuals can function above particular thresholds of performance. For example, some 244 

individuals may be specialists (green individual in Figure 7A) and able to perform at a high 245 

level but only within a narrow environmental range, while others may be generalists (blue 246 

individual in Figure 7A) and able to perform over a wider range of environments but at a 247 

reduced absolute peak level of performance. The evidence for this trade-off between 248 

performance breadth and peak performance is however limited (Nati et al., 2016). There may 249 
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also be among-individual differences in environmental tolerances of animals within a social 250 

group. Some individuals may simply be incapable of occupying the same environments as 251 

their conspecifics and even before this extreme point, have a sharper decline in performance 252 

(green and purple individual in Figure 7B). This variation in the breadth of environmental 253 

tolerance and critical thresholds for performance or survival should limit the habitats or 254 

environmental “options'' available to groups with wide individual variation in such thresholds 255 

and may promote among-group assortment. 256 

 257 

EFFECT ON  SOCIAL INTERACTIONS  258 

Within-group competition and conflict 259 

Many social systems include dominance hierarchies, whereby individuals with greater 260 

resource holding potential have improved access to food, mates and/or other resources , and 261 

can often be found in locations within the group that reduce their risk of predation (Ward and 262 

Webster, 2016). Physiological traits are known to be important in the contests that establish 263 

dominance, as they correlate with competitive ability and also constrain the frequency, 264 

duration and intensity of contests, due to the build-up of lactic acid, for example, which limits 265 

anaerobic capacity (Briffa and Sneddon, 2007). A higher dominance status in contests has 266 

been shown to be associated with higher heart rate (Turbill et al., 2013), metabolic rate 267 

(Mccarthy, 2001), and aerobic scope (Killen et al., 2014). In turn, environmental variables can 268 

affect aggressive interactions via effects on physiology. For example, in cooler water, the 269 

cichlid fish Cichlasoma paranaense reduces aggressive interactions (Brandão et al., 2018), 270 

and the duration of fights between shore crabs (Carcinus maenas) is reduced in hypoxic 271 

conditions, associated with a greater accumulation of lactic acid during fights in hypoxia 272 

(Sneddon et al., 1998). Individuals experiencing cooler temperatures can compensate for 273 

reduced locomotor performance, however, through elevated aggression and be just as likely 274 

to win contests, as demonstrated in velvet geckos (Oedura lesueurii) (Kondo and Downes, 275 

2007). 276 

Although these previous studies have shown that environmental variables can affect 277 

average levels of antagonistic interactions, variation in performance curves suggests that 278 

differences between individuals in resource holding potential and other forms of competitive 279 

ability (e.g. the ability to detect food sooner than others) is plastic, being dependent on the 280 

prevailing environmental conditions. This may mean, for example, that under some 281 

environmental conditions, individuals are more closely matched in fighting ability, which tends 282 

to result in more frequent, longer, and more intense contests (Hack et al., 1997; Schmitz & 283 

Baldassarre, 1992). Under other environmental conditions, differences in competitive ability 284 

between individuals may be magnified, resulting in clear winners, where contests are 285 

infrequent and easily won before they escalate. In cases where environmental changes over 286 
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time are large enough to alter the rank order of physiological performance that determines 287 

dominance status, aggression may be more frequent and the dominance hierarchy less stable, 288 

which may explain changes in hierarchy stability with temperature (Kochhann et al., 2015). 289 

Changes in dominance may also be delayed or may not occur at all if there are carryover 290 

effects whereby a dominant individual is more likely to stay dominant (Huber & Hock, 2009), 291 

even if the environmental conditions become less favourable for its own phenotype. 292 

Also in groups without clear dominance hierarchies, more subtle forms of conflict can 293 

occur without obvious aggression. Groups often make decisions regarding when, where and 294 

how to move, which requires coordination to maintain cohesion of the group. Multiple sources 295 

of variation between individuals within groups, whether short-term and transient (Kerth et al., 296 

2006) or long-term and  consistent (Bevan et al., 2018), have the potential to result in conflict 297 

over these collective decisions that require consensus (Conradt, 2012). In contexts such as 298 

when behaviours should be performed, compromise can be reached; in others where 299 

behavioural decisions are mutually exclusive, such as where to travel to, compromise is not 300 

possible (Wade et al., 2020). In this latter case, the ‘consensus costs’ paid by individuals who 301 

do not get their preferred outcome should, on average, be higher than when compromise is 302 

possible (Conradt and Roper, 2009). If such consensus costs are too high relative to the 303 

benefit of remaining with the group, groups can split (Ioannou et al., 2015). As the extent of 304 

variation between individuals often determines the extent of conflicting preferences within 305 

groups, variation in physiological performance curves would mean that the degree of 306 

conflicting preferences will be sensitive to environmental conditions. When environmental 307 

conditions result in reduced variation between individuals in physiological performance, 308 

preferences should be similar and this reduced within-group conflict should result in fast 309 

decisions and more cohesive, coordinated groups. In contrast, if greater physiological 310 

differences result in conflicting preferences, decisions are predicted to be slower, and the 311 

group may change their decision more frequently or even split. For example, the speed of 312 

travel of a group can be determined by the physiological performance of the group members, 313 

and a consensus decision on that speed will be easier when preferred speeds, based on 314 

physiological performance capacities, are similar (Sankey et al., 2019). A potential, and 315 

somewhat paradoxical outcome, is that groups may be quicker to make consensus decisions 316 

in relatively harsh or extreme environments when performance capacity is limited or among-317 

individual variation is constrained. 318 

 319 

Social niches and social conformity 320 

While performance curves typically represent the maximum capacity that an individual has for 321 

a given physiological performance metric, individuals do not always opt to perform at their 322 

maximum capacity. This is partly because individuals within groups may need to coordinate 323 
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behavior by either conforming to the group average or matching the behaviour of a particularly 324 

influential individual (Jolles et al., 2017; McCune et al., 2018). Alternatively, competition within 325 

groups can cause initial individual heterogeneity among group members to become amplified 326 

over time due to character displacement (the “social niche hypothesis”; Bergmüller and 327 

Taborsky, 2010; Montiglio et al., 2013, Jolles et al., 2020). Previous research has attempted 328 

to determine whether conformity or the social niche hypothesis is a larger driver of behavior 329 

within social groups (Munson et al., 2021), however, changes in the environmental context 330 

can either constrain or expose phenotypic variation such that behavioral conformity or 331 

differentiation within a group is more or less possible in different environments. For example, 332 

behaviors may appear to conform if interindividual variation in performance curves is low and 333 

there are limited differences in potential performance. Alternatively, social niche formation 334 

should be optimized in environments where the differences in performance curves are the 335 

highest because there are the greatest initial differences in individual capacity for behaviour. 336 

If social dynamics influence behaviour to such an extent that individuals do not perform 337 

at their optimum across environmental contexts, then behavioral conformity and the formation 338 

of social niches could have important feedbacks that will affect responses to changing 339 

environments despite individual performance curves. If, even as the environment changes, 340 

individuals are constrained to behaving similarly (or dissimilarly) from other group members, 341 

the predicted changes in performance based on individual performance curves may not be 342 

evident. For example, if fish conform to slower individuals in a group that also do not change 343 

as rapidly in their swim speed in response to changes in the environment, then the whole 344 

group will be limited in how much they respond to changes in the environment. Similarly, 345 

behavioral conformity and social niche formation should limit acclimation to environmental 346 

change within an individual. Even if an individual’s potential performance in one environmental 347 

context changes over time, they may not change their behavior if they are constrained to 348 

behaving similarly (or dissimilarly) from group members. 349 

           350 

Among and within-group assortment 351 

Animal groups are generally not randomly composed in nature, with individuals tending to  352 

assort according to various characteristics including body size, sex, age, or morphology (Jolles 353 

et al., 2020; Krause et al., 2000). Animals both assort at the among-group level, with different 354 

phenotypes occurring in different groups, and the within-group level, with individuals 355 

occupying different spatial locations according to their phenotype and/or non-randomly 356 

interacting with similar individuals within the group. Furthermore, animals assort both actively, 357 

with individuals selecting which individuals they associate with, or passively, with individuals 358 

exhibiting spatiotemporal overlap due to shared habitat selection or attraction to a resource 359 

(Killen et al., 2017b). The potential influence of individual metabolic traits and locomotor 360 
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capacity on among- and within-group assortment have been discussed in depth elsewhere 361 

(Killen et al., 2017b), but there are a range of circumstances where performance curves could 362 

play a role in these processes.  363 

As environmental conditions change, differences in individual performance curves 364 

could lead to an increase or decrease in within-group variation in performance capacity. For 365 

example, environmental conditions may increase group movement speed and thereby lead to 366 

more within-group spatial assortment, such as slower individuals occupying posterior positions 367 

within the group. This has been observed in fish schools, in which the flow of water increasingly 368 

leads to individuals with lower aerobic scope to occupy positions in the back of the group 369 

(Killen et al., 2012a). Such effects could be further amplified or reduced depending on 370 

interactions among multiple environmental factors, such as faster flowing water may carry 371 

more oxygen, which may thereby partly reduce assortment effects caused by the higher water 372 

flow. In contrast, an increase in water temperature may generate increased variation in 373 

locomotor capacity among group members and thereby enhance such assortment effects. In 374 

environments that produce greater amounts of variation among individuals within groups, 375 

groups may even split according to performance capacity, essentially leading to among-group 376 

assortment based on individual sensitivities to a particular environmental variable.  377 

Among individual differences in environmental optima, tolerance breadths, or habitat 378 

preferences may also cause among-group assortment.  For example, individual sensitivity to 379 

hypoxia stemming from performance curves may dictate which individuals occupy specific 380 

habitats or depths in aquatic environments (Joyce et al., 2016), and thus which conspecifics 381 

are available for them to interact with socially. Differences in energy requirements due to 382 

performance curves may also cause individuals to select different habitats and therefore 383 

spatially segregate (Michelangeli et al., 2018). Among-individual variation in changes in 384 

maintenance or active metabolism at different temperatures could cause individuals with a 385 

lower energy demand to select safer habitats, even if it means less access to food. Individuals 386 

with steeper increase in energy demand in response to temperature, however, may choose 387 

riskier habitats if it grants them increased access to food, and thereby group with individuals 388 

with a similar physiological and behavioural phenotype.   389 

 390 

Leader/follower dynamics  391 

Choices in social group behaviour (e.g. movement or a feeding event) can be reached by 392 

egalitarianism where all individuals reach consensus, or can be initiated by one or few 393 

individuals (i.e. leaders) (Conradt and Roper, 2009). Leaders are only successful if followed 394 

by other group members, instigated voluntarily or as a result of hierarchical influence or 395 

dominance. Leaders in these groups often have better access to resources and make 396 

decisions for the group which may be at cost to others (King et al., 2008; although see 397 
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McComb et al., 2001). In self-organised moving groups, leadership has been shown to 398 

propagate from the front of the group (Bumann and Krause, 1993; Nagy et al., 2010). Front 399 

positions are thought to be occupied by individuals who have more information about the 400 

surrounding environment, a greater need for resources and motivation to locate preferable 401 

environments (Ioannou et al., 2015). The group members that successfully lead others and 402 

achieve their preferred outcome may be those with the highest physiological performance, for 403 

example those with the greatest aerobic capacity (Killen et al., 2012a) who can sustain more 404 

energetically-demanding positions or be better able to escape from attacks by predators, both 405 

costs of leadership associated with being at the front of moving groups (Ioannou et al., 2019). 406 

The ability to lead through spatial position or behavioural signalling could thus be constrained 407 

by physiological capacity, governed by an individual’s performance curve.  408 

What is particularly interesting when considering group movement and physiological 409 

performance curves is that group movement may result in substantial changes to the 410 

environment that individuals experience. Those with greater influence on group movement 411 

may lead the group to locations with environmental conditions that improves (either absolutely 412 

or relatively to others in the group) their physiological performance, which may reinforce their 413 

position as leader. On the other hand, leaders’ preferred locations may be driven by factors 414 

other than their physiological performance, and due to inter-individual variation in physiological 415 

performance curves, a changed environment may shift which individual is most physiologically 416 

capable to lead subsequent group decisions. If groups are moving between locations which 417 

vary considerably in environmental parameters, individuals with narrower environmental 418 

tolerances may have the greatest motivation to lead, as they are likely to experience greater 419 

consensus costs if collective decisions take the group into locations of unpreferred 420 

environmental conditions. Additionally, other group members with wider tolerances may be 421 

less affected by environmental conditions, and may have less motivation to lead the group, 422 

despite potentially having a higher peak performance in changing environments. As the group 423 

encounters a less optimal environmental gradient then a leader’s capacity to lead may 424 

decrease due to variation in environmental tolerance. Moreover, if individual capacity to lead 425 

changes with performance curves, individuals may be more influential in different 426 

environments and could cause a switch in leadership from one individual to another. 427 

Alternatively, multiple individuals with similar performance curves could have the 428 

capacity to lead when experiencing a change in environment, causing a disruption to hierarchy 429 

and may lead to group splitting if the cost to staying with a group is too large (Ioannou et al., 430 

2015). Considering these factors, we predict there may be complex feedbacks between 431 

environmental conditions, physiological performance and leadership in collective decision 432 

making due to inter-individual variation in physiological performance curves within groups. 433 

 434 
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Collective dynamics 435 

Collective patterns, including the speed, alignment, synchronization, and movement tendency 436 

of animal groups, emerge via self-organizing mechanisms from the behaviour and interactions 437 

of the individual group members (Couzin et al., 2002; Couzin and Krause, 2003). Hence, the 438 

phenotypic composition of groups, including the average behaviour of and heterogeneity 439 

among group members, and its change over time, may strongly impact on collective dynamics 440 

(del Mar Delgado et al., 2018; Jolles et al., 2020). Furthermore, changes in individual 441 

behaviour and the interactions among grouping individuals in response to their environment 442 

coincides with changes in group-level patterns (Schaerf et al., 2017). Both the movement 443 

speed and social responsiveness of individuals are strongly linked to a range of physiological 444 

characteristics that may change depending on the environment, and thereby impact collective 445 

dynamics. For example, at higher temperatures, ectothermic animals may have less aerobic 446 

scope available, reducing their optimal and preferred movement speed and in turn result in 447 

slower, but potentially more cohesive groups. Alternatively, temperatures colder than optimal 448 

may also increase cohesion if overall activity is reduced via effects on individual performance 449 

curves (Bartolini et al., 2015). Similarly, changes in oxygen availability may differently impact 450 

the muscular functioning of individuals and, by changes in movement speed, impact collective 451 

dynamics.  452 

Importantly, if individuals are far from their performance optimum, this could negatively 453 

impact their social responsiveness as they may be less able to and/or motivated to cognitively 454 

focus on their group mates. If environmental conditions push groups further from their 455 

physiological optima, this could then result in less synchronised groups and potentially cause 456 

groups to break apart. In a similar way, differences in metabolic requirements may, across 457 

changing resource availability in the environment, cause relative changes in individuals’ focus 458 

on goal-oriented versus socially-oriented movements (i.e. motivation to stay together) and 459 

thereby impact the cohesion, speed, and alignment of groups. In many cases, social 460 

responsiveness is affected by sensory input, such as the extent to which individuals can see 461 

each other, and conditions such as increased water turbidity or habitat complexity will require 462 

individuals to slow down and be more socially responsive to not break social contact. This in 463 

turn may actually provide more scope for individuals with different physiological optima or 464 

different breadths of performance curves to stay together. Finally, the limits of group members’ 465 

physiological performance curves (or environmental tolerances) will determine how well they 466 

will be able to stay together and move across increasingly extreme conditions, as individuals 467 

may simply differ in the upper limits they can survive, such as in refuge pools of streams during 468 

extreme droughts. 469 

 470 

Social learning and the spread of information 471 
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Many animals rely on social learning as a shortcut for behaviours linked to predation 472 

avoidance, migration, foraging, and reproduction (Brown and Laland, 2003; Mueller et al., 473 

2013). The efficiency and benefits of social learning may change across an environmental 474 

gradient because of changes in the transmission of information from demonstrators, and 475 

perception and processing of information from learners. Information is mainly transmitted via 476 

sensory signals (cues), perceived, and transduced via sensory organs and processed via 477 

neurological pathways. Variation in the transmission, perception and processing of information 478 

may arise from alteration of the sensory signals themselves, which may be disrupted directly 479 

by changes in the environment, such as acoustic cues masked by human noise pollution 480 

(Radford et al., 2014), or visual cues reduced by increased water turbidity (Nieman and Gray, 481 

2019). Physiological changes across environments can also impact the perception and 482 

processing of cues, as well as indirectly by changes in  group cohesion and coordination, 483 

which will influence how well information will spread within groups (MacGregor et al., 2020).  484 

Although in extreme environments sensory organs may even be directly damaged, 485 

less dramatic changes may occur in response to environmental changes that lead to 486 

physiological effects and impact individual signaling and perception. An example is hormonal 487 

disruptions such as modification of melatonin rhythms in birds with variation in night lighting 488 

(Dominoni et al., 2020). Neural transmission, brain functioning, and cognition may also vary 489 

across an environmental gradient with impacts on social learning capacities. A well-known 490 

example is honey bees exposed to pesticides, which have reduced brain functioning (Klein et 491 

al., 2017) that may translate into a weaker ability to learn how to localize food from waggle 492 

dances (von Frisch, 2013). As with the development of social niches and leader and follower 493 

behaviours, greater within-group variation in individuals’ physiological performance should 494 

favour more distinct demonstrator and learner roles, which can result in conflict over preferred 495 

group dynamics (MacGregor et al., 2020). Furthermore, variation in rank order across 496 

environments, such as a change in rank order of performance capacity at higher temperature 497 

(Figure 2), may result in a change in which individuals are demonstrators and which are 498 

learners. If relative changes in physiological performance and preferences promote a less 499 

stable group composition, reduced familiarity with the demonstrator and other individuals 500 

belonging to the group may affect the social transmission of information (Barrett et al., 2019; 501 

Hasenjager and Dugatkin, 2017).  502 

Group-level behaviours and dynamics are likely to vary across environments (e.g. 503 

increased water temperature and hypoxia may decrease group cohesion in aquatic 504 

ectotherms), which can strongly affect how social information is transmitted (e.g. visual 505 

information, MacGregor et al., 2020). Any changes in group cohesion could in turn alter the 506 

potential for information transfer among groupmates due to changes in spatial distances 507 

among individuals and their ability to give and receive social cues (Pineda et al., 2020). In 508 
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addition, the extent that individuals use social learning can be dependent on group behavioural 509 

composition. For example, using network-based diffusion analysis it has been found that, in 510 

guppies, social learning rate is higher in both bold and risk averse individuals when they are 511 

part of groups dominated by risk-averse individuals or mixed groups and there is a bold 512 

demonstrator (Hasenjager et al., 2020). Across gradients of environmental variation, among- 513 

and within-individual differences in behavioural expression in relation to performance curves 514 

may therefore lead to variation in social learning. If, across such gradients, the risks and 515 

benefits associated with social learning change (e.g. different reliability and efficiency of the 516 

transmission and perception of information within groups), non-optimal environments may 517 

lead to changes in social learning (e.g. I’Anson Price et al., 2019). 518 

 519 

EFFECTS ON THE COSTS AND BENEFITS OF GROUPING 520 

Social foraging 521 

Individuals in groups can benefit by increased access to food sources and the potential to 522 

exploit food resources discovered by others, but grouping can also result in competition (Ranta 523 

et al., 1993). As discussed earlier when considering within-group conflict, differences in 524 

physiological performance can allow some individuals to have disproportionately greater 525 

access to food. When physiological performance curves differ between individuals, the 526 

variability in how food is distributed between individuals should be driven by variation in 527 

physiological performance under the current environmental conditions. This could favour less 528 

competitively able individuals to actively leave groups, and the reduction in group size to 529 

potentially impact foraging efficiency and anti-predator benefits experienced by those group 530 

members that remain (Krause & Ruxton, 2002). 531 

Predicting the role of physiological performance curves on social foraging may be 532 

dependent on the feedback between individuals’ physiological performance and changes in 533 

physiological state that occur during foraging. If the intake of food and time to satiation differs 534 

between individuals (Gifford et al., 2014; MacGregor et al., 2021), which could be determined 535 

by differences in physiological performance in the current environment, there may be conflict 536 

in the optimal time to stop foraging at that patch. If those with higher physiological performance 537 

have both faster food intake and greater influence over group decisions, then other individuals 538 

in the group will be less likely to forage for an adequate duration. This may act as a positive 539 

feedback which magnifies differences in physiological performance between individuals over 540 

the longer term. Because of variation in physiological performance curves, such a feedback 541 

would however be suppressed if foraging occurs under variable environmental conditions, 542 

favouring food intake of different individuals at different times. 543 

Due to the metabolic cost of digestion (Norin and Clark, 2017), which can impact 544 

physiological traits such as locomotion (Dupont-Prinet et al., 2009), negative feedbacks are 545 



16 
 

likely to influence the role of physiology during social foraging. In common minnows (Phoxinus 546 

phoxinus), individuals show consistent inter-individual differences in being at the front of a 547 

shoal and that this results in greater consumption of food (McLean et al., 2018). After feeding, 548 

however, individuals at the front would move toward the back of the shoal, explained by the 549 

reduction in aerobic metabolic scope from digestion (McLean et al., 2018). Satiated individuals 550 

may also reduce foraging and increase anti-predator vigilance to the benefit of others in the 551 

group (Arbon et al., 2020), dampening differences between individuals in food intake. Thus, 552 

both changing environmental conditions and inter-individual variation in physiological 553 

performance curves have potential to disrupt positive and negative feedback and thereby 554 

result in either a reduction or strengthening of inter-individual variation in food intake.  555 

Feedbacks among physiological performance, environmental conditions and social 556 

behaviour can be informed by recent research exploring how individual differences based on 557 

state can drive behaviour, and how behaviour can in turn drive differences in state  (i.e. state-558 

behaviour feedbacks; Sih et al., 2015). Experimental tests with sticklebacks (Gasterosteus 559 

aculeatus) support the existence of feedbacks between risk-taking behaviour and satiation, 560 

but even in this relatively simple case, these studies show that these feedbacks are 561 

unpredictable, without strong evidence in favour of negative or positive feedbacks (MacGregor 562 

et al., 2021). This suggests that integrating feedbacks into the interaction between 563 

physiological performance curves and social foraging will be challenging. Simulation modelling 564 

based on assumptions and parameters that are empirically determined may thus be an 565 

essential tool in this endeavour. 566 

While there is strong evidence that group living improves rates of finding and exploiting 567 

food sources (Cvikel et al., 2015; Ioannou, 2017), if individuals’ performance during collective 568 

foraging is related to their performance in physiological traits, then physiological performance 569 

curves are likely to impact group-level performance in foraging. If groups are reliant on a small 570 

proportion of individuals to lead, for example those with information regarding the presence 571 

and location of food (Ioannou et al., 2015), and the ability of these individuals to lead is 572 

positively associated with their physiological (e.g. locomotory) performance, group foraging 573 

success will be greatest when environmental conditions are optimal for leading individuals. In 574 

contrast, if foraging is dependent on pooling information from many individuals in the group, 575 

such as in many eusocial insect colonies (Detrain & Deneubourg, 2009), then environmental 576 

conditions which favour the greatest average physiological performance may maximise 577 

foraging success. The environmental conditions that optimise group performance in foraging 578 

may thus be dependent on whether influence on foraging performance is distributed between 579 

many individuals or a few. 580 

 581 

Predator Avoidance 582 
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Reduced predation risk has been proposed as one of the main drivers for why most animals 583 

live in social groups (Krause & Ruxton, 2002). Importantly, the environmental context may 584 

alter predation risk for grouping animals, both by affecting predator behaviour (Grigaltchik et 585 

al., 2012) as well as effects on group behaviour. For example, if in a particular environment,  586 

phenotypic variance is high due to among-individual variation in performance curves, this may 587 

result in less cohesive groups, potentially reducing the anti-predator benefits for those 588 

individuals (Sogard and Olla, 1997). Groups that are more cohesive with less phenotypic 589 

variance benefit from the confusion effect whereby visual predators have reduced targeting 590 

accuracy when prey are phenotypically homogenous (Jeschke and Tollrian, 2007). Because 591 

of this, phenotypically different individuals can experience increased risk of predation relative 592 

to their group mates (the oddity effect; Theodorakis, 1989). As individual behavior and group 593 

behavioral composition are important aspects of predator avoidance (Blake et al., 2018; Farine 594 

et al., 2015), this suggests that not only should groups differ in their anti-predator success 595 

across environments as performance curves converge and diverge, but that individuals may 596 

prefer different groups as environments change. Different individuals are affected by the oddity 597 

effect to different extents (Rodgers et al., 2015). For example, an individual with particularly 598 

high-performance capacity in a given environment may be less susceptible to predation than 599 

an individual who has a low performance capacity relative to its groupmates, especially if these 600 

differences in physiological capacity manifest in behavioural differences (e.g. activity level) 601 

that make them more of less obvious to predators. Thus, as environments change, there may 602 

be differences in group membership, as individuals opt to forego or receive the full anti-603 

predator benefits of being in a group. Additionally, there may be important ramifications on 604 

group level success if group predator avoidance is influenced by a leader, and if the identity 605 

or influence of a leader changes across an environmental gradient due to variation in 606 

performance curves. 607 

 608 

Disease and parasite transfer 609 

Disease transfer and parasite load can both be affected by the environmental context (Aeby 610 

and Santavy, 2006) and by the social behavior of animals (Hawley et al., 2011). Social 611 

behavior can increase risk of disease and parasite transfer between individuals (Ezenwa, 612 

2004), especially when groups are more cohesive because of the closer proximity between 613 

individuals. As group cohesion changes as a result of changes in phenotypic variance in 614 

performance curves, rates of disease and parasite transfer could also change. Furthermore, 615 

if changing environmental conditions affect optimal group membership due to changes in 616 

physiological performances and individuals then change groups, this can increase disease 617 

transfer between groups. Previous work suggests that increased space use relates to parasite 618 

load (Boyer et al., 2010) and that this can be influenced by the environmental context (Spiegel 619 
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et al., 2015). If environmental conditions change more rapidly this could also result in 620 

decreased group stability and more rapid transfer of individuals (and their diseases) between 621 

groups as individuals spread out.  622 

 623 

Migrations and range expansions 624 

Group movement occurs at different spatial and temporal scales. At small scales, within a 625 

population’s distribution, group movement is generally driven by organisms’ motivation and 626 

necessity to find resources or shelter. Such movements, from one resource patch to another 627 

or from one tree to the other for shelter, often relies on social interactions where the presence 628 

of more experienced individuals or with knowledge for specific information such as the location 629 

of food resources can guide naïve individuals or transmit the information to the other group 630 

members (Berdahl et al., 2018; Mueller et al., 2013). At a larger scale, movements are 631 

associated with migration or range expansion (Cote et al., 2017) and social interactions still 632 

have a central role. Indeed social interactions can improve the accuracy of group navigation 633 

(Berdahl et al., 2018; Simons, 2004) and reduces energy expenditures (Herskin and 634 

Steffensen, 1998; Marras et al., 2015). However, despite numerous advantages there are also 635 

potential costs to individuals associated with group movement, including coordination (Nagy 636 

et al., 2018) and consensus costs (Conradt and Roper, 2009) such as adjustment of individual 637 

performance to match the group performance and individual differences in lower or upper 638 

limits of physiological performance across environmental gradients (Figure 1, 7). Therefore, 639 

as groups move across various spatial scales and environments, environmental effects on 640 

performance curves will continuously modulate group functioning and performance of 641 

individuals within the group. 642 

One response of organisms to unsuitable environmental conditions is to relocate into 643 

more favorable habitats. However, relocation is strictly linked to movement behaviour including 644 

group movement and to the ability to settle. If individual variation in performance curves affects 645 

group movement then reduced relocation opportunities may be expected under certain 646 

environments. For example, during drought, especially in mediterranean climates, parts of 647 

rivers dry up completely, requiring individuals within fish populations that live in the river to 648 

move to deeper safe refuges that do not dry up. In those conditions individual physiological 649 

and behavioural traits may be essential for group movement - see Box 1 for more details. 650 

However, not all individuals perform equally well in new environments and even if large scale 651 

movements occur, they may come at the cost of group re-arrangement.  652 

 653 

EXPERIMENTAL APPROACHES 654 

While gaining a better understanding of the relationships between performance curves and 655 

social behavior is critically important in a changing world, these are not easy relationships to 656 
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decipher. Ideally, we need performance data for individuals tested repeatedly across an 657 

environmental gradient and then in groups across the same range. Acquiring detailed data to 658 

be able to construct individual performance curves requires many repeated measures of the 659 

same individuals across a range of conditions of the same environmental variable. Accurate 660 

and precise estimates of individual variation in a reaction norm require relatively large sample 661 

sizes and each individual tested multiple times (Allegue et al., 2017; Martin et al., 2011; van 662 

de Pol, 2012). Estimating performance curves can be even more sample intensive, particularly 663 

because the important variation is typically greater in estimating higher order parameters 664 

associated with curve shape than for those associated with offset or slope (Murren et al., 665 

2014). To then consider the social axis as we discuss here, the number of individuals required 666 

for a study will be even larger. 667 

 Still, these studies are possible, particularly with the advent of automated techniques 668 

and low cost open source electronics (Jolles, 2021). The general approach begins with 669 

measuring the same individuals repeatedly for a physiological trait and their behavior (e.g. 670 

locomotor capacity, temperature preference, spatial position) across a range of conditions 671 

(e.g. temperature, oxygen availability, turbidity) to construct individual performance curves. It 672 

is important to consider that, due to the large number of measurements required, not all traits 673 

can be easily investigated, especially those that are relatively invasive such as those relating 674 

to tissues or organ level physiological performance. Notedly, because lab studies often test 675 

animals when they are otherwise at relatively benign conditions, there have been recent calls 676 

to improve ecological relevance by confirming laboratory studies of performance curves with 677 

field data (Childress and Letcher, 2017). This may be particularly important when seeking to 678 

understand group behavior—the patterns of which are often the result of tradeoffs between 679 

individual foraging needs and the benefits of groups for predator protection—but it adds further 680 

methodological challenges.   681 

 After repeatedly measuring individual performance curves in isolation, animals should 682 

be assigned to groups. The method for group assignment should be considered carefully 683 

depending on the exact question being asked. For example, if researchers are interested in 684 

how performance in a given environmental context affects group assortment, animals should 685 

be allowed to assort themselves. However, if the question relates more to how groups manage 686 

performance of different individuals as conditions change, group assignment can be done by 687 

the experimenter. This also requires careful consideration such as whether to optimize the 688 

performance of all individuals, the performance of the group as a whole or the differences 689 

between individuals.  690 

 Additionally, experimenters will need to decide whether they are going to measure the 691 

performance of a few focal individuals or all individuals in the social groupings. Due to the time 692 

and work involved in collecting performance curves on each additional animal, this is a serious 693 
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consideration. While measuring every individual in a group provides more information, it can 694 

functionally limit the number of groups that can reasonably be measured. Whether fewer 695 

individuals per group can be measured depends on the exact question being asked. 696 

Importantly, even if the ultimate question relates to individual performance, it may be important 697 

to construct performance curves for all individuals in a group if the question focuses on how 698 

the individual relates to group performance and whether the important metric is average group 699 

performance or individual rank. While this type of experiment can be time intensive, without a 700 

better understanding of how individual performance curves influence social behavior traits and 701 

group performance, we will be unable to adequately predict how animal groups respond to 702 

changing environmental conditions.  703 

 704 

Box 1. Methodological Case Study: Using performance curves and social dynamics to 705 

understand how fish deal with droughts 706 

Many freshwater ecosystems are characterised by natural seasonal fluctuations of their water 707 

cycle, including droughts and floods (Lennox et al., 2019). Despite being an integral part of 708 

the ecosystem, droughts have strong impacts on fish and other aquatic biota by increases in 709 

water temperature, deoxygenation, and reducing habitat availability and connectivity by 710 

reductions in water flow (Magoulick and Kobza, 2003; Mas-Martí et al., 2010). In fluvial 711 

systems in particular, severe droughts can result in complete sections of rivers to dry up, 712 

confining fish to few refugia with very extreme abiotic conditions, intense competition, and high 713 

predation risk (Magoulick & Kobza, 2003). Physiological performance curves are likely to 714 

directly affect how individual fish cope with these strong environmental changes, but also 715 

indirectly through various social effects, whereby the responses and capabilities of individual 716 

animals to drought may be compromised or enhanced, influenced by the phenotypic 717 

composition of groups (see main text; Killen et al. 2017; Jolles et al., 2020). For example, fish 718 

more sensitive to temperature increases may be the first to leave areas that may dry up later 719 

and thereby could act as leaders that “rescue” individuals with broader performance curves 720 

and correspondingly wider thermal tolerances. It is also possible that, in pools with low oxygen 721 

availability and warm water, competitive interactions change considerably relative to non-722 

drought conditions, putting individuals with narrower performance curves (e.g., in terms of 723 

aerobic scope) at risk. 724 

         To better understand the above types of scenarios in terms of how fish may deal with 725 

the severe effects of droughts, we first need to understand how individual fish cope with 726 

changes in their environment related to drought at both the behavioural and physiologic levels. 727 

To start, one could decide to focus on hypoxia linked to drought and determine the 728 

physiological performance curves in terms of metabolic capacity and activity change across 729 

decreasing oxygen levels. To do this, a replicated setup of 16 respirometry chambers could 730 
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be used to measure the standard metabolic rate and aerobic scope of fish during acute 731 

exposure to various levels of oxygen availability observed in the wild, e.g., 100%, 75%, 50%, 732 

and 25% air saturation. Fish would be tested in a random order in terms of oxygen treatment 733 

to avoid temporal effects, and fish could be tested on alternative days to test two batches on 734 

following days. In that way it would be possible to test 32 fish on all four treatment levels in 8 735 

days’ time. 736 

Physiological experiments could be complemented with automated behavioural 737 

experiments to determine how fish behaviourally respond to different levels of oxygenation, 738 

particularly spontaneous activity, air-breathing, and potential escape (longer directed 739 

movement) behaviour. For this, fish could be tested individually in medium-sized arenas, filled 740 

with water at a specific oxygen level and containing rocks and partitions to provide structure. 741 

A system of replicated setups could be used with automated recording (e.g. pirecorder) and 742 

tracking of the fishes’ movements, such that all 32 fish could be tested on one treatment level 743 

per day (randomized). 744 

After acquiring the individual measures, fish could be tested for social behaviour in 745 

larger arenas in small groups of different compositions in terms of their physiological 746 

performance. A range of different questions could be investigated, each requiring a different 747 

type of homo- and heterogenization. To start, one could focus on understanding the effects of 748 

individuals’ breadth of performance curve in terms of metabolic phenotype on competitiveness 749 

in a social foraging scenario. Thereby groups, such as with a group size of 6 fish, could be 750 

composed of individuals with small and large performance breadths and exposed to an open 751 

arena with hidden foraging patches and repeatedly tested across the four oxygen treatment 752 

levels. Manual video observations will help determine the cumulative food intake of the 753 

individual fish with automated tracking linking this to changes in the individual movement and 754 

social interaction rules (see e.g. Jolles et al., 2017; McGregor et al., 2020). Additional 755 

experiments could be performed in which social trials are run at differing levels of hypoxia 756 

such that among-individual variation in performance capacity and behaviour could be 757 

manipulated according to each individual's performance curves, and the resulting effects on 758 

social behaviour observed. 759 

With careful planning of the physiological and behavioural measurements, while 760 

properly accounting for acclimatisation and randomizing for order and treatment effects, it 761 

should be feasible, following the above, to get a sample size of 96 fish tested within 6-8 weeks. 762 

In the foraging experiment described above, the dataset would have 384 unique individual 763 

scores in terms of SMR, AS, individual activity, and social activity to determine individual 764 

physiological performance curves and heterogeneity therein as well as the effects of this 765 

heterogeneity on group functioning in terms of social foraging (at the baseline foraging 766 

condition, presumably at normoxia). Note that this experimental design only considered acute 767 
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exposures to the various levels of oxygen availability. A study could also start with fish 768 

acclimated (for at least two weeks) to the various hypoxia treatments, but this would obviously 769 

increase the amount of time needed for the project if individual performance curves are to be 770 

constructed after acclimation and subsequent testing at each condition.  771 

 772 

CONCLUDING REMARKS 773 

It is becoming increasingly clear that: 1) animal social behaviour is linked with the physiological 774 

performance capacity of individuals; and 2) physiological performance is strongly influenced 775 

by environmental factors. Accordingly, it is apparent that a research approach that involves 776 

estimation of performance curves is required to fully understand how environmental factors 777 

influence social behaviour. Conversely, the measurement of performance curves has been a 778 

central feature of the study of comparative physiology and ecophysiology during the last 779 

several decades, but in virtually all cases has only been applied to individual animals and 780 

devoid of any social context. As individual heterogeneity within groups is a known driver of 781 

leadership, conflict, cohesion and coordination, environmental effects on phenotypic variation 782 

should ultimately influence behaviours at the group level. As wild animals are being exposed 783 

to increasing environmental changes, an integration of physiological performance curves with 784 

the measurement of social behaviour will be key for understanding how such changes affect 785 

group living and associated ecological phenomena. We therefore encourage increased 786 

collaboration among ecophysiologists and researchers that investigate animal social 787 

behaviour to achieve a more complete understanding of how species will respond to 788 

environmental change. 789 
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FIGURES 1228 

 1229 
 1230 
Figure 1. (A) Performance curve shape is heavily dependent on the environmental factor 1231 
being examined. In this panel, different types of environmental factors are represented by 1232 
different colours. The arrow represents an overall depression of trait expression when 1233 
potential effects of hypoxia are combined with the effects of temperature. Note, when habitat 1234 
size increases, greater protection/space to hide from predators and/or increase food 1235 
availability may enhance performance, thus reducing endocrine stress level [6, 7]. However, 1236 
when territory is very large the performance traits may be reduced again in territorial animals 1237 
(e.g. anemonefish [8]) due to increased stress and/or energy investment to protect a larger 1238 
area from competitors or predators. (B) Potential effects of among-individual variation in 1239 
performance curves for a trait related to the expression of social behaviour (e.g. aerobic 1240 
capacity, cognitive ability, locomotor capacity, muscular function) in response to temperature 1241 
(environmental variable). In this panel, the performance curve of different individuals within a 1242 
social group are represented in different colours. The dashed orange line shows variation in 1243 
the performance curve (solid orange line) caused by acclimation to the environmental 1244 
variable (temperature in this example). Acclimation generally results in an overall “flattening” 1245 
of the performance curve, but may also cause an increase in the peak performance. Arrows 1246 
illustrate the different points of individual variation in performance curve that have 1247 
implications for animal social behaviour, especially in ectotherms. Each point and its 1248 
consequence on social behaviour is highlighted in Figures 2, 3, 4, 5, 6 and 7. References: [1] 1249 
Barrionuevo and Burggren, 1999; [2] Fry, 1971; [3] Pörtner 2010; [4] Pörtner and Farrell 1250 
2008; [5] Maierdiyali et al. 2020; [6] Bauer et al., 2013; [7] Breves and Specker 2005; [8] 1251 
Ross, 1978; [9] Gomez Isaza et al., 2020; [10] McKenzie et al. 2010; [11] Meager et al. 1252 
2006; [12] Chamberlain and Ioannou,2019.  1253 
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 1256 
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 1258 
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 1259 
Figure 2. Changes in the rank order of performance capacity across three different 1260 
temperatures (top panel). Each colour refers to an individual within the same social group. In 1261 
the bottom panels the rank-assortment within the group is shown for each temperature (1, 2 1262 
and 3), assuming that higher-ranked individuals are positioned on the front of the group. For 1263 
example, the green individual is the highest rank-individual (leader) at temperature 1, but a 1264 
follower with 2nd rank position at temperature 2, and is no longer part of the group at 1265 
temperature 3, given that the individual's performance capacity decreases to 0 before 1266 
temperature 3, while the rest of the groups has not. 1267 
 1268 
 1269 
 1270 
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 1271 
Figure 3. Change in among-individual variation along the environmental gradient. On the top 1272 
panel the among-individual variation is highlighted at 2 different temperatures, when 1273 
individual performance curves converge (temperature 1) or diverge (temperature 2). Each 1274 
colour refers to an individual within the same social group. Square boxes represent 1275 
individuals used as a reference to show the amount of variation. Arrows show the amount of 1276 
variation between individuals. In the bottom panels is shown an example of the 1277 
consequences of among-individual variation in performance curves on social groups. Wider 1278 
variation could lead to less cohesion, i.e. higher distances among individuals within the same 1279 
group, here shown at temperature 2 compared to temperature 1. 1280 
 1281 
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 1283 
 1284 
Figure 4. Change in within-individual variation across an environmental gradient (e.g. 1285 
temperature). The area below the performance curve indicates the variation in individual 1286 
performance (A, individual in yellow used as an example). Differences in individual variation 1287 
in performance trait at two different temperatures (1 and 2, B) can result in different 1288 
behavioural capacity and expression. For example, at temperature 1 the yellow individual 1289 
has only little variation in performance and its behaviour is only expressed as low movement 1290 
speed, while at temperature 2 (close to its optimum) the same individual has a higher 1291 
variation of movement and can move up to very high speeds. Panel (B) reproduced from 1292 
Jolle et al. 2020. 1293 
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 1296 
Figure 5. (A) Among-individual differences in optimal environments vs. (B) equal optimal 1297 
environment among individuals belonging to the same social group. One of the 1298 
consequences of among-individual differences in optimal environments is that individuals 1299 
may fit into different social “niches”, each with a different behavioural capacity and 1300 
expression, depending on the physiological constraints they end up facing within the group’s 1301 
chosen environment (C). On the other hand, an similar optimal environments may lead to 1302 
behavioural conformity among individuals (D). 1303 
 1304 
 1305 
 1306 
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 1307 
Figure 6. Among-individual differences in peak performance regardless of optima. In panel 1308 
(A) across a large range of temperatures, individuals green and orange have a higher peak 1309 
in their performance compared to the other individuals within the group and regardless of 1310 
optima. 1311 
 1312 
 1313 
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 1314 
Figure 7. Among-individual differences in performance breadth and critical limits (A) and its 1315 
consequences (B and C). Variation in the breadth and critical thresholds limit the options of 1316 
habitats available for each individual and promote among-group assortment (e.g. B and C). 1317 
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