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Despite their importance in many ecological processes, collecting data and information on ecological in-
teractions is an exceedingly challenging task. For this reason, large parts of the world have a data deficit
when it comes to species interactions, and how the resulting networks are structured. As data collection
alone is unlikely to be sufficient, community ecologists must adopt predictive methods. Here we develop
such a method, relying on graph embedding and transfer learning to assemble a predicted list of trophic
interactions between Canadian mammals. This interaction list is derived from the European food web,
despite sharing only 5% of common species with Canada. The results of the predictive model are com-
pared against databases of recorded pairwise interactions, showing that we correctly recover over 95%
of known interactions. We provide guidance on how this method can be adapted by substituting some
approaches or predictors in order to make it more generally applicable.

1

Introduction

There are two core challenges we are faced with in furthering our understanding of ecological networks
across space, particularly at macro-ecologically relevant scales (e.g. Trøjelsgaard & Olesen 2016). First,
networks within a location are difficult to sample properly (Jordano 2016a, b), resulting in a widespread
“Eltonian shortfall” (Hortal et al. 2015), i.e. a lack of knowledge about inter and intra specific relation-
ships. This first challenge has been, in large part, addressed by the recent emergence of a suite of meth-
ods aiming to predict interactions within existing networks, many of which are reviewed in Strydom et al.
(2021a). Second, recent analyses based on collected data (Poisot et al. 2021a) or metadata (Cameron et al.
2019) highlight that ecological networks are currently studied in a biased subset of space and bioclimates,
which impedes our ability to generalize any local understanding of network structure. Meaning that, al-
though the framework to address incompleteness within networks exists, there would still be regions for
which, due to a lack of local interaction data, we are unable to infer potential species interactions. Having
a general solution for inferring a plausiblemetaweb (despite the unavailability of interaction data) could
be the catalyst for significant breakthroughs in our ability to start thinking about species interaction net-
works over large spatial scales.
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Figure 1 Overview of the phylogenetic trans-
fer learning (and prediction) of species in-
teractions networks. Starting from an ini-
tial, known, network, we learn its represen-
tation through a graph embedding step (here,
a truncated Singular Value Decomposition;
Step 1), yielding a series of latent traits (vul-
nerability traits representing species at the
lower trophic-level and generality traits repre-
senting species at higher trophic-levels; sensu
Schoener (1989)); second, for the destination
species pool, we perform ancestral character
estimation using a phylogeny (here, using a
Brownian model for the latent traits; Step 2);
we then sample from the reconstructed distri-
bution of latent traits (Step 3) to generate a
probabilistic metaweb at the destination (here,
assuming a uniform distribution of traits), and
threshold it to yield the final list of interactions
(Step 4).

Here, we present a general method for the transfer learning of network representations, relying on the
similarities of species in a biologically/ecologically relevant proxy space (e.g. shared morphology or an-
cestry). Transfer learning is a machine learning methodology that uses the knowledge gained from solv-
ing one problem and applying it to a related (destination) problem (Pan & Yang 2010; Torrey & Shavlik
2010). In this instance, we solve the problem of predicting trophic interactions between species, based on
knowledge extracted from another species pool for which interactions are known by using phylogenetic
structure as a medium for transfer. This allows us to construct a probabilistic metaweb for a commu-
nity for which we have no prior trophic interaction data for the desired species pool. Our methodology
is outlined in fig. 1, where we provide an illustration based on learning the embedding of a metaweb of
trophic interactions for European mammals (known interactions; Maiorano et al. 2020b, a) and, based
on phylogenetic relationships between mammals globally (i.e., phylogenetic tree Upham et al. 2019), in-
fer a metaweb for the Canadian mammalian species pool (interactions are treated as unknown in this
instance).

There is a plurality of measures of species similarities that can be used for metaweb reconstruction (see
e.g. Morales-Castilla et al. 2015); however, phylogenetic proximity has several desirable properties when
working at large scales. Gerhold et al. (2015) made the point that phylogenetic signal captures diversi-
fication of characters (large macro-evolutionary process), but not necessarily community assembly (fine
ecological process); Dormann et al. (2010) previously found very similar conclusions. Interactions tend
reflect a phylogenetic signal because they have a conserved pattern of evolutionary convergence that en-
compasses awide range of ecological and evolutionarymechanisms (Cavender-Bares et al. 2009;Mouquet
et al. 2012), and - most importantly - retain this signal even when it is not detectable at the community
scale (Hutchinson et al. 2017; Poisot & Stouffer 2018). Finally, species interactions at macro-ecological
scales seem to respond mostly to macro-evolutionary processes (Price 2003); which is evidenced by the
presence of conserved backbones in foodwebs (Dalla Riva & Stouffer 2016), strong evolutionary signature
on prey choice (Stouffer et al. 2012), and strong phylogenetic signature in food web intervality (Eklöf &
Stouffer 2016). Phylogenetic reconstruction has also previously been usedwithin the context of ecological
networks, namely understanding ancestral plant-insect interactions (Braga et al. 2021). Taken together,
these considerations suggest that phylogenies can reliably be used to transfer knowledge on species in-
teractions.

Our case study shows that phylogenetic transfer learning is indeed an effective approach to predict the
Canadian mammalian metaweb. This showcases that although the components (species) that make up
the Canadian and European communities may be minimally shared, if the medium (proxy space) se-
lected in the transfer step is biologically plausible, we can still effectively learn from the known network
and make biologically relevant predictions of interactions. It should be reiterated that the framework
presented in fig. 1 is amenable to changes; notably, the measure of similarity may not be phylogeny, and
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can be replaced by information on foraging (Beckerman et al. 2006), cell-level mechanisms (Boeckaerts
et al. 2021), or a combination of traits and phylogenetic structure (Stock 2021).

2

Data used for the case study

We use data from the European metaweb assembled by Maiorano et al. (2020b), following the definition
of the metaweb first introduced by Dunne (2006), i.e. an inventory of all possible interactions within
species from a spatially delimited pool. Notably the metaweb is not a prediction of the food web at any
specific locale within the frontiers of the species pool – in fact, these local food webs are expected to have
a subset of both the species and the interactions of their metaweb (Poisot et al. 2012). This being said,
as the metaweb represents the total of functional, phylogenetic, and macroecological processes (Morales-
Castilla et al. 2015), it is thus still worthy of ecological attention. We deduced the subgraph corresponding
to all mammals by matching species names in the original network to the GBIF taxonomic backbone
(GBIF Secretariat 2021) and retaining all those who matched to mammals. This serves a dual purpose
1) to extract only mammals from the European network and 2) to match and standardize species names
when aggregating the different data sources further downstream (which is an important consideration
when combining datasets (Grenié et al. 2021)). All nodes had valid matches to GBIF at this step, and so
this backbone is used for all name reconciliation steps as outlined below.

The European metaweb represents the knowledge we want to learn and transfer; the phylogenetic sim-
ilarity of mammals here represents the information for transfer. We used the mammalian consensus
supertree by Upham et al. (2019), for which all approximatively 6000 names have been similarly matched
to their GBIF valid names. This step allows us to place each node of the mammalian European metaweb
in the phylogeny.

The destination problem to which we want to transfer knowledge is the trophic interactions between
mammals in Canada. We obtained the list of extant species from the IUCN checklist, and selected the
terrestrial and semi-aquatic species (this corresponds to the same selection that was applied by Maiorano
et al. (2020b) in the European metaweb). The IUCN names were, as previously, reconciled against GBIF
to have an exact match to the taxonomy.

After taxonomic cleaning and reconciliation as outlined in the following sections, the mammalian Eu-
ropean metaweb has 260 species, and the Canadian species pool has 163; of these, 17 (about 4% of the
total) are shared, and 89 species from Canada (54%) had at least one congeneric species in Europe. The
similarity for both species pools predictably increases with higher taxonomic order, with 19% of shared
genera, 47% of shared families, and 75% of shared orders; for the last point, Canada and Europe each had
a single unique order (Didelphimorphia for Canada, Erinaceomorpha for Europe).

In the following sections, we describe the representational learning step applied to European data, the
transfer step through phylogenetic similarity, and the generation of a probabilistic metaweb for the desti-
nation species pool.

3

Method description

The crux of the method is the transfer of knowledge of a known network, in order to predict interactions
between species from another location. In fig. 1, we give a high-level overview of the approach; in the
example around which this manuscript is built (leveraging detailed knowledge about binary trophic in-
teractions between Mammalia in Europe to predict the less known trophic interactions between closely
phylogenetically related Mammalia in Canada), we use a series of specific steps for network embedding,
trait inference, network prediction and thresholding.

Specifically, our approach can be summarized as follows: from the known network in Europe, we use a
truncated Singular Value Decomposition (t-SVD; Halko et al. 2011) to generate latent traits representing a
low-dimensional embedding of the network; these traits give an unbiased estimate of the node’s position
in the latent feature spaces. Then, we map these latent traits onto a reference phylogeny (other distance-
basedmeasures of species proximity that allow for the inference of features in the latent space can be used,
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for example the dissimilarity in functional traits). Based on the reconstructed latent traits for species in the
destination species pool, a Random Dot Product Graph model (hereafter RDPG; Young & Scheinerman
2007) predicts the interaction between species through a function of the nodes’ features through matrix
multiplication. Thus, from latent traits and node position, we can infer interactions.

3.1. Implementation and code availability The entire pipeline is implemented in Julia 1.6 (Bezanson et
al. 2017) and is available under the permissive MIT License at https://osf.io/2zwqm/. The taxonomic
cleanup steps are done using GBIF.jl (Dansereau & Poisot 2021). The network embedding and analysis
is done using EcologicalNetworks.jl (Poisot et al. 2019; Banville et al. 2021). The phylogenetic simu-
lations are done using PhyloNetworks.jl (Solís-Lemus et al. 2017) and Phylo.jl (Reeve et al. 2016). A
complete Project.toml file specifying the full tree of dependencies is available alongside the code. This
material also includes a fully annotated copy of the entire code required to run this project (describing
both the intent of the code and discussing some technical implementation details), a vignette for every
step of the process, and a series of Jupyter notebooks with the text and code. The pipeline can be executed
on a laptop in a matter of minutes, and therefore does not require extensive computational power.

3.2. Step 1: Learning the origin network representation The first step in transfer learning is to learn
the structure of the original dataset. In order to do so, we rely on an approach inspired from represen-
tational learning, where we learn a representation of the metaweb (in the form of the latent subspaces),
rather than a list of interactions (species a eats b). This approach is conceptually different from other
metaweb-scale predictions (e.g. Albouy et al. 2019), in that the metaweb representation is easily trans-
ferable. Specifically, we use RDPG to create a number of latent variables that can be combined into an
approximation of the network adjacency matrix. RDPG results are known to have strong phylogenetic
signal, and to capture the evolutionary backbone of food webs (Dalla Riva & Stouffer 2016). In addition,
recent advances show that the latent variables produced this way can be used to predict de novo network
edges (i.e. interactions; Runghen et al. 2021).

The latent variables are created by performing a truncated Singular Value Decomposition (t-SVD) on the
adjacency matrix. SVD is an appropriate embedding of ecological networks, which has recently been
shown to both capture their complex, emerging properties (Strydom et al. 2021b) and to allow highly
accurate prediction of the interactions within a single network (Poisot et al. 2021b). Under SVD, an
adjacencymatrix𝐀 (where𝐀𝑚,𝑛 ∈ 𝔹where 1 indicates predation and 0 an absence thereof) is decomposed
into three components resulting in 𝐀 = 𝐋𝚺𝐑′. Here, 𝚺 is a 𝑚 × 𝑛 diagonal matrix and contains only
singular (𝜎) values along its diagonal,𝐋 is a𝑚×𝑚 unitarymatrix, and𝐑′ a𝑛×𝑛 unitarymatrix. Truncating
the SVD removes additional noise in the dataset by omitting non-zero and/or smaller 𝜎 values from 𝚺
using the rank of the matrix. Under a t-SVD 𝐀𝑚,𝑛 is decomposed so that 𝚺 is a square 𝑟 × 𝑟 diagonal
matrix (whith 1 ≤ 𝑟 ≤ 𝑟𝑓𝑢𝑙𝑙 where 𝑟𝑓𝑢𝑙𝑙 is the full rank of 𝐀 and 𝑟 the rank at which we truncate the
matrix) containing only non-zero 𝜎 values. Additionally, 𝐋 is now a 𝑚 × 𝑟 semi unitary matrix and 𝐑′ a
𝑛 × 𝑟 semi-unitary matrix.

The specific rank at which the SVD ought to be truncated is a difficult question. The purpose of SVD is to
remove the noise (expressed at high dimensions) and to focus on the signal, (expressed at lowdimensions).
In datasetswith a clear signal/noise demarcation, a scree plot of𝚺 can showa sharp drop at the rankwhere
noise starts (Zhu & Ghodsi 2006). Because the European metaweb is almost entirely known, the amount
of noise (uncertainty) is low; this is reflected in fig. 2 (left), where the scree plot shows no important drop,
and in fig. 2 (right) where the proportion of variance explained increases smoothly at higher dimensions.
For this reason, we default back to a threshold that explains 60% of the variance in the underlying data,
corresponding to 12 dimensions - i.e. a tradeoff between accuracy and a reduced number of features.

A RDPG estimates the probability of observing interactions between nodes (species) as a function of the
nodes’ latent variables. The latent variables used for the RDPG, called the left and right subspaces, are
defined asℒ = 𝐋

√
𝚺, andℛ =

√
𝚺𝐑 – using the full rank of 𝐀, ℒℛ′ = 𝐀, and using any smaller rank

results inℒℛ′ ≈ 𝐀. Using a rank of 1 for the t-SVD provides a first-order approximation of the network.

Because RDPG relies on matrix multiplication, the higher dimensions essentially serve to make specific
interactions converge towards 0 or 1; therefore, for reasonably low ranks, there is no guarantee that the
values in the reconstructed network will be within the unit range. In order to determine what constitutes
an appropriate threshold for probability, we performed the RDPG approach on the European metaweb,
and evaluated the probability threshold by treating this as a binary classification problem, specifically
assuming that both 0 and 1 in the Europeanmetaweb are all true. Given the methodological details given
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Figure 2 Left: representation of the
screeplot of the singular values from the t-SVD
on the European metaweb. The screeplot
shows no obvious drop in the singular values
that may be leveraged to automatically detect
a minimal dimension for embedding, after
e.g. Zhu & Ghodsi (2006). Right: cumula-
tive fraction of variance explained by each
dimension up to the rank of the European
metaweb. The grey lines represent cutoffs at
50, 60. . . 90% of variance explained. For the
rest of the analysis, we reverted to an arbitrary
threshold of 60% of variance explained, which
represented a good tradeoff between accuracy
and reduced number of features.

in Maiorano et al. (2020b) and O’Connor et al. (2020), this seems like a reasonable assumption, although
one that does not hold for all metawebs. We used the thresholding approach presented in Poisot et al.
(2021b), and picked a cutoff that maximized Youden’s 𝐽 statistic (a measure of the informedness (trust)
of predictions; Youden (1950)); the resulting cutoff was 0.22, and gave an accuracy above 0.99.

The left and right subspaces for the European metaweb, accompanied by the threshold for prediction,
represent the knowledge we seek to transfer. In the next section, we explain how we rely on phylogenetic
similarity to do so.

3.3. Steps 2 and 3: Transfer learning through phylogenetic relatedness In order to transfer the
knowledge from the European metaweb to the Canadian species pool, we performed ancestral character
estimation using a Brownian motion model, which is a conservative approach in the absence of strong
hypotheses about the nature of phylogenetic signal in the network decomposition (Litsios & Salamin
2012). This uses the estimated feature vectors for the European mammals to create a state reconstruction
for all species (conceptually something akin to a trait-based mammalian phylogeny using generality and
vulnerability traits) and allows us to impute the missing (latent) trait data for the Canadian species that
are not already in the European network; as we are focused on predicting contemporary interactions, we
only retained the values for the tips of the tree. We assumed that all traits (i.e. the feature vectors for the
left and right subspaces) were independent, which is a reasonable assumption as every trait/dimension
added to the t-SVD has an additive effect to the one before it. Note that the Upham et al. (2019) tree itself
has some uncertainty associated to inner nodes of the phylogeny. In this case study, we have decided
to not propagate this uncertainty, as it would complexify the process. The Brownian motion algorithm
returns the average value of the trait, and its upper and lower bounds. Because we do not estimate other
parameters of the traits’ distributions, we considered that every species trait is represented as a uniform
distribution between these bounds; in a situation where the algorithm would return point values for all
simulations, one could in theory either estimate the parameters of a distribution for each tip, or draw
randomly from the outputs. In all cases, the inferred left and right sub-spaces for the Canadian species
pool (ℒ̂ and ℛ̂) have entries that are distributions, representing the range of values for a given species at
a given dimension.

These objects represent the transferred knowledge, which we can use for prediction of the Canadian
metaweb.

3.4. Step 4: Probabilistic prediction of the destination network The phylogenetic reconstruction of
ℒ̂ and ℛ̂ has an associated uncertainty, represented by the breadth of the uniform distribution associated
to each of their entries. Therefore, we can use this information to assemble a probabilistic metaweb in
the sense of Poisot et al. (2016), i.e. in which every interaction is represented as a single, independent,
Bernoulli event of probability 𝑝.

Specifically, we have adopted the following approach. For every entry in ℒ̂ and ℛ̂, we draw a value
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Figure 3 Visual representation of the left
(green/purple) and right (green/brown) sub-
spaces, alongside the adjacency matrix of the
food web they encode (greyscale). The Euro-
pean metaweb is on the left, and the imputed
Canadian metaweb (before data inflation) on
the right. This figure illustrates how much
structure the left sub-space captures. As we
show in fig. 6, the species with a value of 0 in
the left subspace are species without any prey.

Figure 4 Left, comparison of the probabili-
ties of interactions assigned by the model to
all interactions (grey curve), the subset of in-
teractions found in GLOBI (red), and in the
Strong & Leroux (2014) Newfoundland dataset
(blue). The model recovers more interaction
with a low probability compared to data min-
ing, which can suggest that collected datasets
are biased towards more common or easy to
identify interactions. Right, distribution of the
in-degree and out-degree of themammals from
Canada in the reconstructed metaweb. This
figure describes a flat, relatively short food
web, in which there are few predators but a
large number of preys.

from its distribution. This results in one instance of the possible left (�̂�) and right (�̂�) subspaces for the
Canadian metaweb. These can be multiplied, to produce one matrix of real values. Because the entries
in �̂� and �̂� are in the same space whereℒ andℛ were originally predicted, it follows that the threshold
𝜌 estimated for the European metaweb also applies. We use this information to produce one random
Canadian metaweb, 𝑁 = ℒ̂ℛ̂′ ≥ 𝜌. As we can see in (fig. 3) the European and Canadian metawebs
are structurally similar (as would be expected given the biogeographic similarities) and the two (left and
right) subspaces are distinct i.e. capturing predation (generality) and prey (vulnerability) traits.

Because the intervals around some trait values can be broad (in fact, probably broader than what they
would actually be, see e.g. Garland et al. 1999), we repeat the above process 2 × 105 times, which results
in a probabilistic metaweb 𝑃, where the probability of an interaction (here conveying our degree of trust
that it exists given the inferred trait distributions) is given by the number of times where it appears across
all random draws 𝑁, divided by the number of samples. An interaction with 𝑃𝑖,𝑗 = 1 means that these
two species were predicted to interact in all 2 × 105 random draws.

3.5. Data cleanup, discovery, validation, and thresholding Once the probabilisticmetaweb forCanada
has been produced, we followed a number of data inflation steps to finalize it. This step is external to
the actual transfer learning framework but rather serves as a way to augment and validate the predicted
metaweb.

First, we extracted the subgraph corresponding to the 17 species shared between the European and Cana-
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Figure 5 Left: effect of varying the cutoff for
probabilities to be considered non-zero on the
number of unique links and on �̂�, the prob-
abilistic estimate of the number of links as-
suming that all interactions are independent.
Right: effect of varying the cutoff on the num-
ber of disconnected species, and on network
connectance. In both panels, the grey line in-
dicates the cutoff 𝑃(𝑖 → 𝑗) ≈ 0.08 that resulted
in the first species losing all of its interactions.

dian pools and replaced these interactions with a probability of 0 (non-interaction) or 1 (interaction),
according to their value in the European metaweb. This represents a minute modification of the inferred
network (about 0.8% of all species pairs from the Canadian web), but ensures that we are directly re-using
knowledge from Europe.

Second, we looked for all species in the Canadian pool known to the Global Biotic Interactions (GLoBI)
database (Poelen et al. 2014), and extracted their known interactions. Because GLOBI aggregates ob-
served interactions, it is not a networks data source, and therefore the only information we can reliably
extract from it is that a species pair was reported to interact at least once. This last statement should yet
be taken with caution, as some sources in GLOBI (e.g. Thessen & Parr 2014) are produced through text
analysis, and therefore may not document direct evidence of the interaction. Nevertheless, should the
predictive model work, we would expect that a majority of interactions known to GLOBI would also be
predicted. After performing this check, we set the probability of all interactions known to GLOBI (366 in
total, 33 of which were not predicted by the model, for a success rate of 91%) to 1.

Finally, we downloaded the data from Strong & Leroux (2014), who mined various literature sources to
identify trophic interactions in Newfoundland. This dataset documented 25 interactions between mam-
mals, only two of which were not part of our (Canada-level) predictions, resulting in a success rate of 92%.
These two interactions were added to our predicted metaweb with a probability of 1. A table listing all
interactions in the predicted Canadian metaweb can be found in the supplementary material.

Because the confidence intervals on the inferred trait space are probably over-estimates, we decided to
apply a thresholding step to the interactions after the data inflation (fig. 5). Cirtwill & Hambäck (2021)
proposed a number of strategies to threshold probabilistic networks. Their methods assume the under-
lying data to be tag-based sequencing, which represents interactions as co-occurrences of predator and
prey within the same tags; this is conceptually identical to our Bernoulli-trial based reconstruction of a
probabilistic network. We performed a full analysis of the effect of various cutoffs, and as they either
resulted in removing too few interactions, or removing enough interactions that species started to be dis-
connected from the network, we set this threshold for a probability equivalent to 0 to the largest possible
value that still allowed all species to have at least one interaction with a non-zero probability. The need
for this slight deviation from the Cirtwill & Hambäck (2021) method highlights the need for additional
development on network thresholding.

4

Results and discussion of the case study

In fig. 5, we examine the effect of varying the cutoff on 𝑃(𝑖 → 𝑗) on the number of links, species, and
connectance. Determining a cutoff using the maximum curvature, or central difference approximation
of the second order partial derivative, as suggested by e.g. Cirtwill & Hambäck (2021), results in species
being lost, or almost all links being kept. We therefore settled on the value that allowed all species to
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Figure 6 Top: biological significance of the
first dimension. Left: there is a linear rela-
tionship between the values on the first di-
mension of the left subspace and the gener-
ality, i.e. the relative number of preys, sensu
Schoener (1989). Species with a value of 0 in
this subspace are at the bottom-most trophic
level. Right: there is, similarly, a linear rela-
tionship between the position of a species on
the first dimension of the right subspace and
its vulnerability, i.e. the relative number of
predators. Taken together, these two figures
show that the first-order representation of this
network would capture its degree distribution.
Bottom: topological consequences of the first
dimension. Left: differences in the 𝑧-score
of the actual configuration model for the re-
constructed network, and the prediction based
only on the first dimension. Right: distribu-
tion of the differences in the left panel.

remain with at least one interaction. This result, in and of itself, suggests that additional methodological
developments for the thresholding of probabilistic networks are required.

The t-SVD embedding is able to learn relevant ecological features for the network. fig. 6 shows that the
first rank correlates linearly with generality and vulnerability (Schoener 1989), i.e. the number of preys
and predators. Importantly, this implies that a rank 1 approximation represents the configuration model
for the metaweb, i.e. a set of random networks generated from a given degree sequence (Park & Newman
2004). Accounting for the probabilistic nature of the degrees, the rank 1 approximation also represents
the soft configuration model (van der Hoorn et al. 2018). Both models are maximum entropy graph mod-
els (Garlaschelli et al. 2018), with sharp (all network realizations satisfy the specified degree sequence)
and soft (network realizations satisfy the degree sequence on average) local constraints, respectively. The
(soft) configuration model is an unbiased random graph model widely used by ecologists in the context
of null hypothesis significance testing of network structure (e.g. Bascompte et al. 2003) and can provide
informative priors for Bayesian inference of network structure (e.g. Young et al. 2021). It is noteworthy
that for this metaweb, the relevant information was extracted at the first rank. Because the first rank
corresponds to the leading singular value of the system, the results of fig. 6 have a straightforward inter-
pretation: degree-based processes are the most important in structuring the mammalian food web.

5
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Discussion

One important aspect in which Europe and Canada differ (despite their comparable bioclimatic condi-
tions) is the degree of the legacy of human impacts, which have been much longer in Europe. Nenzén et
al. (2014) showed that even at small scales (the Iberian peninsula), mammal food webs retain the signal
of both climate change and human activity, even when this human activity was orders of magnitude less
important than it is now. Similarly, Yeakel et al. (2014) showed that changes in human occupation over
several centuries can lead to food web collapse. Megafauna in particular seems to be very sensitive to
human arrival (Pires et al. 2015). In short, there is well-substantiated support for the idea that human
footprint affects more than the risk of species extinction (Marco et al. 2018), and can lead to changes in
interaction structure. Yet, owing to the inherent plasticity of interactions, there have been documented
instances of food webs undergoing rapid collapse/recovery cycles over short periods of time (Pedersen et
al. 2017). The embedding of a network, in a sense, embeds its macro-evolutionary history, especially as
RDPG captures ecological signal (Dalla Riva & Stouffer 2016); at this point, it is important to recall that
a metaweb is intended as a catalogue of all possible interactions, which should then be filtered (Morales-
Castilla et al. 2015). In practice (and in this instance) the reconstructedmetaweb will predict interactions
that are plausible based on the species’ evolutionary history, however some interactions would not be
realized due to human impact.

Cirtwill et al. (2019) previously made the point that network inference techniques based on Bayesian ap-
proaches would perform far better in the presence of an interaction-level informative prior; the desirable
properties of such a prior would be that it is expressed as a probability, preferably representing a Bernoulli
event, the value of which would be representative of relevant biological processes (probability of preda-
tion in this case). We argue that the probability returned at the very last step of our framework may serve
as this informative prior; indeed, the output of our analysis can be used in subsequent steps, also possibly
involving expert elicitation to validate some of the most strongly recommended interactions. One impor-
tant caveat to keep in mind when working with interaction inference is that interactions can never really
be true negatives (in the current state of our methodological framework and data collection limitations);
this renders the task of validating a model through the usual application of binary classification statistics
very difficult (although see Strydom et al. 2021a for a discussion of alternative suggestions). The other
way through which our framework can be improved is by substituting the predictors that are used for
transfer. For example, in the presence of information on species traits that are known to be predictive of
species interactions, one might want to rely on functional rather than phylogenetic distances – in food
webs, body size (and allometrically related variables) has been established as such a variable (Brose et al.
2006); the identification of relevant functional traits is facilitated by recent methodological developments
(Rosado et al. 2013). It should be noted that Xing& Fayle (2021) highlight phylogenetic relatedness as one
of the core components of network comparison at the global scale. In this case study, we have embedded
the original metaweb using t-SVD, because it lends itself to a RDPG reconstruction, which is known to
capture the consequences of evolutionary processes (Dalla Riva & Stouffer 2016); this being said, there
are others ways to embed graphs (Cai et al. 2017; Arsov & Mirceva 2019; Cao et al. 2019), which can be
used as alternatives.

As Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around planet-wide problems”;
in this regard, our approach must contend with two interesting problems. The first is the limit of the
metaweb to embed and transfer. If the initial metaweb is too narrow in scope, notably from a taxonomic
point of view, the chances of finding another area with enough related species tomake a reliable inference
decrease. This is notably true if the metaweb is assembled in an area with mostly endemic species. Con-
versely, themetaweb should be reliably filled, which assumes that the 𝑆2 interactions in a pool of 𝑆 species
have been examined, either through literature surveys or expert elicitation. The second problem is to de-
termine which area should be used to infer the new metaweb in, as this determines the species pool that
must be used. In our application, we focused on the mammals of Canada. The upside of this approach is
that information at the country level is likely to be required by policy makers and stakeholders for their
biodiversity assessment, as each country tends to set goals at the national level (Buxton et al. 2021) for
which quantitative instruments are designed (Turak et al. 2017), with specific strategies often enacted at
smaller scales (Ray et al. 2021). Yet these national divisions, in large parts of the world, reflect nothing
except for the legacy of settler colonialism, and operating under them must be done under the clear real-
ization that they contributed to the ongoing biodiversity crisis (Adam 2014), can reinforce environmental
injustice (Choudry 2013; Domínguez & Luoma 2020), and on Turtle Island especially, will probably end
up being replaced by Indigenous principles of land management (Eichhorn et al. 2019; No’kmaq et al.
2021).
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