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Despite their importance in many ecological processes, collecting data and information on ecological
interactions is an exceedingly challenging task. For this reason, large parts of the world have a data deficit
when it comes to species interactions, and how the resulting networks are structured. As data collection
alone is unlikely to be sufficient, community ecologists must adopt predictive methods. Here, we develop
such a method relying on graph embedding and transfer learning to assemble a predicted list of trophic
interactions between Canadian mammals. This interaction list is derived from the European food web,
despite sharing 4% of common species with Canada. The results of the predictive model are compared
against databases of recorded pairwise interactions, showing that we correctly recover 91% of known
interactions. We provide guidance on how this method can be adapted by substituting some approaches
or predictors in order to make it more generally applicable.

1

Introduction

There are two core challenges we are faced with in furthering our understanding of ecological networks
across space, particularly at macro-ecologically relevant scales (e.g. Trøjelsgaard & Olesen 2016). First,
ecological networks within a location are difficult to sample properly (Jordano 2016a, b), resulting in a
widespread “Eltonian shortfall” (Hortal et al. 2015), i.e. a lack of knowledge about inter- and intra- spe-
cific relationships. This first challenge has been, in large part, addressed by the recent emergence of a
suite of methods aiming to predict interactions within existing networks, many of which are reviewed in
Strydom et al. (2021a). Second, recent analyses based on collected data (Poisot et al. 2021a) or meta-
data (Cameron et al. 2019) highlight that ecological networks are currently studied in a biased subset of
space and bioclimates, which impedes our ability to generalize any local understanding of network struc-
ture. Meaning that, although the framework to address incompleteness within networks exists, there
would still be regions for which, due to a lack of local interaction data, we are unable to infer potential
species interactions. Having a general solution for inferring potential interactions (despite the unavailabil-
ity of interaction data) could be the catalyst for significant breakthroughs in our ability to start thinking
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Figure 1 Overview of the phylogenetic trans-
fer learning (and prediction) of species inter-
actions networks. Starting from an initial,
known, network, we learn its representation
through a graph embedding step (here, a trun-
cated Singular Value Decomposition; Step 1),
yielding a series of latent traits (latent vulnera-
bility traits are more representative of species
at the lower trophic-level and latent general-
ity traits are more representative of species at
higher trophic-levels; sensu Schoener (1989));
second, for the destination species pool, we
perform ancestral character estimation using a
phylogeny (here, using a Brownian model for
the latent traits; Step 2); we then sample from
the reconstructed distribution of latent traits
(Step 3) to generate a probabilistic metaweb at
the destination (here, assuming a uniform dis-
tribution of traits), and threshold it to yield the
final list of interactions (Step 4).

about species interaction networks over large spatial scales. In a recent overview of the field of ecolog-
ical network prediction, Strydom et al. (2021a) identified two challenges of interest to the prediction of
interactions at large scales. First, there is a relative scarcity of relevant data inmost places globally – para-
doxically, this restricts our ability to infer interactions to locations where inference is perhaps the least
required; second, accurate predictions often demand accurate predictors, and the lack of methods that
can leverage small amount of data is a serious impediment to our predictive ability globally.

Here, we present a general method to recommend potential trophic interactions, relying on the transfer
learning of network representations, specifically by using similarities of species in a biologically/ecologically
relevant proxy space (e.g. shared morphology or ancestry). Transfer learning is a machine learning
methodology that uses the knowledge gained from solving one problem and applying it to a related (des-
tination) problem (Pan & Yang 2010; Torrey & Shavlik 2010). In this instance, we solve the problem of
predicting trophic interactions between species, based on knowledge extracted from another species pool
for which interactions are known by using phylogenetic structure as a medium for transfer. There is a
plurality of measures of species similarities that can be used for inferring potential species interactions
i.e. metaweb reconstruction (see e.g. Morales-Castilla et al. 2015); however, phylogenetic proximity has
several desirable properties when working at large scales. Gerhold et al. (2015) made the point that phy-
logenetic signal captures diversification of characters (large macro-evolutionary process), but not neces-
sarily community assembly (fine ecological process); Dormann et al. (2010) previously found very similar
conclusions. Interactions tend to reflect a phylogenetic signal because they have a conserved pattern of
evolutionary convergence that encompasses a wide range of ecological and evolutionary mechanisms
(Cavender-Bares et al. 2009; Mouquet et al. 2012), and - most importantly - retain this signal even when it
is not detectable at the community scale (Hutchinson et al. 2017; Poisot & Stouffer 2018). Finally, species
interactions at macro-ecological scales seem to respond mostly to macro-evolutionary processes (Price
2003); which is evidenced by the presence of conserved backbones in food webs (Dalla Riva & Stouffer
2016; Mora et al. 2018), strong evolutionary signature on prey choice (Stouffer et al. 2012), and strong phy-
logenetic signature in food web intervality (Eklöf & Stouffer 2016). Phylogenetic reconstruction has also
previously been used within the context of ecological networks, namely understanding ancestral plant-
insect interactions (Braga et al. 2021). Taken together, these considerations suggest that phylogenies can
reliably be used to transfer knowledge on species interactions.

Ourmethodology is outlined infig. 1, whereweprovide an illustration based on learning the embedding of
a metaweb of trophic interactions for European mammals (known interactions; Maiorano et al. 2020b, a)
and, based on phylogenetic relationships between mammals globally (i.e., phylogenetic tree Upham et al.
2019), infer a metaweb for the Canadian mammalian species pool (interactions are treated as unknown
in this instance). Following the definition of Dunne (2006), a metaweb is a network analogue to the
regional species pool; specifically, it is an inventory of all potential interactions between species from a
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spatially delimited area (and so captures the 𝛾 diversity of interactions). The metaweb is, therefore, not
a prediction of the food web at a specific locale within the spatial area it covers, and will have a different
structure (notably by having a larger connectance; see e.g. Wood et al. 2015). These local food webs
(which captures the 𝛼 diversity of interactions) are a subset of the metaweb’s species and interactions,
and have been called “metaweb realizations” (Poisot et al. 2015). Differences between local food web and
their metaweb are due to chance, species abundance and co-occurrence, local environmental conditions,
and local distribution of functional traits, among others.

Because the metaweb represents the joint effect of functional, phylogenetic, and macroecological pro-
cesses (Morales-Castilla et al. 2015), it holds valuable ecological information. Specifically, it is the “upper
bounds” on what the composition of the local networks can be (see e.g. McLeod et al. 2021). These local
networks, in turn, can be reconstructed given appropriate knowledge of local species composition, pro-
viding information on structure of food webs at finer spatial scales. This has been done for example for
tree-galler-parasitoid systems (Gravel et al. 2018), fish trophic interactions (Albouy et al. 2019), tetrapod
trophic interactions (O’Connor et al. 2020), and crop-pest networks (Grünig et al. 2020). Whereas the
original metaweb definition, and indeed most past uses of metawebs, was based on the presence/absence
of interactions, we focus on probabilistic metawebs where interactions are represented as the chance of
success of a Bernoulli trial (see e.g. Poisot et al. 2016); therefore, not only does our method recommend
interactions that may exist, it gives each interaction a score, allowing us to properly weigh them.

Our case study shows that phylogenetic transfer learning is an effective approach to the generation of
probabilistic metawebs. This showcases that although the components (species) that make up the Cana-
dian and European communities may be minimally shared (the overall species overlap is less than 4%),
if the medium (proxy space) selected in the transfer step is biologically plausible, we can still effectively
learn from the known network and make biologically relevant predictions of interactions. Indeed, as we
detail in the results, when validated against known but fractional data of trophic interactions between
Canadian mammals, our model achieves a predictive accuracy of approximately 91%. It should be reit-
erated that the framework presented in fig. 1 is amenable to changes; notably, the measure of similarity
may not be phylogeny, and can be replaced by information on foraging (Beckerman et al. 2006), cell-level
mechanisms (Boeckaerts et al. 2021), or a combination of traits and phylogenetic structure (Stock 2021).
Most importantly, although we focus on a trophic system, it is an established fact that different (non-
trophic) interactions do themselves interact with and influence the outcome of trophic interactions (Kéfi
et al. 2012; see e.g. Kawatsu et al. 2021). Future development of metaweb inference techniques should
cover the prediction of multiple interaction types.

2

Data used for the case study

Weuse data from the Europeanmetaweb assembled byMaiorano et al. (2020b). Thiswas assembled using
data extracted from scientific literature (including published papers, books, and grey literature) from the
last 50 years and includes all terrestrial tetrapods (mammals, breeding birds, reptiles and amphibians)
occurring on the European sub-continent (and Turkey) - with the caveat that only species introduced in
historical times and currently naturalized being included. This metaweb itself is a network of binary (i.e.
presence/absence), potential two-way interactions between species pairs.

We filtered down the Europeanmetaweb to create a subgraph corresponding to all mammals bymatching
species names in the original network to the Global Biodiversity Information Facility (GBIF) taxonomic
backbone (GBIF Secretariat 2021) and retaining all those who matched to mammals. This serves a dual
purpose 1) to extract only mammals from the European network and 2) to match and standardize species
names when aggregating the different data sources further downstream (which is an important consid-
eration when combining datasets (Grenié et al. 2021)). All nodes had valid matches to GBIF at this step,
and so this backbone is used for all name reconciliation steps as outlined below.

The European metaweb represents the knowledge we want to learn and transfer; the phylogenetic sim-
ilarity of mammals here represents the information for transfer (i.e. the transfer medium). We used the
mammalian consensus supertree by Upham et al. (2019), for which all approximatively 6000 names have
been similarly matched to their GBIF valid names. This step allows us to place each node of the mam-
malian European metaweb in the phylogeny.

The destination problem to which we want to transfer knowledge is the trophic interactions between
mammals inCanada. We obtained the list of extant species from the InternationalUnion for Conservation
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of Nature (IUCN) checklist, and selected the terrestrial and semi-aquatic species (this corresponds to the
same selection that was applied by Maiorano et al. (2020b) in the European metaweb). The IUCN names
were, as previously, reconciled against GBIF to have an exact match to the taxonomy.

After taxonomic cleaning and reconciliation as outlined in the following sections, the mammalian Eu-
ropean metaweb has 260 species, and the Canadian species pool has 163; of these, 17 (about 4% of the
total) are shared, and 89 species from Canada (54%) had at least one congeneric species in Europe. The
similarity for both species pools predictably increases with higher taxonomic order, with 19% of shared
genera, 47% of shared families, and 75% of shared orders; for the last point, Canada and Europe each had
a single unique order (Didelphimorphia for Canada, Erinaceomorpha for Europe).

In the following sections, we describe the representational learning step applied to European data, the
transfer step through phylogenetic similarity, and the generation of a probabilistic metaweb for the desti-
nation species pool.

3

Method description

The core point of our method is the transfer of knowledge of a known ecological network, in order to
predict interactions between species from another location at which the network is unknown (or par-
tially known). In fig. 1, we give a high-level overview of the approach; in the example around which
this manuscript is built (leveraging detailed knowledge about binary trophic interactions between Mam-
malia in Europe to predict the less known trophic interactions between closely phylogenetically related
Mammalia in Canada), we use a series of specific steps for network embedding, trait inference, network
prediction and thresholding.

Specifically, our approach can be summarized as follows: from the known network in Europe, we use a
truncated Singular Value Decomposition (t-SVD; Halko et al. 2011) to generate latent traits representing
a low-dimensional embedding of the network. As an aside, most ecologists are indirectly familiar with
SVD: Principal Component Analysis is a special case of SVD, which is more sensitive to numerical insta-
bilities (see notably Shlens 2014). The latent traits give an unbiased estimate of the node’s position in the
latent feature spaces and can be mapped onto a reference phylogeny (other distance-based measures of
species proximity that allow for the inference of features in the latent space can be used, for example the
dissimilarity in functional traits). Based on the reconstructed latent traits for species in the destination
species pool, a RandomDot Product Graphmodel (hereafter RDPG; Young& Scheinerman 2007) predicts
the interaction between species through a function of the nodes’ features through matrix multiplication.
Thus, from latent traits and node position, we can infer interactions.

The method we develop is, ecologically speaking, a “black box,” i.e. an algorithm that can be understood
mathematically, but whose component parts are not always directly tied to ecological processes. There is
a growing realization in machine learning that (unintentional) black box algorithms are not necessarily
a bad thing (Holm 2019), as long as their constituent parts can be examined (which is the case with
our method). But more importantly, data hold more information than we might think; as such, even
algorithms that are disconnected from the model canmake correct guesses most of the time (Halevy et al.
2009); in fact, in an instance of ecological forecasting of spatio-temporal systems, model-free approaches
(i.e. drawing all of their information from the data) outperformed model-informed ones (Perretti et al.
2013).

3.1. Implementation and code availability The entire pipeline is implemented in Julia 1.6 (Bezanson et
al. 2017) and is available under the permissive MIT License at https://osf.io/2zwqm/. The taxonomic
cleanup steps are done using GBIF.jl (Dansereau & Poisot 2021). The network embedding and analysis
is done using EcologicalNetworks.jl (Poisot et al. 2019; Banville et al. 2021). The phylogenetic simu-
lations are done using PhyloNetworks.jl (Solís-Lemus et al. 2017) and Phylo.jl (Reeve et al. 2016). A
complete Project.toml file specifying the full tree of dependencies is available alongside the code. This
material also includes a fully annotated copy of the entire code required to run this project (describing
both the intent of the code and discussing some technical implementation details), a vignette for every
step of the process, and a series of Jupyter notebooks with the text and code. The pipeline can be executed
on a laptop in a matter of minutes, and therefore does not require extensive computational power.
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3.2. Step 1: Learning the origin network representation The first step in transfer learning is to learn
the structure of the original dataset. In order to do so, we rely on an approach inspired from represen-
tational learning, where we learn a representation of the metaweb (in the form of the latent subspaces),
rather than a list of interactions (species a eats b). This approach is conceptually different from other
metaweb-scale predictions (e.g. Albouy et al. 2019), in that the metaweb representation is easily trans-
ferable. Specifically, we use RDPG to create a number of latent variables that can be combined into an
approximation of the network adjacencymatrix. RDPG results are known to have strong phylogenetic sig-
nal, and to capture the evolutionary backbone of food webs (Dalla Riva & Stouffer 2016); in other words,
the latent variables of an RDPG can be mapped onto a phylogenetic tree, and phylogenetically similar
predators should share phylogenetically similar preys. In addition, recent advances show that the latent
variables produced this way can be used to predict de novo network edges. Interestingly, the latent vari-
ables do not need to be produced by decomposing the network itself; in a recent contribution, Runghen et
al. (2021) showed that deep artificial neural networks are able to reconstruct the left and right subspaces
of an RDPG, in order to predict human movement networks from individual/location metadata. This is
an exciting opportunity, as it opens up the possibility of using additional metadata as predictors.

The latent variables are created by performing a truncated Singular Value Decomposition (t-SVD) on the
adjacency matrix. SVD is an appropriate embedding of ecological networks, which has recently been
shown to both capture their complex, emerging properties (Strydom et al. 2021b) and to allow highly
accurate prediction of the interactions within a single network (Poisot et al. 2021b). Under SVD, an ad-
jacency matrix 𝐀 (where 𝐀𝑚,𝑛 ∈ 𝔹 where 1 indicates predation and 0 an absence thereof) is decomposed
into three components resulting in 𝐀 = 𝐔𝚺𝐕′.Here, 𝚺 is a𝑚 × 𝑛 diagonal matrix and contains only sin-
gular (𝜎) values along its diagonal,𝐔 is a𝑚×𝑚 unitary matrix, and𝐕′ a 𝑛×𝑛 unitary matrix. Truncating
the SVD removes additional noise in the dataset by omitting non-zero and/or smaller 𝜎 values from 𝚺 us-
ing the rank of the matrix. Under a t-SVD 𝐀𝑚,𝑛 is decomposed so that 𝚺 is a square 𝑟 × 𝑟 diagonal matrix
(whith 1 ≤ 𝑟 ≤ 𝑟𝑓𝑢𝑙𝑙 where 𝑟𝑓𝑢𝑙𝑙 is the full rank of 𝐀 and 𝑟 the rank at which we truncate the matrix)
containing only non-zero 𝜎 values. Additionally, 𝐔 is now a 𝑚 × 𝑟 semi unitary matrix and 𝐕′ a 𝑛 × 𝑟
semi-unitary matrix.

The specific rank at which the SVD ought to be truncated is a difficult question. The purpose of SVD is to
remove the noise (expressed at high dimensions) and to focus on the signal, (expressed at lowdimensions).
In datasetswith a clear signal/noise demarcation, a scree plot of𝚺 can showa sharp drop at the rankwhere
noise starts (Zhu & Ghodsi 2006). Because the European metaweb is almost entirely known, the amount
of noise (uncertainty) is low; this is reflected in fig. 2 (left), where the scree plot shows no important drop,
and in fig. 2 (right) where the proportion of variance explained increases smoothly at higher dimensions.
For this reason, we default back to a threshold that explains 60% of the variance in the underlying data,
corresponding to 12 dimensions - i.e. a tradeoff between accuracy and a reduced number of features.

An RDPG estimates the probability of observing interactions between nodes (species) as a function of the
nodes’ latent variables, and is a way to turn a SVD (which decompose one matrix into three) into two
matrices that can be multiplied to provide an approximation of the network. The latent variables used
for the RDPG, called the left and right subspaces, are defined asℒ = 𝐔

√
𝚺, andℛ =

√
𝚺𝐕′ – using the

full rank of 𝐀,ℒℛ = 𝐀, and using any smaller rank results inℒℛ ≈ 𝐀. Using a rank of 1 for the t-SVD
provides a first-order approximation of the network. One advantage of using a RDPG rather than a SVD is
that the number of components to estimate decreases; notably, one does not have to estimate the singular
values of the SVD. Furthermore, the two subspaces can be directly multiplied to yield a network.

Because RDPG relies on matrix multiplication, the higher dimensions essentially serve to make specific
interactions converge towards 0 or 1; therefore, for reasonably low ranks, there is no guarantee that the
values in the reconstructed network will be within the unit range. In order to determine what constitutes
an appropriate threshold for probability, we performed the RDPG approach on the European metaweb,
and evaluated the probability threshold by treating this as a binary classification problem, specifically
assuming that both 0 and 1 in the Europeanmetaweb are all true. Given the methodological details given
in Maiorano et al. (2020b) and O’Connor et al. (2020), this seems like a reasonable assumption, although
one that does not hold for all metawebs. We used the thresholding approach presented in Poisot et al.
(2021b), and picked a cutoff that maximized Youden’s 𝐽 statistic (a measure of the informedness (trust) of
predictions; Youden (1950)); the resulting cutoffwas 0.22, and gave an accuracy above 0.99. In Supp. Mat.
1, we provide several lines of evidence that using the entire network to estimate the threshold does not lead
to overfitting; that using a subset of species would yield the same threshold; that decreasing the quality
of the original data by adding of removing interactions would minimally affect the predictive accuracy of
RDPG applied to the European metaweb; and that the networks reconstructed from artificially modified
data are reconstructed with the correct ecological properties.
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Figure 2 Left: representation of the scree
plot of the singular values from the t-SVD on
the European metaweb. The scree plot shows
no obvious drop in the singular values thatmay
be leveraged to automatically detect a mini-
mal dimension for embedding, after e.g. Zhu
& Ghodsi (2006). Right: cumulative fraction
of variance explained by each dimension up to
the rank of the European metaweb. The grey
lines represent cutoffs at 50, 60, . . . , 90% of vari-
ance explained. For the rest of the analysis,
we reverted to an arbitrary threshold of 60% of
variance explained, which represented a good
tradeoff between accuracy and reduced num-
ber of features.

The left and right subspaces for the European metaweb, accompanied by the threshold for prediction,
represent the knowledge we seek to transfer. In the next section, we explain how we rely on phylogenetic
similarity to do so.

3.3. Steps 2 and 3: Transfer learning through phylogenetic relatedness In order to transfer the
knowledge from the European metaweb to the Canadian species pool, we performed ancestral character
estimation using a Brownianmotionmodel, which is a conservative approach in the absence of strong hy-
potheses about the nature of phylogenetic signal in the network decomposition (Litsios & Salamin 2012).
This uses the estimated feature vectors for the European mammals to create a state reconstruction for all
species (conceptually something akin to a trait-based mammalian phylogeny using latent generality and
vulnerability traits) and allows us to impute the missing (latent) trait data for the Canadian species that
are not already in the European network; as we are focused on predicting contemporary interactions, we
only retained the values for the tips of the tree. We assumed that all traits (i.e. the feature vectors for the
left and right subspaces) were independent, which is a reasonable assumption as every trait/dimension
added to the t-SVD has an additive effect to the one before it. Note that the Upham et al. (2019) tree itself
has some uncertainty associated to inner nodes of the phylogeny. In this case study, we have decided
to not propagate this uncertainty, as it would complexify the process. The Brownian motion algorithm
returns the average value of the trait, and its upper and lower bounds. Because we do not estimate other
parameters of the traits’ distributions, we considered that every species trait is represented as a uniform
distribution between these bounds. The choice of the uniform distribution was made because the algo-
rithm returns a minimum and maximum point estimate for the value, and given this information, the
uniform distribution is the one with maximum entropy. Had all mean parameters estimates been posi-
tive, the exponential distribution would have been an alternative, but this is not the case for the subspaces
of an RDPG. In order to examine the consequences of the choice of distribution, we estimated the vari-
ance per latent variable per node to use a Normal distribution; as we show in Supp. Mat. 2, this decision
results in dramatically over-estimating the number and probability of interactions, and therefore we keep
the discussions in the main text to the uniform case. The inferred left and right subspaces for the Cana-
dian species pool (ℒ̂ and ℛ̂) have entries that are distributions, representing the range of values for a
given species at a given dimension.

These objects represent the transferred knowledge, which we can use for prediction of the Canadian
metaweb.

3.4. Step 4: Probabilistic prediction of the destination network The phylogenetic reconstruction of
ℒ̂ and ℛ̂ has an associated uncertainty, represented by the breadth of the uniform distribution associated
to each of their entries. Therefore, we can use this information to assemble a probabilistic metaweb in
the sense of Poisot et al. (2016), i.e. in which every interaction is represented as a single, independent,
Bernoulli event of probability 𝑝.
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Figure 3 Visual representation of the left
(green/purple) and right (green/brown) sub-
spaces, alongside the adjacency matrix of the
food web they encode (greyscale). The Euro-
pean metaweb is on the left, and the imputed
Canadian metaweb (before data inflation) on
the right. This figure illustrates how much
structure the left subspace captures. As we
show in fig. 6, the species with a value of 0 in
the left subspace are species without any prey.

Specifically, we have adopted the following approach. For every entry in ℒ̂ and ℛ̂, we draw a value
from its distribution. This results in one instance of the possible left (𝓁̂) and right (𝓇̂) subspaces for the
Canadian metaweb. These can be multiplied, to produce one matrix of real values. Because the entries
in 𝓁̂ and 𝓇̂ are in the same space whereℒ andℛ were originally predicted, it follows that the threshold
𝜌 estimated for the European metaweb also applies. We use this information to produce one random
Canadian metaweb, 𝑁 = ℒ̂ℛ̂′ ≥ 𝜌. As we can see in (fig. 3), the European and Canadian metawebs
are structurally similar (as would be expected given the biogeographic similarities) and the two (left and
right) subspaces are distinct i.e. capturing predation (generality) and prey (vulnerability) latent traits.

Because the intervals around some trait values can be broad (in fact, probably broader than what they
would actually be, see e.g. Garland et al. 1999), we repeat the above process 2 × 105 times, which results
in a probabilistic metaweb 𝑃, where the probability of an interaction (here conveying our degree of trust
that it exists given the inferred trait distributions) is given by the number of times where it appears across
all random draws 𝑁, divided by the number of samples. An interaction with 𝑃𝑖,𝑗 = 1 means that these
two species were predicted to interact in all 2 × 105 random draws.

It must be noted that despite bringing in a large amount of information from the European species pool
and interactions, the Canadian metaweb has distinct structural properties. Following an approach sim-
ilar to Vermaat et al. (2009), we show in Supp. Mat. 3 that not only can we observe differences in a
multivariate space between the European and Canadian metaweb, we can also observe differences in the
same space between random subgraphs from these networks. These results line up with the studies spa-
tializing metawebs that have been discussed in the introduction: changes in the species pool are driving
local structural changes in the networks.

3.5. Data cleanup, discovery, validation, and thresholding Once the probabilisticmetaweb forCanada
has been produced, we followed a number of data inflation steps to finalize it. This step is external to
the actual transfer learning framework but rather serves as a way to augment and validate the predicted
metaweb.

First, we extracted the subgraph corresponding to the 17 species shared between the European and Cana-
dian pools and replaced these interactions with a probability of 0 (non-interaction) or 1 (interaction),
according to their value in the European metaweb. This represents a minute modification of the inferred
network (about 0.8% of all species pairs from the Canadian web), but ensures that we are directly re-using
knowledge from Europe.

Second, we looked for all species in the Canadian pool known to the Global Biotic Interactions (GLoBI)
database (Poelen et al. 2014), and extracted their known interactions. BecauseGLoBI aggregates observed
interactions, it is not a networks data source, and therefore the only information we can reliably extract
from it is that a species pair was reported to interact at least once. This last statement should yet be taken
with caution, as some sources in GLoBI (e.g. Thessen & Parr 2014) are produced through text analysis,
and therefore may not document direct evidence of the interaction. Nevertheless, should the predictive
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Figure 4 Left, comparison of the probabili-
ties of interactions assigned by the model to
all interactions (grey curve), the subset of in-
teractions found in GLOBI (red), and in the
Strong & Leroux (2014) Newfoundland dataset
(blue). The model recovers more interactions
with a low probability compared to data min-
ing, which can suggest that collected datasets
are biased towards more common or easy to
identify interactions. Right, distribution of the
in-degree and out-degree of themammals from
Canada in the reconstructed metaweb. This
figure describes a flat, relatively short food
web, in which there are few predators but a
large number of preys.

Figure 5 Left: effect of varying the cutoff for
probabilities to be considered non-zero on the
number of unique links and on 𝐿̂, the prob-
abilistic estimate of the number of links as-
suming that all interactions are independent.
Right: effect of varying the cutoff on the num-
ber of disconnected species, and on network
connectance. In both panels, the grey line in-
dicates the cutoff 𝑃(𝑖 → 𝑗) ≈ 0.08 that resulted
in the first species losing all of its interactions.

model work, wewould expect that amajority of interactions known toGLoBIwould also be predicted. We
retrieved 366 interactions between mammals from the Canadian species pool from GLoBI, 33 of which
were not predicted by the model; this results in a success rate of 91%. After performing this check, we set
the probability of all interactions known to GLoBI to 1.

Finally, we downloaded the data from Strong & Leroux (2014), who mined various literature sources to
identify trophic interactions in Newfoundland. This dataset documented 25 interactions between mam-
mals, only two of which were not part of our (Canada-level) predictions, resulting in a success rate of 92%.
These two interactions were added to our predicted metaweb with a probability of 1. A table listing all
interactions in the predicted Canadian metaweb can be found in the supplementary material.

Because the confidence intervals on the inferred trait space are probably over-estimates, we decided to
apply a thresholding step to the interactions after the data inflation (fig. 5). Cirtwill & Hambäck (2021)
proposed a number of strategies to threshold probabilistic networks. Their methods assume the under-
lying data to be tag-based sequencing, which represents interactions as co-occurrences of predator and
prey within the same tags; this is conceptually identical to our Bernoulli-trial based reconstruction of a
probabilistic network. We performed a full analysis of the effect of various cutoffs, and as they either
resulted in removing too few interactions, or removing enough interactions that species started to be dis-
connected from the network, we set this threshold for a probability equivalent to 0 to the largest possible
value that still allowed all species to have at least one interaction with a non-zero probability. The need
for this slight deviation from the Cirtwill & Hambäck (2021) method highlights the need for additional
development on network thresholding.
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Figure 6 Top: biological significance of the
first dimension. Left: there is a linear rela-
tionship between the values on the first di-
mension of the left subspace and the gener-
ality, i.e. the relative number of preys, sensu
Schoener (1989). Species with a value of 0 in
this subspace are at the bottom-most trophic
level. Right: there is, similarly, a linear rela-
tionship between the position of a species on
the first dimension of the right subspace and
its vulnerability, i.e. the relative number of
predators. Taken together, these two figures
show that the first-order representation of this
network would capture its degree distribution.
Bottom: topological consequences of the first
dimension. Left: differences in the 𝑧-score
of the actual configuration model for the re-
constructed network, and the prediction based
only on the first dimension. Right: distribu-
tion of the differences in the left panel.

4

Results and discussion of the case study

In fig. 5, we examine the effect of varying the cutoff on 𝑃(𝑖 → 𝑗) on the number of links, species, and
connectance. Determining a cutoff using the maximum curvature, or central difference approximation
of the second order partial derivative, as suggested by e.g. Cirtwill & Hambäck (2021), results in species
being lost, or almost all links being kept. We therefore settled on the value that allowed all species to
remain with at least one interaction. This result, in and of itself, suggests that additional methodological
developments for the thresholding of probabilistic networks are required.

The t-SVD embedding is able to learn relevant ecological features for the network. fig. 6 shows that the
first rank correlates linearly with generality and vulnerability (Schoener 1989), i.e. the number of preys
and predators for each species. Importantly, this implies that a rank 1 approximation represents the con-
figuration model for the metaweb, i.e. a set of random networks generated from a given degree sequence
(Park & Newman 2004). Accounting for the probabilistic nature of the degrees, the rank 1 approxima-
tion also represents the soft configuration model (van der Hoorn et al. 2018). Both models are maximum
entropy graph models (Garlaschelli et al. 2018), with sharp (all network realizations satisfy the specified
degree sequence) and soft (network realizations satisfy the degree sequence on average) local constraints,
respectively. The (soft) configuration model is an unbiased random graph model widely used by ecolo-
gists in the context of null hypothesis significance testing of network structure (e.g. Bascompte et al. 2003)
and can provide informative priors for Bayesian inference of network structure (e.g. Young et al. 2021). It
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is noteworthy that for this metaweb, the relevant information was extracted at the first rank. Because the
first rank corresponds to the leading singular value of the system, the results of fig. 6 have a straightfor-
ward interpretation: degree-based processes are the most important in structuring the mammalian food
web.

5

Discussion

One important aspect in which Europe and Canada differ (despite their comparable bioclimatic condi-
tions) is the degree of the legacy of human impacts, which have been much longer in Europe. Nenzén et
al. (2014) showed that even at small scales (the Iberian peninsula), mammal food webs retain the signal
of both climate change and human activity, even when this human activity was orders of magnitude less
important than it is now. Similarly, Yeakel et al. (2014) showed that changes in human occupation over
several centuries can lead to food web collapse. Megafauna in particular seems to be very sensitive to
human arrival (Pires et al. 2015). In short, there is well-substantiated support for the idea that human
footprint affects more than the risk of species extinction (Marco et al. 2018), and can lead to changes in
interaction structure. Yet, owing to the inherent plasticity of interactions, there have been documented
instances of food webs undergoing rapid collapse/recovery cycles over short periods of time (Pedersen et
al. 2017). The embedding of a network, in a sense, embeds its macro-evolutionary history, especially as
RDPG captures ecological signal (Dalla Riva & Stouffer 2016); at this point, it is important to recall that a
metaweb is intended as a catalogue of all potential interactions, which should then be filtered (Morales-
Castilla et al. 2015). In practice (and in this instance) the reconstructedmetaweb will predict interactions
that are plausible based on the species’ evolutionary history, however some interactions would/would not
be realized due to human impact.

Dallas et al. (2017) suggested that most links in ecological networks may be cryptic, i.e. uncommon or
otherwise hard to observe. This argument essentially echoes Jordano (2016b): the sampling of ecological
interactions is difficult because it requires first the joint observation of two species, and then the obser-
vation of their interaction. In addition, it is generally expected that weak or rare links would be more
common in networks (Csermely 2004), compared to strong, persistent links; this is notably the case in
food chains, wherein many weaker links are key to the stability of a system (Neutel et al. 2002). In the
light of these observations, the results in fig. 4 are not particularly surprising: we expect to see a surge in
these low-probability interactions under a model that has a good predictive accuracy. Because the pre-
dictions we generate are by design probabilistic, then one can weigh these rare links appropriately. In a
sense, that most ecological interactions are elusive can call for a slightly different approach to sampling:
once the common interactions are documented, the effort required in documenting each rare interaction
may increase exponentially. Recent proposals suggest that machine learning algorithms, in these situa-
tions, can act as data generators (Hoffmann et al. 2019): in this perspective, high quality observational
data can be supplemented with synthetic data coming from predictive models, which increases the vol-
ume of information available for inference. Indeed, Strydom et al. (2021a) suggested that knowing the
metaweb may render the prediction of local networks easier, because it fixes an “upper bound” on which
interactions can exist; indeed, with a probabilistic metaweb, we can consider that themetaweb represents
an aggregation of informative priors on the interactions.

Related to the last point, Cirtwill et al. (2019) showed that network inference techniques based onBayesian
approaches would perform far better in the presence of an interaction-level informative prior; the desir-
able properties of such a prior would be that it is expressed as a probability, preferably representing a
Bernoulli event, the value of which would be representative of relevant biological processes (probability
of predation in this case). We argue that the probability returned at the very last step of our framework
may serve as this informative prior; indeed, the output of our analysis can be used in subsequent steps,
also possibly involving expert elicitation to validate some of themost strongly recommended interactions.
One important caveat to keep in mind when working with interaction inference is that interactions can
never really be true negatives (in the current state of our methodological framework and data collection
limitations); this renders the task of validating a model through the usual application of binary classifica-
tion statistics very difficult (although see Strydom et al. 2021a for a discussion of alternative suggestions).
The other way through which our framework can be improved is by substituting the predictors that are
used for transfer. For example, in the presence of information on species traits that are known to be pre-
dictive of species interactions, one might want to rely on functional rather than phylogenetic distances
– in food webs, body size (and allometrically related variables) has been established as such a variable
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(Brose et al. 2006); the identification of relevant functional traits is facilitated by recent methodological
developments (Rosado et al. 2013). It should be noted that Xing & Fayle (2021) highlight phylogenetic
relatedness as one of the core components of network comparison at the global scale. In this case study,
we have embedded the original metaweb using t-SVD, because it lends itself to an RDPG reconstruction,
which is known to capture the consequences of evolutionary processes (Dalla Riva & Stouffer 2016); this
being said, there are other ways to embed graphs (Cai et al. 2017; Arsov &Mirceva 2019; Cao et al. 2019),
which can be used as alternatives.

As Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around planet-wide problems”; in
this regard, our approach (and indeed, any inference of a metaweb at large scales) must contend with
several interesting and interwoven families of problems. The first is the limit of the metaweb to embed
and transfer. If the initial metaweb is too narrow in scope, notably from a taxonomic point of view, the
chances of finding another area with enough related species to make a reliable inference decreases; this
would likely be indicated by large confidence intervals during ancestral character estimation, but the lack
of well documented metawebs is currently preventing the development of more concrete guidelines. The
question of phylogenetic relatedness and dispersal is notably true if the metaweb is assembled in an area
with mostly endemic species, and as with every predictive algorithm, there is room for the application of
our best ecological judgement. Conversely, the metaweb should be reliably filled, which assumes that the
𝑆2 interactions in a pool of 𝑆 species have been examined, either through literature surveys or expert elic-
itation. Supp. Mat. 1 provides some guidance as to the type of sampling effort that should be prioritized.
Although RDPG was able to maintain very high predictive power when interactions were missing, the
addition of false positive interactions was immediately detected; this suggests that it may be appropriate
to err on the side of “toomany” interactions when constructing the initial metaweb to be transferred. The
second series of problems are related to determining which area should be used to infer the newmetaweb
in, as this determines the species pool that must be used. In our application, we focused on the mammals
of Canada. The upside of this approach is that information at the country level is likely to be required
by policy makers and stakeholders for their biodiversity assessment, as each country tends to set goals
at the national level (Buxton et al. 2021) for which quantitative instruments are designed (Turak et al.
2017), with specific strategies often enacted at smaller scales (Ray et al. 2021). And yet, we do not really
have a satisfying answer to the question of “where does a food web stop?”; the current most satisfying
solutions involve examining the spatial consistency of network area relationships (see e.g. Galiana et al.
2018, 2019, 2021; Fortin et al. 2021), which is of course impossible in the absence of enough informa-
tion about the network itself. This suggests that an a posteriori refinement of the results may be required,
based on a downscaling of themetaweb. The final family of problems relates less to the availability of data
or quantitative tools, and more to the praxis of spatial ecology. Operating under the context of national
divisions, in large parts of the world, reflects nothing more than the legacy of settler colonialism. Indeed,
the use of ecological data is not an apolitical act (Nost &Goldstein 2021), as data infrastructures tend to be
designed to answer questions within national boundaries, and their use both draws upon and reinforces
territorial statecraft; as per Machen & Nost (2021), this is particularly true when the output of “algorith-
mic thinking” (e.g. relying on machine learning to generate knowledge) can be re-used for governance
(e.g. enacting conservation decisions at the national scale). We therefore recognize that methods such
as we propose operate under the framework that contributed to the ongoing biodiversity crisis (Adam
2014), reinforced environmental injustice (Choudry 2013; Domínguez & Luoma 2020), and on Turtle Is-
land especially, should be replaced by Indigenous principles of land management (Eichhorn et al. 2019;
No’kmaq et al. 2021). As we see AI/ML being increasingly mobilized to generate knowledge that is lack-
ing for conservation decisions (e.g. Lamba et al. 2019; Mosebo Fernandes et al. 2020), our discussion of
these tools need to go beyond the technical, and into the governance consequences they can have.
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