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Abstract 

Understanding the drivers of food chain length in natural communities has intrigued ecologists since the 

publication of ‘food cycles’ by Elton in the early 20th century. Proposed drivers of food chain length 

have included extrinsic controls such as productivity, disturbance regime, and ecosystem size, as well as 

intrinsic factors including food web motifs. However, current theories have largely assumed simple, two-

dimensional habitat architectures, and may not be adequate to predict food chain length in ecosystems 

which have a complex, branching structure. Here, we develop a spatially explicit theoretical model 

which provides an integrated framework for predicting food chain length in branching networks. We 

show food chain length responds independently to both ecosystem size and complexity, and that these 

responses are contingent upon other extrinsic and intrinsic controls. Our results show that accounting 

for ecosystem complexity is an important driver of food chain length and may reconcile inconsistent 

results from empirical studies of food chain length in river ecosystems.  

Introduction 

The origin of variation in food chain length (FCL), the number of feeding links from the basal species to 

top predators, has intrigued ecologists for decades due to its importance in regulating top-down effects 

1, energy flow2, and contaminant concentrations in top predators that humans often consume3. 



Hypotheses regarding controls of food chain length can be organized into three broad categories. First, 

the resource availability hypothesis states that basal productivity controls food chain length because 

imperfect energy conversion through predator-prey interactions restricts energy available to higher 

trophic levels4. Second, the disturbance hypothesis (or the dynamical stability hypothesis) predicts 

longer food chains are vulnerable to environmental perturbations (i.e., the dynamical constraint). Thus, 

habitats with frequent and/or severe disturbance should support fewer trophic levels5. Lastly, the 

ecosystem size hypothesis posits that larger ecosystems should harbor longer food chains through a 

suite of mechanisms, including enhanced colonization rates6 increased habitat heterogeneity7 and 

surpassing spatial constraints inhibiting metapopulation dynamics. 

Among the three hypotheses, the ecosystem size hypothesis has been consistently supported in both 

theoretical and empirical explorations, likely because it encompasses multiple mechanisms which 

underlie the positive association8,9. For example, large ecosystems have increased species richness 

(species-area relationship8), buffer against disturbances9, and have greater numbers of immigrant 

sources in the ecosystem, harboring stable metapopulations of constituent species that make up long 

food chains 6,10,11. Meanwhile, the theoretical basis for the other two hypotheses rest on implicit 

assumptions of linear food chains, which are often violated in natural systems. As such, the effects of 

disturbance and resource availability on food chain length have been found to be highly variable among 

ecosystem types and geographic regions 12–14.  

More recently, food web ecologists have begun to recognize that FCL rarely responds to a single driver, 

but instead is determined by interactions of multiple factors. For example, Ward and McCann15 showed 

that FCL was more responsive to increasing productivity in large ecosystems compared with small 

ecosystems, whereas FCL was more sensitive to size in low productivity systems . Such context 

dependent  responses to extrinsic factors seem to be tightly coupled with the arrangement of trophic 

links within a food web, often referred to as food web motifs16,17. For example, omnivory (feeding at 

multiple trophic levels) is a strong intrinsic driver of food chain length 6,15,18,19. When omnivory is absent 

in three-species communities, the trophic structure assumes a simple linear food chain with maximum 

length equal to 3 (Figure 1). However, as omnivory increases, FCL decreases proportionally as the top 

predator eats lower in the food web 15,20. Theoretical work predicts that food webs are destabilized 

when omnivory is prevalent, leading to the loss of species and shorter food chains even in productive, 

large ecosystems. Conversely, weak omnivory stabilize the food web and increase persistence of species 

within a community, particularly at intermediate levels of productivity and high disturbance levels 20,21. 



Omnivory is a dominant module in natural communities 22 but is often not accounted for in theoretical 

studies20, but see 15. Due to the context-dependency of FCL to multiple drivers, and the potential for 

interactive effects, a unified framework of multiple food chain drivers is needed to better understand 

when and where FCL will respond to these extrinsic and intrinsic factors.  

While recent research  efforts of food web ecologists have substantially advanced our understanding of 

food chain drivers, most of the previous work has been conducted in simple, two-dimensional systems, 

such as lakes7,23,24 and oceanic islands 25,26. However, many natural habitats have a high degree of spatial 

complexity that cannot be represented simply by ecosystem size. Branching ecosystems, for example, 

are ubiquitous yet overlooked landscape structures 27, in which geomorphological or biological 

processes form naturally fractal branching patterns, where the geometric arrangement of patches is 

similar across spatial scales28 (e.g., rivers, trees, caves, mountain ranges). While we know that food web 

interactions are spatially influenced29,30, the theory to account for it has lagged, particularly in branching 

habitat architectures.  Here, we theoretically explore drivers of food chain length in rivers, an excellent 

example of branching ecosystems. 

Ample evidence suggests that branching structure controls environmental heterogeneity and dispersal 

pathways of organisms within river ecosystems. For example, water and materials propagate 

downstream as small streams hierarchically join to form larger streams and rivers. Consequently, 

environmental signals are highly variable among tributaries while showing a strong within-tributary 

correlation e.g., carrying capacity, flood disturbance31,32. Confluences serve as merging points where 

branch-specific dynamics aggregate to form distinct environmental conditions in downstream habitat 

patches 33. Habitat heterogeneity therefore increases with branching complexity (Figure 1), which we 

define here as the probability of branching per unit river distance. Hence, highly-branched river 

networks provide diverse habitats that buffer the impact of large-scale environmental fluctuations 34, 

broadening opportunities for species to recolonize habitat patches post-disturbance. Thus, ecosystem 

complexity in river networks may be a widespread yet overlooked extrinsic environmental driver which 

needs to be incorporated to understand food chain length.  

We develop a model in which trophic community dynamics within branching habitats are simulated. We 

investigate extrinsic controls such as ecosystem size (number of patches), complexity (branching 

probability), disturbance regime and productivity level (carrying capacity). In addition, our simulation 

model incorporates intrinsic drivers of food chain length including food web motifs (degree of omnivory) 

and dispersal ability, allowing us to investigate the context dependency on drivers of food chain length 



across extrinsic factors. We find that ecosystem size and complexity are both positively related to FCL, 

but the form of this relationship is dependent on other extrinsic and intrinsic factors. Trophic structure 

(degree of omnivory) and disturbance regime are both strong drivers of FCL on their own and have 

interactive effects. We also find that productivity and dispersal ability were both positively related to 

FCL. Our model is an important step in unifying drivers of FCL across extrinsic and intrinsic drivers and 

parsing their context-dependency in spatially complex ecosystems.  

Results 

First, we depicted branching ecosystems as connected habitat patches, which local communities inhabit. 

Each local community is composed of basal (B), primary consumer (C), and top predator (P), and these 

constituent species disperse along the network corridors following exponential dispersal kernels. The 

arrangement and strength of trophic interactions can be varied based on the simulation parameters 

(food web motifs, Figure 1, see Methods). Periodically, local communities are impacted by disturbance, 

whose strength is highly correlated within a tributary. Therefore, our simulation framework resembles 

environmental dynamics of natural river systems.  

We explored how food web motifs affected FCL across extrinsic factors. FCL is related to the degree of 

omnivory of the predator P (Figure 1). When P only consumes C, its trophic level is 3. However, as the 

proportion of B in P’s diet increases, FCL decreases, reaching a minimum of 2 when B constitutes all of 

P’s diet. We assume that P searches for both resources proportionally based on the conversion 

efficiency for each prey resource (i.e., prey quality) and the relative densities of each resource (see 

Methods). To control the level of omnivory, we varied the conversion efficiencies of both prey 

resources.  

In addition to food web motifs, we also investigated the effects of species dispersal ability and 

disturbance regime. To simplify our simulations, we looked at two scenarios of dispersal ability. 1) Low 

dispersal ability, in which a small proportion of the population of all three species emigrate, and the 

likelihood of successful immigration to neighboring patches declines exponentially with increasing 

distance (i.e., short-distance dispersal). 2) High dispersal ability, in which a larger proportion of the 

population emigrates, and the likelihood of successful immigration to neighboring patches declines less-

rapidly with increasing distance (i.e., long-distance dispersal; see Methods).  

The effect of disturbance was also investigated by looking at low and high disturbance regimes. The low 

disturbance regime was defined as having a low probability of a relatively weak magnitude disturbance 



occurring throughout the habitat network in each time step. This can be likened to spring-fed streams 

which are relatively stable through time but are subjected to occasional disturbances such as floods 

from high precipitation events. In contrast, we investigated a high disturbance regime in which the 

probability and magnitude of disturbances occurring throughout the habitat network was much higher. 

This scenario could represent “flashy” streams which are predominantly driven by surface runoff and 

precipitation events.  

We examined interactive effects of extrinsic and intrinsic factors controlling food chain length. We 

simulated habitat networks over a gradient of both ecosystem size and complexity (branching 

probability). For each habitat network, we simulated trophic dynamics under two different regimes of 

disturbance (rare or frequent), productivity (low or high carrying capacity of the basal species), and 

dispersal ability (low and high), and three local food web structures (the degree of omnivory, Figure 1), 

for a total of 24 scenario combinations. We simulated meta-food web dynamics over 1200 time steps, 

including 200 steps for burn in, and yielded estimates of food chain length averaged in space and time 

(see Methods). Varying the disturbance regime resulted in markedly different results across ecosystem 

size and complexity. Thus, we present our results for each disturbance regime separately below.  

Low disturbance regime 

In ecosystem networks with a low disturbance regime (i.e., dynamical stability), FCL was largely 

determined by food web motifs (colored lines in Figure 2). Generally, FCL was negatively related to the 

degree of omnivory, with simple linear food chains (P only consumes C) having the longest FCL, and 

strong omnivory (P consumes very little C) having the shortest FCL. When carrying capacity and dispersal 

ability was low, there was a slight increase in FCL with the omnivorous motifs across increasing 

ecosystem size, and when dispersal ability was high, there was a moderate increase for the strong 

omnivory module (Figure 2A). In addition, there was a slight increase in FCL with high dispersal ability 

across both carrying capacities, but the effect was greater at low carrying capacity. However, when 

carrying capacity was increased, FCL was largely invariant across gradients of ecosystem size. 

There was very little effect of ecosystem complexity on FCL in the low disturbance regime. In all 

scenarios, FCL did not vary in response to increasing ecosystem complexity, although there was a very 

slight decline for all three food web modules when carrying capacity and dispersal ability were low. FCL 

was predominantly determined by food web motifs and carrying capacity, with FCL being negatively 

related to omnivory, and positively related to carrying capacity. Like the results across ecosystem size, 



there was a positive effect of high dispersal ability on FCL, and this effect was greater in ecosystems with 

low carrying capacity (interactive effect).  

High disturbance regime 

Ecosystem networks with a high disturbance regime had much different responses of FCL across both 

ecosystem size and complexity. FCL increased across both gradients under all combinations of carrying 

capacity and dispersal ability, and in most food web motifs (Figure 3). However, the strength of the 

relationship was variable for some motifs, and when dispersal ability and carrying capacity were low, 

and omnivory was absent, FCL was largely invariant across both gradients (top right panel in Figure 3A 

and 3B. Once again, FCL was largely determined by the degree of omnivory, with simple linear food 

chains generally having longer FCL, and weak IGP having the shortest FCL.  

When dispersal ability and carrying capacity were low, however, a simple linear food chain structure 

resulted in the shortest FCL across both ecosystem size and complexity. It is likely that this simple motif 

with a few strong links was unstable and could not persist when exposed to frequent, high magnitude 

disturbances (e.g., supports dynamical stability hypothesis). In these environments, having prey choice 

(omnivory) appears to be a necessary requirement to maintain the persistence of species.  

Increasing dispersal ability and carrying capacity had positive effects on FCL across both ecosystem size 

and complexity. Similar to the results in the low disturbance regime, increasing dispersal ability in 

ecosystems with low carrying capacity resulted in a large increase in FCL, suggesting an interactive 

effect.  

Discussion 

The ecosystem size hypothesis of food chain length has received support from both theoretical and 

empirical work. Because ecosystem size encompasses several distinct mechanisms that could influence 

food chain structure, work so far has not elaborated the underlying drivers. Ecosystem complexity is an 

extrinsic factor which is scale-invariant and related to ecosystem size yet has not been incorporated in 

theoretical explorations of food chain length to date. Here, we show that food chain length responds 

positively and independently to increasing ecosystem size and complexity. This supports our hypothesis 

that scale-dependent theories of FCL are inadequate to correctly predict FCL in ecosystems with a 

complex structural geometry.  However, the relationship between FCL and ecosystem complexity varied 

based on additional extrinsic and intrinsic factors, supporting the emerging paradigm that there is no 



one single driver of FCL in ecosystems 15, but moreover that there is context dependency for which 

factor is the primary driver of the relationship. Although we focus on river networks here, we expect our 

results to be transferable to other branching structures, including mountain ranges and cave systems. 

While increased disturbance intensity and frequency consistently reduced food chain length as 

predicted by dynamical stability hypothesis 5, more important findings in this study were evident from 

their synergistic effects with ecosystem structure. Our low disturbance regime scenario can be viewed 

as habitat networks having nearly homogeneous environments, in which long food chains were 

generally supported independent of ecosystem size and complexity and FCL was predominantly 

determined by food web motifs. However, under high disturbance regimes, only large and complex 

networks could provide diverse and heterogeneous habitats with potential refugia, allowing species to 

thrive and maintain long food chains. This result has important implications for ecosystem management 

because anthropogenic climate change is predicted to increase the frequency and magnitude of 

disturbances 35,36. River networks are especially vulnerable due to their propensity to go dry during 

droughts37 as well as susceptibility to more intense flood disturbance with increasing storm intensity38. 

Increased dispersal ability alleviated the reduction in FCL from increased disturbance regime in our 

simulation, and reduced the negative impacts of disturbance and climate change in empirical studies 39. 

However, human activities have altered the habitat heterogeneity, connectivity, and dispersal ability of 

species within riverine networks 40,41. In-stream habitat in rivers and streams have been homogenized 

and lateral connections to the floodplain have been severed by the removal of large woody debris, 

channelization and straightening of river corridors, and through flow regulation 42,43, and this has 

affected community assembly44 and trophic structure 45. 

Although dispersal has received little attention in food chain research, our simulation highlighted its 

importance in regulating food chain length. In particular, high dispersal was required for ecosystem size 

and complexity to have consistent positive effects on FCL under high disturbance regimes. This is 

probably because sufficient propagules are needed to successfully recolonize after disturbance and 

maintain long food chains in large and/or complex networks. Human activities that affect habitat 

connectivity and dispersal ability of species within riverine networks may compromise the buffering 

effects of ecosystem size and complexity against disturbance by limiting dispersing propagules. For 

example, dams and diversion have altered the connectivity between suitable habitat patches, or have 

completely blocked dispersal ability 46,47. Light pollution has also negatively affected the ability of adult 

aquatic insects to disperse between habitat patches 48. 



The context dependency of disturbance, productivity and dispersal has important implications for the 

conservation and management of freshwater ecosystems. This adds an important distinction in the 

discussion of the suitability of assigning protection or conservation status to regions. Current 

conservation schemes generally emphasize size, aiming to protect the largest areas possible. While this 

is certainly a useful attribute generally, designating regions with a high degree of variability, or many 

small patches, may be more beneficial than a large, homogenous area 49, and accounting for ecosystem 

complexity is particularly suited to ecosystem architectures in which branches have variable 

environmental conditions. Conservation and management activities should focus on activities that 

increase the habitat heterogeneity and connectivity of suitable habitat patches to increase resilience to 

predicted increases in disturbance frequency and magnitude.  

The role of food web motifs on FCL largely followed our predictions (Figure 1). Specifically, FCL declined 

as the value of the resource B, and thus the proportion in the diet, to the predator P increased. 

Essentially, the relative qualitative values of the resources to the predator controlled the level of 

omnivory and FCL. Although FCL was greatest when the community was arranged as a simple linear food 

chain, this arrangement was not the most stable. Specifically, when disturbance regime was high, and 

productivity and dispersal ability were low, the observed FCL across networks was ~1 (although 

increasing dispersal ability and/or carrying capacity resulted in food chains of ~2.5-3). Therefore, in the 

absence of prey resource choice, strong, top-down trophic interactions were destabilizing, leading to the 

extirpation of consumer species at higher trophic levels across the networks.  

Changes in community composition are occurring worldwide and in all habitats. Species extirpations and 

extinctions, coupled with species introductions and invasions are creating novel communities 

worldwide. In Lake Tahoe (USA), for example, replacement of the top fish predator and the introduction 

of a freshwater shrimp substantially altered the food web structure 50. Understanding the interactions 

within these novel communities, and how this could affect food chain lengths is an important goal of 

contemporary ecologists. The strength of omnivory in these novel communities can be increased or 

decreased, depending on the introduced species and the extant species pool or community. For 

example, non-indigenous fishes in the Eastern Mediterranean Sea outcompete native species for high 

quality prey items, causing native species to increase consumption of non-preferred prey items51. 

Introductions of non-native fishes in the Colorado River basin have led to longer FCL and narrower 

niches (e.g., lower degree of omnivory) of native species52. Alternatively, the introduction of hyper-

successful basal or primary consumer species can weaken or remove the omnivory link by becoming the 



dominant prey resource. For example, nonnative New Zealand mud snail dominated the 

macroinvertebrate biomass in streams in Yellowstone National Park and likely affected food web 

structure53.  Having a single prey resource dominate the community is akin to reducing the degree of 

omnivory (i.e., removing prey choice), which destabilizes the community, particularly under high 

disturbance regimes.  

It is abundantly clear that ecosystem complexity in natural systems is the rule, not the exception. Early 

theoretical and empirical work has assumed simple habitat structure as a necessity. However, habitat 

heterogeneity, such as the presence of prey refugia, and dispersal between connected habitat patches 

allow communities to stabilize and persist through space and time 54–56. Complex ecosystem structure is 

an extrinsic factor that can affect food chain length in communities. Incorporating a realistic 

understanding of ecosystem structural complexity could alter our perception of communities in 

naturally complex systems, potentially leading to paradigm shifts in macroecology.  

Methods 

Network Generation 

We simulated branching networks of connected habitat patches as a series of nodes (Figure 1). The 

geometric arrangement of networks was controlled with two parameters: ecosystem size, the number 

of patches (NP); and ecosystem complexity, branching probability (PB). Nodes (habitat patches) were 

assigned to be a confluence (or upstream terminal node) with probability PB, or an in-branch node with 

probability 1 - PB. Branches (tributaries) are a series of connected nodes between confluences (or 

upstream terminal nodes). The number of patches within a branch, q, is a random variable drawn from a 

geometric distribution np,q∼Ge(Pb) (a geometric distribution is the discrete form of an exponential 

distribution). The number of branches NB is a random variable drawn from a Binomial distribution: NB ~ 

Binomial(NP, PB). This framework preserves the fractal nature of branching patterns. For each scenario 

described below, we generated 1000 networks across a gradient of ecosystem size and complexity by 

drawing a random variable from uniform distributions as: NP ~ Unif(5, 150) and PB ~ Unif(0.01, 0.99) (𝑁𝑝 

was rounded to the nearest integer before running simulations).  

For each terminal branch (i.e., headwater branch), h, within the network, a disturbance value, mh, was 

sampled.  The distribution of mh values was sampled from a normal distribution in a logit scale. This was 

accomplished by transforming the proportional mean disturbance value, µm, to the logit scale and 

sampling a value for each terminal node (headwater) as mh ~ Normal( logit( µm), σ2
m). Here, we varied 



the mean source disturbance value, µm = (0.1, 0.9), based on disturbance regime (see Simulations) and 

set the variation of source disturbance as σ2
m = 2. All the patches from terminal node moving 

downstream to a confluence node have identical disturbance values, mh. At confluence nodes, the 

disturbance value takes a weighted mean based on the relative size of the two contributing branches, 

s (the number of upstream contributing patches): mdown = ωm1,up + (1 - ω)m2,up, where mdown is the 

disturbance magnitude of the focal patch (the confluence), m1, up and m2, up are the disturbance 

magnitude of contributing tributaries, and ω = s1/(s1 + s2). Disturbance value distributions had medians 

close to µm with long right or left tails (Fig S1), respectively, i.e., when µm = 0.1 (e.g., a 10% reduction in 

species densities), most sites experienced low-magnitude disturbances and a few sites experienced high-

magnitude disturbances. Likewise, when µm = 0.9, most sites experienced high-magnitude disturbances 

with a few patches receiving low-magnitude disturbances. The low-magnitude patches can be viewed as 

refugia and a source to supply individuals to colonize impacted sites in subsequent timesteps. Example 

disturbance value distributions for simulation scenarios reported here are available in the SI. The R 

package mcbrnet was used to simulate the networks.  

Tri-trophic dynamic simulation model 

We simulated trophic community dynamics in branching river networks using a mixed-time model which 

models predation continuously and has discrete, synchronous reproduction. This is a life-history 

common to many lotic species, including macroinvertebrates and fish. Accounting for this stage 

structure is an important aspect which is often missed in continuous-time models57. We describe the 

model in detail below.  

Our simulation model consists of three species communities; a basal species B which has positive logistic 

growth up to a carrying capacity, K; a primary consumer species, C which grows based on the 

consumption of B; and a predator P, which can consume both B and C. Let Nix(t) represent the 

population density of species i in patch x at time t. The model starts with some initial nonzero 

population densities for all three species in each patch. The initial population abundances for each 

species i in each patch x were independently sampled from a random Poisson distribution Poisson(𝝺ix), 

where 𝝺ix for B, C and P was 0.8 * K, 0.5 *K and 0.25 * K, respectively.  First, dispersal from all patches is 

accounted for. The number of emigrants, 𝐸𝑖𝑥(𝑡)for species i in from patch x at time t, is estimated as the 

product of dispersal probability, Pdispersal and Nix(t). The dispersal probability was assumed to be constant 

for all three species in each simulation run. Then, the number of emigrants from patch x is divided into 



immigrants, 𝐼𝑥𝑦(𝑡) to each patch y. The immigration probability, ξxy from patch x to y is calculated based 

on the habitat structure among patches according to:  

𝜉𝑥𝑦(𝑡)  =
𝛴𝑦,𝑦≠𝑥𝐸𝑥𝑦(𝑡)𝑒−𝜃𝑑𝑥𝑦

𝛴𝑥𝛴𝑦,𝑦≠𝑥𝐸𝑥𝑦(𝑡)𝑒−𝜃𝑑𝑥𝑦
  

Where dxy is the distance between patch x and y, and θ controls the rate of decay.  

The realized number of individuals 𝑁𝑖𝑥(𝑡 + 1) (species 𝑖 at patch 𝑥 and time 𝑡 + 1) is given as: 

𝑁𝑖𝑥(𝑡 + 1) ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑖𝑥(𝑡) + 𝐼𝑖𝑥(𝑡) − 𝐸𝑖𝑥(𝑡)) 

where 𝑁𝑖𝑥(𝑡) is the number of individuals at time 𝑡,(i.e., before dispersal) 𝐼𝑖𝑥(𝑡) the expected number of 

immigrants to patch 𝑥, and 𝐸𝑖𝑥(𝑡) the expected number of emigrants from patch 𝑥. The realized discrete 

number of individuals is drawn from a Poisson distribution to account for stochasticity in demographic 

and dispersal processes. Note that a value of 0 is assigned to Nix(t + 1) for any non-positive value of 𝝺 58.  

After dispersal, continuous predation occurs. The number of prey i eaten by consumer j, Wij, in a season 

is calculated as: 

 

𝑊𝑖𝑗 =  
𝛼𝑖𝑗𝑁𝑖𝑁𝑗

𝛽𝑖𝑗𝑁𝑗 + 𝑁𝑖
  

where Ni and Nj
 are resource and consumer densities, respectively and αij and βij are coefficients 

describing the functional response as the ratio of resources, i, to consumers, j, increases. βij describes 

how fast the predation curve reaches the asymptote of the Type II functional response, and αij/βij 

determines the location of the asymptote57.  

The predator species P, searches for and consumes both species in a patch. Its total effort is controlled 

by parameters α.p and β.p. The preference parameter δ, controls the proportional search effort of 

species P for resource B and C: 

𝑊𝐵𝑃 = 𝛿(𝑊𝑖𝑗) 

𝑊𝐶𝑃 = (1 −  𝛿)(𝑊𝑖𝑗)  

Predator preference for resource B is determined by the equation: 

𝛿 =  
𝑒𝐵𝑃𝑁𝐵

𝑒𝐵𝑃𝑁𝐵 + 𝑒𝐶𝑃𝑁𝐶
 



Where eBP and eCP are the conversion efficiencies of predator P for resource B and C, and NB and NC are 

resource densities, respectively. This formulation allows for flexible diet shifts of the predator based on 

realized energy gain (conversion efficiency times prey availability) from the prey species59. 

At each time-step within a patch, FCL was defined as 0 if no species were present, 1 if only B was 

present and 2 if only B + C or B + P were present. When all three species were present, FCL was 

calculated based on the proportion of each resource in P’s diet (𝜆i) according to: 

𝐹𝐶𝐿 =  (1 ∗  𝜆𝐵 +  2 ∗ 𝜆𝐶)  + 1  

When P only consumes B or C, FCL = 2 or 3, respectively. When P consumes both resources equally, FCL 

= 2.5. In each simulation, FCL was averaged across all patches and time-steps.  

The number of individuals in each patch is reduced by the number consumed Wij (predation effect), as 

well as by a base survival probability, s0:  

𝑁𝐵′ = 𝑠0(𝑁𝐵 − 𝑊𝐵𝐶  −   𝑊𝐵𝑃) 

𝑁𝐶′ = 𝑠0(𝑁𝐶′ − 𝑊𝐶𝑃) 

𝑃′ = 𝑠0𝑃 

Finally, those individuals remaining reproduce according to the following: 

𝑁𝐵,𝑡+1 = (
𝑟𝑚𝑎𝑥

1 +  𝜐 𝑁𝐵′
 𝑁𝐵′ )(1 − 𝜑𝑚𝑥) 

𝑁𝐶,𝑡+1 = (𝑊𝐵𝐶𝑁𝐶′)(1 − 𝜑𝑚𝑥) 

𝑁𝑃,𝑡+1 = (𝑒𝐵𝑃𝑊𝐵𝑃 + 𝑒𝐶𝑃𝑊𝐶𝑃)𝑁𝑃′(1 − 𝜑𝑚𝑥) 

where rmax is the maximum per-capita reproduction rate of the basal species and 𝜐 =  
𝑟𝑚𝑎𝑥−1

𝐾
  

determines the asymptotic relationship of population growth, where K is carrying capacity. In the 

absence of predation, population growth of the basal species follows a logistic growth relationship. For 

the consumer species (C and P) eij is the efficiency of converting resource i into new consumer j. The last 

term in the equation accounts for the proportional mortality in the event of a disturbance, where mx = 

the disturbance value (see Network Generation) and 𝜑 is an indicator variable of disturbance: 

𝜑 = 0, 𝑛𝑜 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 

𝜑 = 1, 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑐𝑐𝑢𝑟𝑠 



If species B is extirpated from a patch, both the other species were also assumed to be extirpated from 

that patch during that time step. Species B can colonize any open patch, whereas species C and P can 

only successfully colonize patches where B was already present (i.e., prey resource is necessary for 

successful establishment).  

Simulations 

We used 24 combinations of parameter sets (SI Table). The parameter sets include two environmental 

factors, and twelve ecological scenarios. For environmental scenarios, we used two parameter sets that 

controlled the frequency and magnitude of disturbances (low and high disturbance regime, 

respectively). In the low disturbance regime, the probability of a disturbance occurring at each time step 

was 0.0001 (i.e., a 10,000 year recurrence), and the mean disturbance magnitude was μm = 0.1 (10% 

reduction in population densities). In contrast, the high disturbance regime had a probability of 0.01 

(i.e., 100 year recurrence), and the mean disturbance magnitude was μm = 0.9 (90% reduction in 

population densities60) 

For the ecological scenarios, we used two productivity levels, two dispersal abilities, and three levels of 

omnivory. Productivity was varied by setting the carrying capacity of the basal species, B (K = 50, 150). 

Dispersal ability varies the effective distance between patches and can control the probability that a 

patch is re-colonized post-disturbance. Two levels of dispersal ability were simulated. The high dispersal 

ability was set with parameters Pdispersal = 0.1 and θ = 0.1 (i.e., high probability of individuals emigrating, 

and far distance traveled). The low dispersal scenario was set with parameters Pdispersal = 0.01 and θ = 1  

(i.e., low probability of dispersal, short dispersal distance). These values were chosen to represent 

extreme scenarios. Preliminary analyses using intermediate parameter sets had responses between 

these two scenarios.  

Finally, we investigated three food web motifs (Figure 1B). Trophic interaction strengths can be 

controlled by varying the attack rate or conversion efficiency by the consumer P (Ward and McCann 

2017). To simplify model simulations, we fixed the attack rate for both C and P (parameters 𝛼 = 8 and 𝛽 

= 20), and the conversion efficiency for C as ebc = 6. We controlled the presence and strength of trophic 

interactions for the predator, P, by varying the conversion efficiency for both prey resources (i.e., varied 

prey resource quality). The scenario names and parameter levels were as follows: (1) “Food chain”: ebp = 

0, ecp = 4; (2) “Strong IGP”: ebp = 2, ecp = 4; (3) “Weak IGP”: ebp = 4, ecp = 2.  



Under each scenario, we simulate 1200 timesteps of trophic dynamics (including 200 steps of burn-in) in 

1000 branching networks across a gradient of ecosystem size (number of habitat patches, from 5 to 150) 

and ecosystem complexity (branching probability, from 0.01 to 0.99). Simulations ran for 200 time steps 

as a burn-in period to minimize influences of initial conditions. The last 1000 timesteps were recorded to 

estimate the temporal average of food chain length across all patches within a network.  

Values of simulation parameters are summarized in (SI). We performed simulations using R version 

4.0.3. R functions for the generation of branching networks are provided as the R package mcbrnet. 

(available at https://github.com/aterui/mcbrnet). R functions for the trophic community simulations are 

provided in the R package IGPtoy (available at https://github.com/Jpomz/IGPtoy [IGPtoy will eventually 

be rolled into mcbrnet but leaving it here for now]). Codes for simulations, statistical analysis, figures, 

and tables are available at https://github.com/Jpomz/priv-igp-sens.  

https://github.com/aterui/mcbrnet
https://github.com/Jpomz/IGPtoy
https://github.com/Jpomz/priv-igp-sens
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Figure 1. Food web motifs showing trophic interactions in a three-species community (A) and, examples 

of how branching probability changes network topology (B). In (A), B refers to a basal species whose 

population level is controlled by a density-dependent function. The consumer species, C, consumes B as 

a resource. The predator, P, is able to consume both B and C, and the structure and strength of these 

trophic interactions are a function of resource quality and relative densities (i.e., ebp and ebc). The 

strength of trophic interactions involving P is represented by the thickness of the arrows (strength of the 



B-C interaction is fixed), and food chain length varies in response to the proportion that each resource 

makes to the diet of P. On the far left, a simple linear food chain exists when the predator, P, does not 

consume the resource B. Moving to the right, weak omnivory exists when the resource C is much more 

valuable to P than the resource B is. Strong omnivory exists when resource B is more valuable to P than 

prey resource C. If C goes extinct, P only consumes B, and the FCL = 2. If P goes extinct C is the top 

species and FCL = 2. Likewise, when both C and P are extinct, FCL = 1, and if all three species go extinct 

FCL = 0. In (B), node color is reflective of the disturbance value calculated in network generation. Note 

that it is the same within branches, and changes at confluence nodes.  



 

Figure 2.  Food web structure is the primary driver of food chain length in low disturbance regimes. Food 

chain length is generally invariant across gradients of ecosystem size (A) and complexity (B). However, 

food chain length did respond positively to ecosystem size under some simulation scenarios (A, top 

panel). Lines are loess curves fitted to simulated data and are colored based on food web motif. Shaded 

ribbons are 95% confidence intervals (may be difficult to see). Parameters for low disturbance regime: 

probability disturbance = 0.0001, μm = 0.1. The low dispersal scenario had parameters θ = 1 and Pdispersal = 



0.01, and the high dispersal scenario had parameters θ = 0.1 and Pdispersal = 0.1, respectively. Carrying 

capacity of the basal species, B, for the Low and High K = 50 and 150, respectively.  

 

 



 

Figure 3. Ecosystem size (A) and complexity (B) increase food chain length under high disturbance 

regimes Lines are loess curves fitted to simulated data and are colored based on food web motif. 

Shaded ribbons are 95% confidence intervals (may be difficult to see). Parameters for low disturbance 



regime: probability disturbance = 0.01, μm = 0.9. The low dispersal scenario had parameters θ = 1 and 

Pdispersal = 0.01, and the high dispersal scenario had parameters θ = 0.1 and Pdispersal = 0.1, respectively. 

Carrying capacity of the basal species, B, for the Low and High K = 50 and 150, respectively.  



 

Figure S1. Example of disturbance value distributions (columns) across branching probabilities (rows) in 

simulations. Here, the disturbance value represents the proportional reduction in abundances in the 

event of a disturbance (i.e., a disturbance value of 0.9 means a 90% reduction in abundances). In the left 

column, the mean source disturbance parameter, μm, was set to 0.1, and in the right column it was 0.9. 

In networks with a low branching probability (top row, Pbranch = 0.1) there is very little variation in the 

disturbance values throughout the network. When branching probability is high (bottom row, Pbranch = 

0.9), the variability of disturbance values increases due to the confluence of more branches within the 

network. For these examples the number of patches was set to 100, and the σm = 2.  

 



 

Figure S2. Branching networks with mean disturbance, μm = 0.1 (A) and μm = 0.9 (B). Nodes are color-

coded with increasing disturbance values from dark blue to yellow. Note that the colors in row A have 

less variability than the colors in row B, and both rows have higher color variability with increasing 

network complexity (branching probability). This figure highlights the fact that networks in the low-

disturbance regime (top row), had less habitat heterogeneity than the networks generated in the high-

disturbance regime.  

 

Table S1. Parameter values for main simulation. Not all possible combinations of all variables were used. 

See the main text for parameter combinations for specific scenarios. 

Parameter Value Interpretation 

σh 2 Variation of environmental value at headwater (source) nodes 
σl 0.01 Longitudinal variation of environmental value within branch 

µm  0.1, 0.9 
Mean disturbance magnitude (i.e., 0.1 = 10% reduction in population 
abundances) 

σm  2 Variation in disturbance magnitude 

Pdisturb 0.001, 0.01 
Probability of a disturbance occurring across the network at each 
timestep 

Kbase 50, 150 Mean carrying capacity of the basal species, B 
Rmax 4 Maximum reproductive rate of the basal species, B 

θ 0.1, 1 
Parameter controlling the rate of exponential decay in dispersal 
distance 

Pdispersal 0.01, 0.1 Probability of individuals dispersing in each time step 



αC, αP 8 
Parameter controlling the search effort of species C, and P, 
respectively 

βC, βP 20 
Parameter controlling rate that consumer species reaches search 
effort asymptote.   

 αj/βj Location of the search effort asymptote for consumer species j. 
eBC 6 Conversion efficiency of turning resource B into new consumer, C.  
eCP 2, 4 Conversion efficiency of turning resource C into predator P.  

eBP 0, 2, 4 Conversion efficiency of turning resource B into consumer P. 

 eijαj Maximum reproductive rate of consumer j. 

 

Table S2. Parameter sets for ecological scenarios 

Scenario Parameter Values 

Food Chain eBC = 6, eCP = 4, eBP = 0  

Weak omnivory eBC = 6, eCP = 4, eBP = 2 

Strong omnivory eBC = 6, eCP = 2, eBP = 4  

Low Disturbance regime Pdisturb = 0.0001, µm = 0.1 

High Disturbance Pdisturb = 0.01, µm = 0.9 

Low Dispersal ability Pdispersal = 0.01, θ = 1 

High Dispersal ability Pdispersal = 0.1, θ = 0.1 

 

 


