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Ruther et al [1] evaluated the ability for de novo fatty acid synthesis in 13 parasitic wasp species 17 

to test a long-standing claim of a general lack of lipogenesis in parasitoid wasps. In the past 25 18 

years, several different research groups have demonstrated that adults of most insect 19 

parasitoid species have an atypical metabolic phenotype. Contrary to other insects, adults of 20 

most parasitoids do not increase their lipid reserves when fed surplus carbohydrates (i.e., data 21 

for 32 species, and an additional 7 studies on previously tested species; Table 1). This lack of 22 

adult lipid mass gain has not only been demonstrated in more than 32 parasitoid wasp species, 23 

but also in a wider taxonomic range of insects, including parasitoid flies and a parasitoid beetle 24 

[2–4] and in comparison with >90 species of non-parasitoid insects. Finding the same atypical 25 

metabolic phenotype in evolutionary independent parasitoid lineages is evidence for 26 

convergent evolution for deviating lipid dynamics in parasitoids. Visser & Ellers [5] proposed 27 

that lack of adult lipid accumulation may be the evolutionary consequence of a parasitoid 28 

lifestyle. Parasitoid larvae can assimilate the lipids produced by their host and thus carry over 29 

large triglyceride stores from larval feeding into adulthood (i.e., up to 30 to 40% of the 30 

parasitoid’s dry body weight; [6,7]), which may render de novo lipid synthesis from adult 31 

feeding either unnecessary or too costly to maintain, leading to loss of the adult lipid 32 

accumulation phenotype [8]. Lack of adult lipid accumulation was confirmed not only by 33 

gravimetric or colorimetric comparison before and after feeding (48 experiments reported in 28 34 

studies; Table 1), but also using radioactive and stable isotope labelling studies in multiple 35 

species [7,9–11] (Table 1). Because lack of lipid accumulation prevents adult parasitoids from 36 

replenishing ebbing lipid reserves, it can lead to significant constraints on energy allocation 37 

toward key adult functions, such as maintenance, dispersal, and reproduction [12]. This thus 38 
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poses a conundrum as to why parasitoids do not increase their lipid reserves as adults and what 39 

the underlying genetic and physiological mechanisms are.  40 

 41 

This conundrum, however, is not per se what is addressed in Ruther et al’s paper [1]. Rather, 42 

their report calls for a re-evaluation of the use of the term lack of lipogenesis for the observed 43 

phenotypes. Observing lack of lipid accumulation cannot be taken as proof for absence of fatty 44 

acid or triglyceride synthesis in adults, because the net increase in lipid reserves hinges on the 45 

rate at which lipids are metabolized. This was made very explicit in some early papers (e.g. see 46 

the 3rd paragraph of discussion in [9]; and the 2nd paragraph of the discussion in [2];[10]), but 47 

should have received more attention during the further course of this research. Moreover, in 48 

hindsight, using the term lipogenesis has been a poor choice, because lipogenesis consists of 49 

two equally important parts: first, the conversion of glucose or other substrates into fatty acids, 50 

and second subsequent biosynthesis of triglycerides [13]. The distinction between these two 51 

processes and the accumulation of triglycerides is vitally important in biology, and in previous 52 

publications, including our own, the distinction should have been made more explicit.  53 

 54 

Ruther et al [1] contribute to this discussion by showing that it is not the lack of ability for fatty 55 

acid synthesis that underlies the lack of adult lipid accumulation in parasitoids. They find 56 

incorporation of 13C in fatty acids of adult parasitoids that were fed 13C-glucose in 13 57 

parasitoid species, thus showing that parasitoid wasps possess and use the enzymatic 58 

machinery to convert glucose into fatty acids. However, in Nasonia vitripennis, in which 59 
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triglyceride synthesis was also investigated, no lipid accumulation was found (replicating earlier 60 

findings [10,14]). Instead, their lipid content dramatically and significantly decreased between 61 

emergence and 4 days of age, despite feeding on sugar ad libitum (see Figure 3a in Ruther et al 62 

[1]). Low synthesis of fatty acids is consistent with studies showing that the fatty acid synthase 63 

(fas) gene is intact in several parasitoid species [7,10,15,16], and that its multiple paralogs are 64 

constitutively expressed [10,17–19]. The enzymatic machinery underlying fatty acid synthesis 65 

can be involved in other functions than lipid storage, such as the production of cuticular 66 

hydrocarbons [20] or pheromones [18]. Echoing earlier studies [7,10,17–19], Ruther et al [1] 67 

suggest that fas plays a functional role in several aspects of the parasitoid’s biology and that the 68 

proposed “loss of lipogenesis” comes about via evolutionary changes in transcriptional 69 

regulation of lipid synthesis rather than dysfunctionality of the lipogenic machinery. These 70 

above findings have led Ruther et al, and other authors, to question whether the phrase, ‘lack 71 

of lipogenesis’ is appropriate [1,18], or if lack of adult lipid synthesis should be considered a 72 

form of plasticity [7]. 73 

 74 

Given the accumulated evidence, we agree that the term ‘lack of lipogenesis’ should no longer 75 

be used in the scientific literature. Instead, we propose to use the more accurate terms ‘lack of 76 

adult lipid accumulation’ and ‘fatty acid biosynthesis’ to refer to separate and specific 77 

processes. The term ‘lipid accumulation’ is widely used to describe the process of bulk synthesis 78 

and storage of triglycerides across a broad range of taxa (e.g., [21–27]). In contrast, the term 79 

‘fatty acid biosynthesis’ more narrowly defines and denotes the conversion of acetyl Coenzyme 80 
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A and malonyl-CoA into palmitic acid. We suggest that a clear distinction between these terms 81 

will resolve the misunderstanding about terminology and avoid misleading conclusions when 82 

the work is cited (e.g., that adult parasitoids in general can replenish ebbing lipid resources 83 

through substantial lipid accumulation [28]). Moreover, it will allow researchers from chemical, 84 

ecological and evolutionary backgrounds to unite forces in revealing the mechanisms by which 85 

parasitoids do not accumulate substantial lipid reserves as adults and understand the 86 

downstream consequences of this lack of lipid accumulation for their life histories. When 87 

addressing these questions, both methodologies (gravimetry/colorimetry and isotope labelling) 88 

should be used concomitantly to understand how they relate to each other and whether 89 

estimated rates of fatty acid synthesis could be interpreted as a good estimate of total 90 

triglyceride accumulation. Furthermore, to show that fatty acid synthesis is occurring, it is 91 

crucial not only to measure the incorporation levels of tracers into fatty acids in different 92 

parasitoid species, but also to include a positive control of incorporation into an insect with 93 

typical lipid accumulation (as in [10,11]), so that the relative magnitudes of accumulation can 94 

be assessed. For example, Ruther et al [1] found an incorporation rate between 0 and 5% into 95 

palmitic acid from 13C-glucose fed to adults (Table 1 in Ruther et al [1]), yet an insect with 96 

typical lipid accumulation, e.g., Drosophila melanogaster, has a much higher incorporation of 97 

stable isotopes, more than 37%, compared to a parasitoid that lacks adult lipid accumulation, 98 

e.g., Eupelmus vuilletti with only 1% stable isotope incorporation [11]. 99 

 100 
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More than 25 years after the first discovery of lack of adult lipid accumulation in a parasitoid 101 

species [29], the question still stands - why did atypically low lipid accumulation evolve in most 102 

adult parasitoids and how can parasitoids cope with such low amounts of newly synthesized 103 

lipids in adulthood? What we know is that when insufficient lipid amounts are carried over into 104 

adulthood from the host, for example in hyperparasitoids (containing 4-8% lipids at emergence; 105 

[2,11]), or when development occurs on very lean hosts [7], de novo fatty acid synthesis and 106 

lipid accumulation can occur in significant quantities in adult parasitoids that consume excess 107 

carbohydrates. Moreover, there appears to be genetic variation in how much fatty acids are 108 

synthesized, as well as how much lipids are accumulated by adults among wasp lines [7]. Future 109 

studies with a range of different parasitoid species should take into account variation in host 110 

lipid content, parasitoid genotype, the microbiome [30,31], and plasticity of adult lipid 111 

accumulation. Another way to increase our understanding of the mechanisms underlying lack 112 

of lipid accumulation is to use inhibitors for key enzymes in the lipid synthesis pathway (e.g., 113 

[32]), or manipulate expression of the underlying genes using RNA interference (e.g., [21] or 114 

CRISPR-Cas9 [33]. In agreement with Ruther et al [1], we believe that mass spectrometry 115 

techniques can play a critical role in understanding the lack of lipid accumulation in parasitoids. 116 

 117 

In conclusion, we urge that future work uses more precise definitions for lipid accumulation, as 118 

well as the process of fatty acid biosynthesis. We hope that the unambiguous terminology 119 

proposed here will help avoid semantic discussion among research groups and unite 120 

researchers trying to understand the biological relevance of the lack of adult lipid accumulation 121 
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in parasitoids. Combining chemistry, ecology, and evolution into a truly interdisciplinary and 122 

integrative approach is what we now need for understanding the dynamics of lipid 123 

accumulation in parasitoids, and ultimately the downstream life history consequences of 124 

accumulating stored nutrients, or not, from adult dietary intake. 125 

 126 

Table 1: List of hymenopteran parasitoid species for which studies have looked at lipid 127 

accumulation, gene transcription (of genes involved in fatty acid synthesis) and/or fatty acid 128 

synthesis. “Yes” refers to an increase in accumulated lipids, gene transcripts or fatty acids; “no” 129 

refers to similar (gene transcription, fatty acid synthesis) or lower amounts (adult lipid 130 

accumulation). 131 

 132 

Species 
Lipid 

accumulation 
Gene 

transcription 
Fatty acid 
synthesis 

Reference 

Bulk lipid extraction methods (gravimetry or colorimetry) 

Acrolyta nens yes - - [2] 

Apanteles aristoteliae no - - [34] 

Aphelinus abdominalis no - - [2] 

Aphidius ervi no - - [2] 

Aphidius rhopalosiphi no - - [2,35] 

Aphidius picipes (=avenae) no - - [2,35] 

Asobara tabida no - - [2,29,36] 

Bracon hebetor no - - [37,38] 

Cotesia glomerata no - - [2] 

Cotesia rubecula no - - [2] 

Diadegma insulare no - - [39] 

Diglyphus isaea no - - [40] 

Gelis agilis yes - - [2] 

Goniozus nephantidis no - - [2] 
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Goniozus legneri no - - [2] 

Leptopilina boulardi no - - [2] 

Leptopilina boulardi yes + no - - [41] 

Leptopilina heterotoma no - - [6,42] 

Leptopilina heterotoma yes - - [2] 

Leptopilina heterotoma yes + no - - [36] 

Leptopilina heterotoma yes + no - yes + no [7] 

Lysibia nana yes - - [2] 

Macrocentrus grandii no - - [43] 

Microplitis mediator no - - [44] 

Nasonia vitripennis no no no [10] 

Nasonia vitripennis no - yes [1] 

Nasonia vitripennis no - - [45] 

Orthopelma mediator no - - [2] 

Orthopelma mediator no - - [46] 

Pachycrepoideus vindemmiae no - - [2] 

Pimpla turionellae no - - [47] 

Pteromalus bedeguaris no - - [46] 

Pteromalus puparum yes - - [2] 

Spalangia erythromera no - - [2] 

Spalangia cameroni no - - [48] 

Tachinaephagus zealandicus no - - [49] 

Trichopria drosophilae no - - [2] 

Venturia canescens no - - [50,51] 

Neochrysocharis formosa no - - [52] 

Meteorus pulchricornis no - - [53] 

Meteorus pulchricornis no yes - [54] 

Gene transcription studies 

Nasonia vitripennis no no no [10] 

Nasonia vitripennis  - no - [17] 

Meteorus pulchricornis no yes  - [54] 

Isotope tracing 

Anisopteromalus calandrae - - yes [1] 

Asobara tabida - - yes [1] 

Baryscapus tineivorus - - yes [1] 

Cephalonomia tarsalis - - yes [1] 

Dibrachys cavus - - yes [1] 

Eupelmus vuilletti - - no [9] 

Eupelmus vuilletti - - no [11] 
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Exoristobia phillippinensis - - yes [1] 

Gelis agilis - - yes [11] 

Gelis aereator - - yes [11] 

Habrobracon hebtor - - yes [1] 

Lariophagus distinguendus - - yes [1] 

Leptopilina heterotoma yes + no - yes + no [7] 

Leptopilina heterotoma - - yes [1] 

Muscidifurax raptorellus - - yes [1] 

Muscidifurax uniraptor - - yes [1] 

Nasonia vitripennis no no no [10] 

Nasonia vitripennis - - yes [18] 

Nasonia vitripennis no - yes [1] 

Nasonia giraulti - - yes [18] 

Nasonia longicornis - - yes [18] 

Tachinaephagus zealandicus - - yes [1] 

Trichogramma evanescens - - yes [1] 

Urolepis rufipes - - yes [1] 

 133 

 134 
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