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The why, what and how of predicting evolution
across biology: from disease to biotechnology to
biodiversity

Abstract
Evolution has traditionally been a historical field of study and predicting evolution into the future
has long been considered challenging or even impossible. However, evolutionary predictions
are increasingly being made and used in many situations in medicine, agriculture, biotechnology
and conservation biology. Because every field uses their own language and makes predictions
from their background, researchers are not always aware of the breadth of evolutionary
predictions. Evolutionary predictions may be used for several purposes such as to prepare for
the future, to try and change the course of evolution or simply to determine how well we
understand an evolutionary system. Exactly what aspect of an evolving population we want to
predict, such as the most common genotype, average or individual fitness, or population size,
depends on the situation. In addition, there are many uses of evolutionary predictions that may
not be recognized as such. Therefore, the main goal of this review is to increase awareness of
methods and data that are used to make these predictions in different fields, by showing the
breadth of situations in which evolutionary predictions are made. We describe how evolutionary
predictions are highly diverse, but nevertheless share a common structure described by the
predictive scope, horizon, precision and risk. Then, by using examples ranging from
SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation by
microorganisms, we discuss the methods for predicting evolution, factors that affect
predictability, and how predictions can be used to prevent unwanted evolution or promote
beneficial evolution. We hope that this review will increase collaboration between fields by
creating a common language for evolutionary predictions.
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1. Introduction

1. Motivating questions
Important questions for battling diseases, developing biotechnology and protecting biodiversity
include: “Which SARS-Cov2 strains will be most prevalent a month from now?”, “When and
where will SARS-Cov2 mutants that escape the vaccine arise, threatening vaccine efficacy?”,
“Which patient will be cured of cancer and which patient will see the tumor come back, but now
resistant to chemotherapy?”, “Can we use gene drive systems to get rid of (vectors for)
dangerous diseases or will they evolve resistance to the gene drive?”, “How fast will a strain
engineered for ethanol production evolve and lose its efficiency during prolonged fermentation?”
and “Which endangered species will go extinct and which will adapt successfully to their
changing environment?”.

Answering these questions requires the ability to predict the course of evolution into the
future. In addition, some of these situations would have us trying to influence the course of
evolution. While some fields have been working for many years on predicting and influencing
evolution, either explicitly or implicitly, for other fields this is a new endeavor. We argue that
predicting and trying to influence evolution is more common than you may think, but it is not
always easy to recognize because the jargon used in different fields is varied. For example, in
the influenza virus literature, there are many articles on predicting evolution and these
predictions are used to design vaccines for the next influenza season (Łuksza & Lässig 2014,
Morris et al. 2018, Barrat-Charlaix et al. 2020, Hayati et al. 2020). On the other hand, in the
literature on the evolution of drug resistance in HIV, predictions are described differently. For
instance, a large study on 6500 HIV patients in British Columbia (Rocheleau et al. 2018)
determined which patient characteristics were most predictive of within-host drug resistance
evolution. However, the words “prediction” and “evolution” are never used in the paper. The
main goal of this review is to show the breadth of situations in which evolutionary predictions are
being made. We also aim to bring diverse aspects of evolutionary forecasting together,
showcase the strengths and weaknesses of different approaches, and form a platform from
which future studies could launch research into evolutionary predictions.

Note that throughout this paper, we focus on predictions of how populations will evolve, that is
how the genetic and phenotypic makeup of populations will be different in the future (Nosil et al.
2020), rather than predictions about the evolution of new species, or predictions about the past.
We thus generally take a more applied approach to predicting evolution compared to some of
the existing literature on predicting evolution (Gould 1990, Morris 2003).
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2. The scientific basis of evolutionary predictions
What is the basis upon which we can make sound predictions about evolution? Many
hypotheses, theories and models can be used to make evolutionary predictions. Arguably the
basis of all evolutionary predictions is Darwin’s theory of evolution by natural selection which
states that if populations of entities manifest heritable variance in fitness, then these populations
will adapt to their environment. For example, we can predict that if we treat bacteria with
antibiotics, and if these bacteria harbor genetic variation for antibiotic susceptibility, then the
bacterial population will adapt to that challenge and become resistant. We can also recreate this
scenario as an experiment in the lab and see whether our prediction holds true.

In addition to the basics of Darwin’s theory, there are many extensions that make Darwin’s
theory more precise and quantitative. For example, our understanding of the polygenic nature of
quantitative traits has aided in developing tools such as the “breeder’s equation” (Fig. 3E) and
“genomic selection”, facilitating selective breeding strategies in order to deliver particular
(predicted) outcomes in animal husbandry and agriculture (Cooper et al. 2014, Masuka et al.
2017).

For other situations we need more extensive population genetic models to include forces that
can distort the expected impact of selection. Population genetic theory includes random genetic
drift, migration, recombination and mutation and it can deal with the stochasticity of these
forces. However, population genetic theory only works well for predicting changes in allele
frequencies or population sizes if it is known which mutations have an effect on fitness and what
these effects are (though see the extensive literature on adaptive walks (Gillespie 1983, Orr
1998)). Yet, inferring the distribution of fitness effects of new mutations is difficult because of the
sheer number of possible mutations and because this distribution may differ between genetic
backgrounds and between different environments. This endeavor relies either on the availability
of large data sets capturing the genetic variation in natural populations (e.g. (Eyre-Walker &
Keightley 2007, Tataru et al. 2017) or on extensive measurements of fitness effects of selected
mutations in the laboratory (e.g., (Fowler & Fields 2014, Cote-Hammarlof et al. 2021).

An additional complicating factor is that populations impact their environment. In many
situations, we therefore have to consider both evolutionary and ecological dynamics. For
example, the fate of endangered species critically relies on the abundance of pollinators,
predators, and prey and other members of their ecological community, while these populations
are in turn affected by the endangered species in question (Govaert et al. 2019). A core
challenge in predicting evolution is thus to integrate ecological and evolutionary forecasting to
describe eco-evolutionary dynamics.

Predicting evolution has long been considered challenging, or even impossible. Fundamental
difficulties of predicting evolution include the inherent stochasticity of mutation, reproduction and
environment, and the unknowns of genotype-phenotype and phenotype-fitness maps which,
together, determine a fitness landscape (Wright 1932, de Visser & Krug 2014, Fragata et al.
2019). In addition, eco-evolutionary feedback loops make long-term predictions challenging.
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These aspects of evolving populations will limit accuracy and predictions will therefore always
be probabilistic and provisional especially for predictions further into the future. Short-term and
microevolutionary predictions may be most achievable (Lässig et al. 2017).

3. Why predict evolution?
There are different reasons why we are interested in predicting evolution, which we have
organized in three main categories (Fig. 1). The first reason is to be prepared for the future. A
key example here is seasonal influenza. In the spring of any year, vaccines are produced for the
next fall (for the Northern hemisphere). To make sure the vaccine is as effective as possible, it is
necessary to predict which strains will be most common in the next influenza season.

The second reason to predict the course of evolution is to choose actions that influence the
direction or (more often) speed of evolution – also referred to as evolutionary control. For
example, treatment regimes may be chosen with different combinations of antibiotics that,
together, reduce the risk of resistance evolution or that guide evolution to low fitness types that
are less likely to spread in antibiotic-free environments. We devote a section of this review to
evolutionary control.

Third, we use predictions for experimental systems to test our fundamental assumptions of
evolving systems. Most work in experimental evolution falls in this category. A prediction here is
similar to a hypothesis. These experiments can focus on the speed of adaptation, the
distribution of fitness effects of new and existing mutations, repeatability of evolutionary
outcomes and causes of repeatability. These experiments force us to define the necessary
information to predict evolution and determine reasons for failure, and they allow us to test the
limits of the generality of predictions.
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Figure 1. Why do we need predictions? (1) To be prepared for future outbreaks, we aim to match
vaccines with the most common influenza strains each year. (2) To have control over evolutionary
outcomes and design treatment strategies that prevent evolution of resistance from happening in
pathogens. (3) To test hypotheses of evolution for a better fundamental understanding of evolving
systems. Based on their phylogenetic history we can predict how species respond to a given treatment.
These predictions can be tested with experimental evolution approaches.In this review we focus on
predicting evolution for goals (1) and (2).

4. What do we want to predict?
When making evolutionary predictions, we can focus on many different aspects of the future
state of a population. Here it may be useful to briefly compare evolutionary predictions to
weather and climate predictions, which have many dimensions as well. Sometimes we care
about whether or not it will rain tomorrow; whereas other times, when we worry about flooding,
we care about exactly how much rain will fall in the next 24 hours. Also, on most days, wind
speeds may not be mentioned in a weather forecast, but when a hurricane is arriving, wind
speeds are suddenly crucial to prepare for the impact of the hurricane. Evolutionary predictions
are similarly diverse. Evolutionary predictions can be about different population variables (e.g.
majority phenotype, average fitness, identity of fixed mutations, allele frequencies, population
size) and usually include a time component (Will this population be extinct one year from now?
When will a new variant dominate the SARS-Cov2 pandemic?).
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We sometimes focus on which strains will be most common next year (e.g., influenza). Other
times, we want to predict whether or when drug resistance will evolve in a virus or bacterial
infection in a patient. In these cases, we might want predictions at the level of the genotype or at
the level of the phenotype. In experimental evolution, the goal may be to predict a certain
phenotype (e.g. cell size) or the average fitness of a population after some amount of time, or
we may want to predict which genes will acquire new mutations or confer increased fitness. With
increasing interest in engineering microbial communities, interest turns to predicting the
evolution of interacting populations, and we may want to predict population sizes in these
microbial communities. In conservation biology, the focus is also usually on predicting future
population sizes. For all of these cases, besides predicting the most likely outcome, sometimes
the probability of a certain outcome (e.g., extinction) is most important.

2. What is an evolutionary prediction?

1. A conceptual model of evolutionary predictions
An evolutionary prediction is a statement about the future state of an evolving population.
Communities of populations evolve too, but we focus here mainly on populations. Predictions
can be focused on either the genotypic or the phenotypic level. For instance, at the genotypic
level we can predict the frequency of influenza variants in the next influenza season (Łuksza &
Lässig 2014), or we can predict the mutational targets of E. coli responding to various
environmental pressures (Wang et al. 2018). At the phenotypic level, we can predict the shape
of Darwin’s finches beaks after a drought (Grant & Grant 2002) or the repeated evolution of
equivalent spider ecomorphs over macroevolutionary timescales (Gillespie et al. 2018).
Predictions operate across a range of timescales – from a single generation to millions of years.
In this paper we focus on evolutionary predictions that are forward-looking in the sense that they
concern future events; but we can also predict aspects of the past (hindcasting) based on the
state of a population further in the past. Hindcasting can be used to directly test models’
predictive power, for example, to test whether models can predict which influenza mutations will
fix or be lost (Barrat-Charlaix et al. 2020).

These examples illustrate how evolutionary predictions are highly diverse in their topics, but at
an abstract level, they nevertheless share a common structure (Fig. 2). All evolutionary
predictions result from a model — including conceptual, verbal, mechanistic, statistical,
computational or mathematical models — that allows for a projection of the state of the evolving
system beyond the input that is provided.
The model for all evolutionary predictions starts from describing the current state of the evolving
system, and incorporates the total prior scientific knowledge of relevance (e.g. facts and
mechanisms, evolutionary processes, etc.). This is the input of the model. The assumptions that
are made, and that have not (yet) been proven to be true can also form input or constraints for
the model. The output of the model describes the state of the evolving system in the future. The
extent to which the projection of the future state overlaps with the current state of the evolving
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system describes how risky or safe the predictions are. The part of the output that overlaps with
existing knowledge can be used to validate the model.

Figure 2. Shared abstract structure of all (evolutionary) predictions. Starting from prior knowledge
(blue circle), models can be formalized (pink circle) which may project into the unknown (here, visualized
by the yellow ellipse), and may use assumptions (grey aura). If pointing outwards, the yellow area of the
ellipse constitutes a prediction, whereas the green area is used for validation of the model and its
assumptions. The model assumptions and output will determine the orientation of the ellipse, and to what
extent it projects into the unknown. The predictive output will range from the most risky predictions of
more fundamental and serendipitous nature, to safer predictions which will be more suitable for predicting
more practical matters such as potential pathogen escape mutants. Hypothesis testing here is the case
where predictions are made about results that are known, to test if the model that we have of a process
explains the observations.

When we describe predictions, we can consider various attributes. First, we should consider
which attributes of a population we want to predict, or what is the predictive scope: Is the
prediction about genotypes, phenotypes or population sizes? Are we trying to predict the
average of a population, or the distribution of a trait? Are we predicting the evolutionary path or
the outcome?

Second, we need to consider the temporal scope of a prediction, the predictive horizon: We
can predict the state of a population at a given time point (in the near or far future), or we can
predict the time point at which a given state is reached. Generally, predictions of a system's
trajectory are more precise for the near future, carry most information on an intermediate time
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scale, and get fuzzy when too far out. This is relevant especially when predictions are needed to
decide on actions, such as which vaccine to manufacture. For example, predicting influenza
strain frequencies a year into the future is optimal for information gain (Lassig et al. 2017).

Third, we can consider the level of detail of a prediction or predictive precision. A prediction
about the direction of an effect is less detailed than one that also includes its magnitude, rate or
trajectory. For instance, predicting that microbes will evolve to consume a novel food source is
less detailed than predicting that the evolution will occur within 100 generations, via a given
sequence of mutations (trajectory) (Lind et al. 2019). In a sense, predictions are a type of
hypothesis and if they are too general they cannot be falsified.

A fourth attribute of a prediction may be the a priori likelihood (absence of surprisingness) of the
prediction, the predictive risk. All else being equal, predicting something which is a priori
unlikely, given background knowledge, is harder and possibly more interesting.

2. Applying the model of evolutionary predictions to influenza
strains
Let’s apply our conceptual model of predictions (Fig. 2) and the four attributes described above
to one of the best known examples of evolutionary predictions: the prediction about seasonal
influenza strains in the next season, which is used to design the next vaccine. First of all, the
prior knowledge (blue circle in Fig. 2) is the current state of the population as inferred by
observed frequencies of influenza strains in humans and other hosts, and the trajectory of these
frequencies in the recent past. The model assumptions (grey) can include mathematical
descriptions of how the frequency trajectories can be extrapolated into the future (taking into
account mutation, drift and selection). The outcome of the model (yellow) is the predicted
frequencies of the major strains during the next influenza season, or possibly only the list of the
most prevalent clades. At an even more coarse-grained level, we may only be interested in
predicting the antigenic phenotypes of the future virus population. All of these choices place
predictions at different points on the line between safe and informative, and between realistic
and over-ambitious.

In terms of the four attributes, the predictive scope is the genetic or antigenic composition of the
population, the predictive horizon is a time scale 6-12 months into the future. The predictive
precision is high in terms of the time scale (we need to know the common strains for the next
season, not earlier or later than that) and also in terms of genetics, as we are predicting the
exact strains that will be most common. The a priori likelihood is bounded when we consider
only existing strains, as there may only be a small number of possible outcomes when only few
strains currently exist in the population. However, the exact predictive risk depends on whether
a common or uncommon strain is predicted to be prevalent the next season. Over longer time
scales de novo mutations become important. De novo mutations are hard to predict, which is
one reason why predictability is reduced over longer time scales.
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3. How can we predict evolution?

1. Methods of predicting evolution
If we establish that we want to predict evolution, and what such a prediction entails, the next
question is how we can predict evolution. The most straightforward prediction comes from
observations of repeatability: we have seen evolution take a certain path in similar conditions
(either controlled or natural), so we expect to observe the same evolutionary process again.
Although this might be one of the safest predictions, often we want to predict evolution under
conditions or over timescales that we have not encountered before, which means that we have
to extrapolate from prior observations by incorporating different types of models. These models
could include a lot of data (e.g., machine learning models) or more mechanistic knowledge of
traits or molecular details (e.g., metabolic growth models). There are many different approaches
and methods to predict evolution, and we describe some of those here. Note that phylogenetic
models are not described here but feature in chapter 5 and box 1.
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Figure 3. Selection of methods that are used to predict evolution.



13

2. Experimental evolution
One main method of evolutionary predictions is seeing how evolution occurs under the
conditions of interest, in order to extrapolate from these observations. There are two different
types of environments that can be used for these observations: laboratory studies and field
studies; and those experiments can be started from a clonal population, restricting evolution to
de novo mutations, or a genetically diverse population.

Laboratory studies of experimental evolution are used extensively for the more curiosity driven
predictions, and perhaps the most famous one is the long term evolution experiment with E. coli
(Wiser et al. 2013, Blount et al. 2018). Analysis of the fitness trajectories and of the genomic
response, by way of resequencing of evolved populations, observed in that experiment and
others, have revealed some common rules of microbial adaptation. For instance, (i) fitness
improvement is faster in maladapted genotypes (Couce & Tenaillon 2015), (ii) beneficial
mutation supply is large, such that often multiple beneficial mutations coexist and compete in a
population (Lang et al. 2013), (iii) in most environments mutatios with large fitness benefits are
only found in a few genes (Tenaillon et al. 2012, Lind et al. 2017), which lead to high
convergence at the gene level, and (iv) a change in mutation rate can easily be selected for in
the course of a adaptation (Sniegowski et al. 1997). Interestingly, these observations, while
made mostly in vitro, were recovered when applied to experiments in more natural conditions
such as the mouse gut (Barroso-Batista et al. 2014, Lescat et al. 2017) and have been found in
natural conditions (Zhao et al. 2019).

Laboratory experimental evolution is diverse, it is commonly used for fast-evolving systems that
are easily kept in the laboratory, such as for antibiotic resistance evolution (Kawecki et al. 2012,
Remigi et al. 2019), and larger organisms such as Drosophila (Burke & Rose 2009) and
Caenorhabditis (Teotónio et al. 2017). Interactions with the environment (eco-evolutionary
interactions) can be included by considering aspects of natural conditions in the laboratory, such
as the role of environmental spatial structure (Nadell et al. 2016) or the natural biotic context
(Zandbergen et al. 2021).

Field studies are more appropriate for conditions or organisms that cannot be studied in the lab,
for example because habitats are too large. In such cases, the effect of environmental
conditions on evolution can be studied with reciprocal transplant experiments (Edwards 2015) or
observations of “natural field experiments”, such as sticklebacks that have moved from marine
environments to fresh water repeatedly (Jones et al. 2012).

3. Using the mutational and fitness landscape
Though currently still out of reach, one day, it may be possible to predict the next evolutionary
step for a population using detailed knowledge of the mutation and fitness landscape for the
population in a given environment. To know what variation is available to a population, we need
to know the single step mutational landscape (the probability of each mutation to occur) and the
effect of these mutations on the fitness of the organism (fitness landscape). Currently, limited
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information on the mutational landscape might already inform evolutionary predictions (e.g.,
knowledge of epistasis for key mutations can predict evolutionary pathways (Salverda et al.
2011)).

Obtaining the single step mutational landscape with the accompanying fitness effects is a hard
problem given the sheer scale of it. Even if we only focus on a single mutational step, and
assume that the environment is stable, the number of possible mutations is very high (~>10^9 in
eukaryotes) which makes it hard to determine the fitness effect for each mutation. Several
approaches have been used to try and tackle parts of this problem, by focussing on small
genome viruses (Tisthammer et al. 2020), one gene (Lee et al. 2018), on a small metabolic
pathway (Kemble et al. 2020) or using mutation accumulation experiments (Sane et al. 2018).
For any prediction to be relevant, we need to take into account changing environments and
multiple mutations and their interactions (epistasis), although there is some indication that
environmental change does not change the fitness landscape completely (Vos et al. 2018).
Nevertheless, progress has been made through a combination of two approaches: the statistical
approach where measured fitness effects are correlated with specific mutations (top-down)
(Wang et al. 2018) and a mechanistic approach to predict by reconstructing the
genotype-phenotype-fitness map (bottom-up) (de Vos et al. 2015). For instance, all the epistatic
interactions between mutations affecting the expression of two genes in a linear metabolic
pathway were resolved with a mechanistic perspective taking into account the flux in the
pathway, the toxicity of the intermediate metabolite and the protein expression cost (Kemble et
al. 2020). At a more integrated level, the well-established polarity network in budding yeast was
predictive of mutation effects (Daalman & Laan 2020). Both approaches have their own
advantages and disadvantages, and in most cases both approaches will need to be combined
to make the best prediction.

4. (Microbial) metabolic and growth models
In many environments, selection on microorganisms is related to metabolism and growth, and
therefore we can predict their evolution using metabolic and growth models. These models
come in different levels of detail. A simple phenomenological model can predict fitness increase
(Wiser et al. 2013) and a more detailed model with intracellular ‘macro’-reactions can be used to
predict antibiotic resistance evolution (Pinheiro et al. 2021), or overflow metabolism (Molenaar
et al. 2009, Wortel et al. 2016). Much more detailed models include genome-scale metabolic
models (GEMs, current status in (Gu et al. 2019)), metabolism and expression models (ME
models, (O’Brien et al. 2013)), resource balance analysis models (RBA models, (Goelzer et al.
2015)) and the most extensive whole cell models (Karr et al. 2012). Flux Balance analysis (Orth
et al. 2010) can be used to predict fluxes that lead to optimal growth, constrained by measured
maximal fluxes, in GEMs, and therefore as a prediction of evolution (in E. coli (Schuetz et al.
2007) and Lactobacillus plantarum (Teusink et al. 2009)). To improve predictions, proteome and
kinetic constraints can be added (Sánchez et al. 2017, Chen & Nielsen 2021), or detailed
descriptions of protein-metabolite dynamics can be incorporated at the expense of decreasing
the model size (Wortel et al. 2018). GEMs can also be used to predict how knock-outs of
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specific enzymes affect growth and product formation (Du et al. 2018), such as in the example
in Box 1.

5. Population-genetic models
Population-genetic models are models that keep track of the genetic status (often at one or a
few loci) of an entire population. Population-genetic models are used to predict the evolutionary
dynamics of gene-drive systems. Box 1 has more information about gene drive systems, but
briefly, these systems are designed to aid the rapid spread of a new allele in a population (Fig.
3D). Unckless et al. used a population-genetic model to predict the evolutionary dynamics over
time of a CRISPR/Cas9 gene drive system (Unckless et al. 2017) . In this model the frequencies
of three alleles at one locus are followed over time. The alleles are (1) the wildtype allele
(which is susceptible to the gene drive system), (2) the driver allele (which can convert the
wildtype allele into a driver allele and may come with a fitness cost, in particular when the gene
drive is used to control a population) and (3) a resistant allele. The resistant allele can be
created from the wildtype allele by mutation and cannot be converted to the driver allele. The
model follows a population of individuals that is initially largely wildtype, and in which a driver
allele spreads (due to its non-Mendelian inheritance). If a resistant allele is present in the
population (from standing genetic variation or due to new mutations), it becomes highly
beneficial once the driver allele is common in the population. Ultimately, the model predicts
when the resistant allele will stop the spread of the gene drive construct.

One interesting complexity which was included in the model by Unckless et al. is that the
CRISPR/Cas9 gene drive system itself is mutagenic, because the cuts it makes in
chromosomes are often repaired by the non-homologous end-joining pathway which leads to
mutations. The population-genetic model showed that if we want gene drive systems to be
successful, we need to either reduce the rate at which resistance alleles are created, or we
need to drastically increase the cost of resistance. Both of these methods have now
successfully been used in experimental populations (Noble et al. 2017, Champer et al. 2020).

6. Quantitative genetics and the breeder’s equation
The field of quantitative genetics was developed in close association with animal and plant
breeders (Fig. 3E). In situations where the focus is on altering one or a few phenotypes, over
short timescales and in relatively controlled environments, it has achieved great predictive
success. For example, plant-breeding programs that are designed to improve crop yield focus
on creating variable populations of hybrids and selecting for plants with the highest yield (under
normal or stressed conditions) (Cooper et al. 2014, Gaffney et al. 2015, Masuka et al. 2017).
Thanks to quantitative genetics, it is well understood that faster improvements will be attained
when there is either more genetic variation to start with, or stronger selection. Specific
predictions are achieved through the application of general statistical tools, often under simple
assumptions of polygenicity and additivity (the infinitesimal model), to large sample sizes
(Barton et al. 2017).
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While application of the ‘Breeder’s equation’ to predict the response of single traits, from their
heritability and a defined selection differential, has yielded encouraging results (Walsh & Lynch
2018), p. 607), multivariate selection often fails, even in the controlled environment of the
laboratory (Milocco & Salazar‐Ciudad 2020, Rouzic et al. 2020) reviewed in (Roff 2007)). In the
wild, our aspirations must currently be limited to a number of exceptional, closely-studied
systems such as the red deer on the Isle of Rum in Scotland (Bonnet et al. 2019), Soay sheep
on St Kilda island (Clutton-Brock et al. 1991), and bird populations such as great and blue tits
(Charmantier et al. 2008, 2014, 2016).

7. Epidemiological models (SIR models)
Classical SIR models are used to model the spread of an infectious agent in a population with
susceptible, infected and recovered individuals. When we include the possibility of the pathogen
to evolve (e.g., changing virulence or infection probabilities), we can predict the spread of an
evolving infectious agent (Gordo et al. 2009). This type of model has been applied to modeling
of influenza evolution (Boni et al. 2006).

In the most simple case, evolution in SIR models can be modeled by including two or more
versions of the pathogen with different parameters such as the replication number or
transmission probability. Such models are used for the SARS-CoV-2 pandemic to predict case
numbers in the near future and the spread of new variants. In early 2021, two main virus
variants affected the predictions of cases in the near future in Europe: the “wildtype” strain and
the alpha variant. In many locations, a simultaneous decline of the wildtype virus and increase
of the alpha variant resulted in an initial reduction of total cases, followed by an increase (Fig.
3F). When enough sequencing data was available and R0 was known for both variants, this
U-shaped pattern of cases over time could accurately be predicted. When predictions are made
further into the future, they need to account for the possibility that new, currently unknown,
variants will emerge (Cobey 2020, Day et al. 2020, Kissler et al. 2020).

8. Species distributions across space and environmental
conditions
Forecasting biodiversity responses to climate change are generally done through species
distribution models, which include niche, envelope and bioclimatic models (Waldvogel et al.
2020). These models have been used in so-called rewilding, i.e. conservation efforts that
include ecological restoration and reintroduction of predators and keystone species. However,
species distribution models usually do not include intraspecific variation, adaptive plasticity and
evolutionary potential (Jay et al. 2012, Fitzpatrick & Edelsparre 2018), and therefore greatly
underestimate species range dynamics. Alternative models that include genomic data and
evolutionary responses have been developed to predict the (potential) range expansion of
Aedes aegypti mosquitoes transmitting dengue virus (Kearney et al. 2009), to predict coral
adaptation to future ocean warming (Bay et al. 2017) and to predict future population declines of
yellow warblers (Setophaga petechia) and to guide effective mitigation efforts for these birds
(Bay et al. 2018). Using genomic data from a species combined with community-level modeling,
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the genomic variation of natural populations that is related to environmental variables can be
obtained (Fitzpatrick & Keller 2015). This information can then be used to predict how
vulnerable populations are to environmental change, such as climate change.

9. Multi-scale evolutionary modeling
Predictions to test fundamental assumptions of evolving systems often require predictions over
very long timescales. These predictions are complicated by the fact that the local mutational
landscape changes with the accumulation of many new mutations, and the genotype-phenotype
map changes as evolutionary innovations occur. Studying long-term evolution therefore requires
models in which the genotype-phenotype map can evolve. An evolvable genotype-phenotype
map can be achieved by including more than one level of organization in a model and allowing
for the evolution of traits at multiple spatiotemporal scales, leading to multi-scale evolutionary
models.

Examples of multi-scale models are: the coupling of large gene regulatory networks to
tissue-level patterning, which have been used for hindcasting the order of evolutionary
innovations in bilateral animals (Vroomans et al. 2016), and estimating the likelihood that
mutations increase morphological complexity (Hagolani et al. 2021); models of genome
evolution (Cuypers & Hogeweg 2012), which predict that genomically complex ancestors
primarily adapted through gene loss during major radiation events (Deutekom et al. 2019); and
agent based models with rudimentary genomes, which predict emergent selective forces that
can drive major evolutionary transitions (Colizzi et al. 2020). Multi-scale models can also
generate predictions for clinically relevant evolutionary problems, such as HIV evolution
(Doekes et al. 2017) or tumor progression (Szabó & Merks 2017).

A different scale on which selection can act, is at the level of the community (Doulcier et al.
2020, Chang et al. 2021). Predicting evolution at the level of communities is a newly emerging
field with possible applications in medicine, biotechnology and agriculture. A promising
application is for microbial communities that degrade hazardous compounds.

Multi-scale models are also used to study the predictability of evolution. This may either be done
directly, e.g., to determine under what conditions evolution is predictable (Meijer et al. 2020),
and show that although evolutionary paths and detailed characteristics can be hard to predict, in
some cases population level traits are predictable (van Dijk et al. 2019). More indirectly, they
can predict properties of the evolutionary landscape that affect predictability (see Chapter 4).
E.g., common predictions of multi-scale models are that ruggedness and smoothness coexist in
high dimensional fitness landscapes (e.g. arising from many-genes interactions), and the
distribution of fitness effects is biased to high neutrality and high lethality, but with few
intermediately deleterious mutants (Hogeweg 2012).
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10. Machine learning
In cases where large amounts of data on repeated evolutionary trajectories in the past are
available, machine learning approaches are likely to become increasingly important for
predicting evolution. However, depending on the particular machine learning approach taken,
these methods may or may not increase our understanding of the underlying evolutionary
forces. An important limitation for using machine learning to make predictions is that it requires
data from a very similar situation because the predictions can usually not be extended to novel
situations beyond the data set used for training, in contrast to mechanistic models. One
interesting example of machine learning for evolutionary predictions is a study on experimental
evolution using the integration of numerous evolve and resequence experiments with E. coli.
The researchers developed a predictor of the genes that will be modified in the course of
adaptation, depending on the E. coli strain and the selection pressure (Wang et al. 2018). The
model could predict around one third of the mutational targets in a new but similar evolve and
resequence experiment.

Machine learning methods have also been used to predict the somatic evolution of cancer
(Caravagna et al. 2018, Gerhauser et al. 2018) and success of influenza virus variants (Hayati
et al. 2020). A particularly promising future direction is the ability for machine learning methods
to combine increasingly complex cancer genomic data with data on transcriptome, epigenome
and advanced imaging to guide precision medicine (Gerstung et al. 2020).

4. Predictability

1. What makes evolution more or less predictable?
Some evolutionary systems are more predictable than others. Broadly speaking, the
predictability of evolution increases with the strength and efficiency of selection relative to
genetic drift, it increases with increasing population size and it decreases with the noise
introduced by the availability of variants or mutations (that is, the number of directions evolution
could move towards). It is worth imagining a most predictable scenario, when only some
mutations are likely to happen in a population (mutation bias), and only one of those mutations
is highly beneficial (narrow distribution of fitness effects, evolution can only go one direction). If,
in addition, the population is large, the environment is constant in space and time, and the
mutation supply is high, then the only available beneficial mutation is guaranteed to occur and
increase in frequency.

In this predictable scenario, the fitness increase of the population, and possibly the increase in
population size, can be accurately predicted with a deterministic model. In addition, the
mutational pathway is also highly predictable because only one strongly beneficial mutation is
available. In reality, there are many reasons why predictability is usually much lower: the
mutation supply may be low (stochastic waiting time for a successful beneficial mutation),
multiple mutations with different beneficial effects may occur (wider distribution of fitness
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effects), fitness effects may be influenced by interactions with other mutations (linkage, epistasis
and pleiotropic effects), the population may be small (allele frequencies affected by drift), and
the environment may change. Predictability may also be affected by sex, recombination (or lack
thereof), species interactions and feedback loops, though we will not discuss this in detail.

The predictability of evolution can be studied most easily in experimental evolution studies, and
many such studies have indeed focused on the predictability (or repeatability) of evolution (e.g.,
(Bull & Molineux 2008, Sackman et al. 2017, Lind 2019, Schenk et al. 2021). Predictability (in
the sense of repeatability) is also studied in the context of parallel or convergent evolution in
natural systems. Examples of this approach include the emergence of drug-resistant pathogens
in different patients (Lieberman et al. 2011, Feder, Pennings, et al. 2021), and herbicide
resistance in different species or geographic areas (Kreiner et al. 2019, Hawkins & Fraaije
2021).

2. Mutational supply and mutation bias
We first consider the influence of mutational supply and mutation bias. Mutational supply is the
total number of mutations that occur in a generation or unit of time in a population, determined
by the population size and the mutation rate. Mutation bias on the other hand is the difference in
mutation rates at classes of genomic sites. In general, high mutational supply and strong
mutational bias both increase predictability of evolution, both in terms of the mutational path
taken and in terms of fitness increase (Stoltzfus & Yampolsky 2009, Storz 2016, Storz et al.
2019).

When the mutational supply is high, that is many mutations occur every generation, then the
mutation with the highest selection coefficient will likely fix in the population either because it
starts increasing in frequency first or because it outcompetes other mutations in a process
called clonal interference (Gerrish & Lenski 1998, Schenk et al. 2021). For example, (Feder,
Pennings, et al. 2021) show that in 19 of 20 patients infected with HIV and treated with a single
drug (3TC), drug resistance in these viral populations evolves quickly through exactly the same
mutation (M184V) in the reverse transcriptase gene, even though the M184I mutation usually
occurs first (Keulen et al. 1997).

When mutational supply is weaker, mutation biases play an important role. Mutational biases
exist in every genome. For example, mutation rates may be higher at CpG sites in eukaryotes
(Duncan & Miller 1980), and transition mutations can be up to ten times more common than
transversion mutations in viral genomes (Mansky & Temin 1995). Theory predicts that in the
absence of selection (i.e., under neutrality), mutation bias is the only driver of parallel evolution
(Kimura 1983). But even when selection occurs, a strong mutational bias reduces the spectrum
of mutations available for selection, and should therefore increase predictability. Somewhat
counter-intuitively, when selection is very strong for multiple possible mutations, mutation bias is
again as important as it is under neutrality (Stoltzfus 2021). An elegant study on adaptation to
high altitudes in birds found parallel evolution, in part due to mutation bias at CpG sites (Storz et
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al. 2019). In a wide range of taxa, such biases at least partly explain parallel genetic adaptation
(Stern & Orgogozo 2008, Bailey et al. 2017, 2018, Stoltzfus & McCandlish 2017).

In sufficiently small populations where beneficial mutations are substituted one by one (i.e. the
strong-selection, weak-mutation regime), variation in both the mutation supply rate and fitness
effects of mutations contribute to the probability that a mutation occurs and fixes in the
population (Orr 2005, Storz 2016). This is because when highly beneficial mutations are
under-sampled due to the existing mutational bias, other smaller-effect but more frequent
mutations may fix instead. Such a pattern was observed in replicate evolving populations of
bacteriophage genotypes (Sackman et al. 2017) where the mutation with the largest fitness
effect was not the one that reached fixation most often, because its mutation rate was lower
than that of other mutations with smaller fitness effects. In larger populations, when mutational
supply is high so that multiple beneficial alleles are present simultaneously (i.e., the clonal
interference regime), selection bias is expected to dominate over mutation bias, and fix the most
beneficial mutations largely independent of their mutation rate (Szendro et al. 2013, Bailey et al.
2017, Pennings et al. 2020, Pinheiro et al. 2021).

3. Distribution of fitness effects (DFE) of mutations.
The distribution of fitness effects of new mutations tells us what percentage of mutations have
what fitness effect. While most mutations are deleterious or neutral in most populations, it’s the
distribution of beneficial fitness effects that is usually of greatest importance in the dynamics of
adapting populations. If there exists only one or a few potential mutations with a large fitness
effect, it makes the mutational path of an evolving population more predictable; but at the same
time, if the mutational supply is low, having only a few potential large effect mutations means
that the waiting time for one of these mutations to occur may be long, making the increase in
fitness per time unit unpredictable (Orr 2005).

The effects of the shape of the DFE on predictability have largely been addressed in theoretical
work assuming strong-selection weak-mutation conditions, with a focus on beneficial mutations
driving adaptive evolution. Using extreme value theory, it has been shown that regardless of the
specific shape of the entire DFE (i.e. including deleterious, neutral, and beneficial mutations),
there will always be many more small than large-effect mutations. This reduces predictability
because the more numerous small-effect mutations may collectively have a similar fixation
probability compared to the small set of large-effect mutations (Joyce et al. 2008).

Studies that directly test the fitness effects of beneficial mutations and characterize their
distribution tend to find exponential or exponential-like right-truncated distributions (reviewed in
(Bataillon & Bailey 2014). A study on bacteriophages (Sackman et al. 2017) experimentally
quantified the fitness effects of new mutations and then used the shape of the quantified DFE
and number of beneficial mutations to predict the probability of parallel evolution (eqn 37 in
(Joyce et al. 2008)), comparing those estimates to observed measures of parallel evolution
within the same system. Encouragingly, these authors found that (1) their estimates of the
probability of parallel evolution fell within the 95% confidence intervals for observed parallel
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evolution measures, and (2) including the DFEs shape parameter improved estimates, providing
support for the idea that DFEs are important drivers of evolutionary predictability.

4. Epistasis
Our discussion above implicitly assumed that the effects of mutations are independent of each
other, and that adaptation primarily occurs via single, large-effect, beneficial mutations.
However, in reality, mutations are not independent and the interactions between mutations
(epistasis) introduce ruggedness in fitness landscapes. Generally speaking, epistasis reduces
predictability, because even if fitness effects are measured in one genetic background we don’t
know the effects in another background (Milton & Tokuriki 2016).
However, there are interesting nuances; e.g., when epistatic interactions change the sign of
mutational effects from beneficial to deleterious or vice versa, a condition referred to as sign
epistasis (Weinreich et al. 2005). A seminal study on the antibiotic resistance enzyme TEM-1
β-lactamase showed that sign epistasis can strongly reduce the number of mutational pathways
along which a population can evolve towards higher fitness (Weinreich et al. 2006). In this
sense, sign epistasis increases the predictability of evolutionary trajectories. However, sign
epistasis can also lead to fitness landscapes with multiple peaks (Poelwijk et al. 2011), which
means that populations can end up moving towards different fitness peaks depending on which
mutation fixes first, thus decreasing the predictability of evolution. Moreover, biophysical models
of high-dimensional fitness landscapes (with many loci) show that epistasis and neutral
pathways can coexist (Huynen et al. 1996, Ciliberti et al. 2007). This results in low long-term
predictability at the sequence level, but higher predictability of some features of the evolutionary
trajectory, such as the presence of punctuated equilibria and the evolution of mutational
robustness.

5. Evolutionary control

1. Evolutionary control needs predictions
Evolutionary control is the alteration of an evolutionary process with a specific purpose. Control
can either suppress evolution, e.g., to prevent pathogens evolving drug resistance, or facilitate
evolution, e.g., to increase the range of a species to avoid extinction. There are general
measures to achieve these goals, but measures can be more targeted if we can predict their
effects on evolution.

Using predictions for control requires an extension of the scope of the prediction: we have to
predict not only the evolutionary process under natural conditions, but also its response to
specific control interventions. Important applications of evolutionary control are medical
interventions against evolving human pathogens such as HIV (Lässig & Mustonen 2020). The
case of HIV shows that predictions don’t have to be very precise in order to allow some control.
When triple-drug therapy became available for HIV patients in the 1990s, the prediction – based
on a mathematical model – was that it would slow down the evolution of drug resistance,
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reducing the progression to AIDS and saving lives. Even though the model that was used wasn’t
entirely correct, the high level predictions held, and many lives were saved (Perelson & Nelson
1999, Rocheleau et al. 2018, Feder, Harper, et al. 2021).
In this section we will describe several examples of evolutionary control, where predictions are
used or could prove beneficial to improve control measures.

2. Health measures during epidemics influence evolution
For epidemics, public health interventions that aim to reduce transmission and therefore
infections are aimed to reduce morbidity and mortality. However, they also reduce the amount of
replicating pathogen in the population and can therefore change the evolutionary dynamics of
the pathogen. For example, in the case of SARS-Cov2, it is thought that public health measures
like physical distancing and vaccination will reduce the population size of the virus and therefore
the rate at which new strains emerge. This means that vaccination campaigns and physical
distancing rules can be seen, at least in part, as an evolutionary control measure.

3. Preventing or reversing antibiotic resistance in bacterial
pathogens
Increasing rates of antibiotic resistance threaten the efficacy of this mainstay of treatment for
bacterial disease. Because the discovery and development of novel antimicrobial agents lags
behind the rate of resistance evolution, newer approaches that focus on antimicrobial
stewardship have emerged whose aim is to reverse or prevent resistance evolution to existing
drugs (Read & Woods 2014, Nichol et al. 2015, Perron et al. 2015, Andersson et al. 2020).
These ideas, which can be implemented for individuals or at the population level in a hospital or
agricultural setting, fundamentally rely on an accurate, empirical understanding of antimicrobial
resistance evolution and spread. Two broad categories of evolutionary predictions to inform
therapeutic decisions can be envisioned: one to avoid a specific outcome and another to
promote one.

For example, several models and experiments have supported the intuitive predictions that
combination therapies decrease the likelihood of resistance evolution compared to
monotherapy. First, combination therapies increase the rate of pathogen decline, limiting the
time window for de novo resistance mutations to occur. Second, they require resistance
mutations in multiple targets (though see (Feder, Harper, et al. 2021). Combination therapies
encompass a wide range of approaches: using multiple antimicrobial agents simultaneously
(e.g. antibiotic-antibiotic, antibiotic-adjuvant, antibiotic-phage or phage cocktails); antibiotic
mixing, that is, random allocation of different antibiotics for different patients in the same hospital
ward; and implementing temporally alternating therapies including antibiotic cycling (population
level) and sequential therapy (individual level) (Sarraf-Yazdi et al. 2012, Abel zur Wiesch et al.
2014, Nichol et al. 2015, Yen & Papin 2017, Tyers & Wright 2019).

More interesting are approaches that would be used to drive a particular outcome. These are
based largely on known epistatic or pleiotropic effects of resistance mutations. Resistance
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mutations are typically associated with fitness costs, and several authors have promoted
treatment strategies designed to maximize these costs, thus maximizing the probability that
these strains are replaced once antibiotic selection is relaxed (Andersson & Hughes 2010).
Interactions between resistance mutations can also be used to exploit drug synergies, thereby
driving faster rates of population decline in the pathogen. Finally, a recent strategy is based on
the idea that resistance to a given drug pleiotropically increases susceptibility (i.e. causes
collateral sensitivity) to a second drug (Sommer et al. 2017). Knowledge of collateral sensitivity
could help choose drugs to be used sequentially: if resistance to one drug evolves, it
concomitantly increases the efficacy of the other one. Note however that epistatic effects (when
a mutation’s effect depends on the genetic background) can make it harder to predict, and thus
use, collateral sensitivity (Barbosa et al. 2019, Hernando-Amado et al. 2020).

4. Insect resistance to transgenic plants
Evolutionary predictions have been used to guide the deployment of the most successful
transgenic plants designed to protect crops against insect damage. Cotton, maize, and other
crops have been transformed with the genes for insecticidal protein toxins from the bacterium
Bacillus thuringiensis (Bt) and have been remarkably successful as an alternative to sprays with
chemical insecticides (Tabashnik et al. 2013). From the beginning, the evolution of insect
resistance to Bt toxins was anticipated and deployment strategies were deliberately designed to
minimize its spread. For example, toxins were chosen for which resistance was known to be
recessive, and for which standing genetic variation for resistance was shown to be low. This
was done because population genetic models predict that evolution will proceed more slowly for
recessive alleles or when alleles are rare. Population genetic models of natural selection were
also used to predict how soon resistance would evolve, based on assumptions about the
genetics of resistance, the strength of selection, pest dispersal among Bt and non-Bt crops, and
other genetic and ecological factors (Roush et al. 1998). Strategies based on these predictions
were mandated by governmental regulatory agencies, supported by the agricultural
biotechnology industries responsible for the transgenic plants, and adopted by growers.
Retrospective analysis of the efficacy of these strategies has shown that they were more
successful when more of the underlying assumptions were valid in the field, and when grower
compliance was high (Tabashnik et al. 2013). This is probably the most successful test of the
performance of evolutionary predictions in modern agriculture.

5. Prevention of resistance to gene drives
Gene drive systems use CRISPR/Cas9-based genetic constructs to force the spread of a trait
into a population (see Box 1). These systems are being developed to, one day, change wild
populations (e.g., make mosquitoes resistant to malaria), but the target species can evolve to
become resistant to the drive allele. Population genetic methods are used to predict how fast
resistance would evolve against such a system and to design resistance-proof systems. One
gene drive system is a so-called homing drive, in which the gene drive constructs cleave target
sequences that are then repaired by copying the gene drive construct (using homologous
recombination), which leads to an increase in the frequency of the gene drive construct in the
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population. Resistance to such gene drive systems can evolve when the cut that is made by the
gene drive construct is repaired by the non-homologous end-joining pathway. This is because
end-joining often leads to changes in the target sequence, which means that the drive construct
can no longer cleave that sequence (Champer et al. 2020, Gomulkiewicz et al. 2021). When
resistance has thus evolved, drive construct can no longer spread and may go down in
frequency if it comes with a fitness cost.

Because the evolution of resistance to a gene drive element is a key obstacle to deploying gene
drive systems, research is focused on evolutionary control by reducing the rate of evolution of
resistance (Unckless et al. 2017). The susceptibility of a gene drive construct to resistance can
be reduced by (a) increasing the number of sites at which the gene drive construct can cut
(Champer et al. 2020) or by (b) introducing a cost to resistance by targeting the gene drive to an
essential gene (Noble et al. 2017). Predictions have been validated by laboratory experiments:
several groups have shown that gene drives with multiple guide RNAs (which target multiple
sites), or that target an essential gene, can spread in a population for much longer before
resistance evolves (Kyrou et al. 2018, Champer et al. 2020, Kandul et al. 2021). In an important
example of successful evolutionary control – at least in the lab – researchers from Imperial
College London were able to create a gene drive system that targeted an important fertility gene
(doublesex) in 2018. With this gene drive system no resistance evolved and the experimental
mosquito populations all went extinct as hoped and predicted (Kyrou et al. 2018).

6. Preventing extinction by promoting evolution
One case where we want to promote evolution is to rescue a species from extinction. It is widely
thought that lack of genetic variation increases extinction risk. For example, the Tasmanian devil
had very low genetic variation and its population size was severely reduced by an infectious
cancer (Hendricks et al. 2017). At the same time, loss of habitat, loss of dispersal opportunities
and decrease in population size can lead to lower genetic variation in a species leading to an
“extinction vortex” (Olivieri et al. 2015). The main method of promoting adaptation to a changed
environment is therefore by increasing genetic diversity, as genetic diversity has shown to be
beneficial for adaptation and rescue (Hughes et al. 2008, Agashe 2009, Agashe et al. 2011).
Maintaining genetic variation also plays a role when breeding programs are used to rescue a
population (Ebenhard 1995). Increasing genetic diversity in endangered populations, termed
genetic rescue, is a promising intervention, but whether it predictably leads to increases in
population sizes to prevent extinction remains to be seen (Bell 2017).
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Box 1: Examples

1. SARS-CoV-2
SARS-CoV-2, a coronavirus that was first detected infecting humans in late 2019, is a source for evolutionary
predictions at the phenotypic and genetic level. At first, the main aim was to predict total case numbers. Next, when
multiple strains arose, the dynamics of different strains became important (see Fig. 3F). In the longer term, and
especially when vaccines came into play, it became important to predict how the phenotype and also the genotype of
the virus changes. It is common for viruses to adapt further after a host switch. Using SIR models, predictions for
traits under selection can be made. The strongest selection is expected to be on increased transmission, whereas
weaker selection is predicted on other disease life-history traits, such as the lengthening of the pre-symptomatic
case, decrease of asymptomatic disease (because asymptomatic disease seems to account for lower number of new
cases) and decreased virulence. The conclusion is that direct selection on virulence is very weak, so if this trait
changes it is most likely an effect of pleiotropy. But the pleiotropic effects are not well understood which makes it hard
to predict how virulence will evolve. At the genotypic level, analyzing different coronaviruses, (Armijos‐Jaramillo et al.
2020) found largely purifying selection on the spike protein (which the virus uses to enter host cells). However, they
also identify a few positions where they expect potentially beneficial mutations to occur, information that can be used
to assess if observed mutations are indeed adaptive and could perhaps be taken into account for vaccine
development.

The extremely high global prevalence of this virus as well as the recent host change and change in selective
pressures (such as with vaccines) as well as the unprecedented scale of data that is available, make it possible to
quickly test the accuracy of many predictions. As the new variants in 2021 mostly increased transmission, the
phenotypic predictions can be deemed accurate, although the lack of a timeline in the predictions make it difficult to
define accuracy. For the genetic changes, the predicted positions where mutations were expected indeed seems to
be borne out in the new variants (Harvey et al. 2021).

2. Sustainable product formation by microorganisms
Microorganisms can produce (bio)chemical compounds sustainably. The major challenge is that compound
production diverts resources from growth, and therefore the organisms are likely to evolve reduced product formation.
We can predict in which cases evolutionary loss of product formation is least likely, for example when product
formation is coupled to biomass production. Computational techniques that use genome-scale metabolic models can
also predict which gene knock-outs couple product formation to biomass, which should lead to increased stability of
product formation (Du et al. 2018). These predictions were applied for formate production by cyanobacteria.
Experimental validation showed that under growth coupling, no decrease of product formation occurred within a
month, whereas without growth coupling formate production decreased after days (Du et al. 2019).

3. Adaptation of natural populations
Ideally, we want to be able to predict which species or populations can adapt to changing conditions and which will be
threatened with extinction, to plan our conservation efforts most efficiently. These types of predictions are difficult to
make, but four approaches are taken to enable forecasting of future population states. (1) Apply a certain selection
pressure in the lab and observe the adaptive potential (e.g. under size selective harvesting (Uusi‐Heikkilä et al. 2015)
or higher temperatures (Kellermann et al. 2009, Morgan et al. 2020)). (2) Similarly, species can be transplanted to
different habitats and their adaptation monitored ((Colautti & Barrett 2013) and see (Edwards 2015) for a review). (3)
We can determine if ongoing evolution has already led to adaptive change (e.g. a recent metaanalysis of evolutionary
adaptation of birds to climate change showed that it is unlikely that adaptation will rescue populations (Radchuk et al.
2019); and contrary to predictions it does not seem that Atlantic Cod has adapted to fishing (Pinsky et al. 2021)). (4)
We can use species distribution models along with genomic information (Hoffmann et al. 2015). Predictions for the
last type have been made for the dwarf birch (Borrell et al. 2020), oaks (Rellstab et al. 2016) and the yellow warbler
(Bay et al. 2018).
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Approach (1) is difficult or impossible and time-consuming for many species and it remains to be seen how well these
predictions can be extrapolated to natural systems. The latter problem is reduced in approach (2). Approach (3) can
only be applied for changes that are already happening and needs a large amount of long-term data on individuals.
Finally, approach (4) has usually yielded very weak correlations. Therefore, predicting which species may adapt to
novel environmental conditions (e.g. rapid climate change) remains a big challenge.

4. CRISPR-based Gene drives
Gene drives or gene drive constructs are a special type of segregation distorter that use the CRISPR/Cas9 gene
editing technology. Under Mendelian expectations, each gamete has a 50% chance to carry the allele that came from
one parent and 50% chance to carry the allele that came from the other parent. One type of gene drives are called
homing gene drives. They use a kind of copy-paste mechanism that distorts the 50-50 rule and can be present in
many more gametes, which then leads to offspring that inherits the gene drive allele at a rate much greater than 50%.
This works as follows: when the gene drive construct is initially present in the heterozygous state in a cell, it can
cleave a genomic target site in the chromosome that doesn’t carry the construct. This cut then induces the cell to
repair the damage by copying the drive sequence into the damaged chromosome. The result is that the cell now has
two copies of the gene drive allele. In this way, the gene drive construct can rapidly spread in the germline and
therefore in the population. When the gene drive system is linked to an allele of interest (the “payload”), the
transmission bias forces the spread of that allele. While CRISPR/Cas gene drives are not yet used outside the
laboratory, there are plans to use this technology in mosquitoes and other species that cause harm to humans.

Evolutionary predictions at two different levels are of interest here: 1) how fast will the drive allele spread in the
population, and 2) when will resistance to the gene drive evolve and spread? The first is a fairly straightforward
application of existing population genetic and population dynamic models, with an additional parameter for
non-Mendelian segregation. However, in early experiments, the populations almost always became resistant to the
gene drive element. The second level of prediction is therefore possibly more important: how fast will resistance
evolve (Unckless et al. 2017, Dhole et al. 2020, Gomulkiewicz et al. 2021)?

5. Influenza
One of the best known examples of evolutionary predictions is predictions of which influenza strains will be common
the next season, as a basis for vaccine development. Two main methods, that can also be combined, are used to
make these predictions: genealogical trees and molecular properties of the virus (Morris et al. 2018). The first method
uses data from recent clinical samples and makes a phylogenetic tree of these strains. The “bushy” parts that have a
lot of recent diversification are the expected genotypes that will dominate next year (Neher et al. 2014). The second
method uses specific molecular details of virus attachment to narrow down the entire genotype-fitness map to a short
stretch of base pairs. From this short section of the HA protein, the physics of protein stability and binding to the
human antibodies sum up to the fitness of the virus particle (Łuksza & Lässig 2014). Even though these methods are
in use, success rates are still limited and further improvement would have a large impact on the effectiveness of
influenza vaccines. Such improvement can come from a better understanding of the genotype-phenotype map for
virus-antibody interactions, such that antigenic evolution can be predicted better from sequence data.

6. Conclusion and outlook
Evolutionary predictions are used in many fields, including infectious disease, biotechnology
and conservation biology. In some cases, the use of evolutionary models that include mutations,
selection and drift is very explicit (such as in the gene-drive example or in the influenza vaccine
predictions), whereas in other cases evolution may only be implicitly included in population size
predictions (such as for the SARS-CoV2 epidemic or predicting extinction risk for endangered
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species). In this review, we have shown how evolutionary predictions are used in many
biological sub fields. Because researchers in different subfields use different languages, it is not
always obvious that they are, in essence, doing the same thing: predicting the future state of an
evolving population. Predictions can be improved when researchers can learn and be inspired
by results from other subfields, but for this to happen, we need to use a common language. This
review is meant as a start to bridge those research communities. We believe that those who
work on preventing evolution (in biotechnology, agriculture and health) and also those who work
on promoting or steering evolution (such as in conservation biology and biotechnology) could
benefit from much more extensive communication.

Most of the theory we described in this review was featured in chapter 4 on predictability. This
reflects the relative early stage of the field, where the researchers involved focus on
understanding under which conditions evolution is more or less predictable, and which factors
drive predictability. While this has led to many relevant insights, these theoretical insights are
still far away from the applications where predictions are needed. We believe that the field could
benefit from a stronger connection between theory and applications. Specifically, the efforts that
are underway in the area of influenza research (using data and theory to predict influenza
strains to design the best vaccine) could be replicated in other situations. For example, models
could be made to predict drug resistance in a hospital over the next year, given the current state
and parameters such as antibiotic use. Also, evolutionary models could more explicitly be used
to predict population sizes for red-listed species a year from now, or to predict which tumors will
recur with resistance. By applying evolutionary methods to real life situations, we will discover
the gaps in our knowledge and contribute to making evolutionary predictions more accurate and
useful.

Finally, we expect that increasing access to genome-centered information, and the use of
modern statistical techniques, including machine learning, will improve evolutionary predictions
in amenable taxa over the next few years. However, there will be a continued need to develop
mechanistic models of evolution for various systems, for at least two fundamental reasons: (i) to
extrapolate predictions to conditions other than those used to parameterize specific models, and
(ii) to further our understanding of how evolution works. While the increasing access to
high-resolution phenotype and genotype data make it tempting to include all these details in
such models, more coarse-grained mechanistic models may allow more powerful predictions.
We hope that together, improved collaboration, a shared language, and new combinations of
methods will lead to further maturation of the field, leading to evolutionary predictions becoming
mainstream in areas such as infectious disease, conservation biology and biotechnology.

7. Data Archiving Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.



28

8. Bibliography
Abel zur Wiesch, P., R. Kouyos, S. Abel, W. Viechtbauer, and S. Bonhoeffer. 2014. Cycling empirical

antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog. 10: e1004225.
Agashe, D. 2009. The stabilizing effect of intraspecific genetic variation on population dynamics in

novel and ancestral habitats. Am. Nat. 174: 255–267.
Agashe, D., J. J. Falk, and D. I. Bolnick. 2011. Effects of Founding Genetic Variation on Adaptation

to a Novel Resource. Evolution 65: 2481–2491.
Andersson, D. I., N. Q. Balaban, F. Baquero, P. Courvalin, P. Glaser, U. Gophna, R. Kishony, S. Molin,

and T. Tønjum. 2020. Antibiotic resistance: turning evolutionary principles into clinical
reality. FEMS Microbiol. Rev. 44: 171–188.

Andersson, D. I., and D. Hughes. 2010. Antibiotic resistance and its cost: is it possible to reverse
resistance? Nat. Rev. Microbiol. 8: 260–271.

Armijos‐Jaramillo, V., J. Yeager, C. Muslin, and Y. Perez‐Castillo. 2020. SARS-CoV-2, an
evolutionary perspective of interaction with human ACE2 reveals undiscovered amino
acids necessary for complex stability. Evol. Appl. 13: 2168–2178.

Bailey, S. F., F. Blanquart, T. Bataillon, and R. Kassen. 2017. What drives parallel evolution?
BioEssays 39: e201600176.

Bailey, S. F., Q. Guo, and T. Bataillon. 2018. Identifying Drivers of Parallel Evolution: A Regression
Model Approach. Genome Biol. Evol. 10: 2801–2812.

Barbosa, C., R. Römhild, P. Rosenstiel, and H. Schulenburg. 2019. Evolutionary stability of collateral
sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa P. J. Wittkopp,
C. Pal, B. Csorgo, C. MacLean, and P. Johnsen (Eds.). eLife 8: e51481.

Barrat-Charlaix, P., J. Huddleston, T. Bedford, and R. A. Neher. 2020. Limited predictability of
amino acid substitutions in seasonal influenza viruses. bioRxiv 2020.07.31.231100.

Barroso-Batista, J., A. Sousa, M. Lourenço, M.-L. Bergman, D. Sobral, J. Demengeot, K. B. Xavier, and I.
Gordo. 2014. The First Steps of Adaptation of Escherichia coli to the Gut Are Dominated
by Soft Sweeps. PLOS Genet. 10: e1004182.

Barton, N. H., A. M. Etheridge, and A. Véber. 2017. The infinitesimal model: Definition, derivation,
and implications. Theor. Popul. Biol. 118: 50–73.

Bataillon, T., and S. F. Bailey. 2014. Effects of new mutations on fitness: insights from models and
data. Ann. N. Y. Acad. Sci. 1320: 76–92.

Bay, R. A., R. J. Harrigan, V. L. Underwood, H. L. Gibbs, T. B. Smith, and K. Ruegg. 2018. Genomic
signals of selection predict climate-driven population declines in a migratory bird.
Science 359: 83–86.

Bay, R. A., N. H. Rose, C. A. Logan, and S. R. Palumbi. 2017. Genomic models predict successful coral
adaptation if future ocean warming rates are reduced. Sci. Adv. 3: e1701413.

Bell, G. 2017. Evolutionary Rescue. Annu. Rev. Ecol. Evol. Syst. 48: 605–627.
Blount, Z. D., R. E. Lenski, and J. B. Losos. 2018. Contingency and determinism in evolution:

Replaying life’s tape. Science 362: eaam5979.
Boni, M. F., J. R. Gog, V. Andreasen, and M. W. Feldman. 2006. Epidemic dynamics and antigenic

evolution in a single season of influenza A. Proc. R. Soc. B Biol. Sci. 273: 1307–1316.
Bonnet, T., M. B. Morrissey, A. Morris, S. Morris, T. H. Clutton-Brock, J. M. Pemberton, and L. E. B.

Kruuk. 2019. The role of selection and evolution in changing parturition date in a red
deer population. PLOS Biol. 17: e3000493.

Borrell, J. S., J. Zohren, R. A. Nichols, and R. J. A. Buggs. 2020. Genomic assessment of local
adaptation in dwarf birch to inform assisted gene flow. Evol. Appl. 13: 161–175.

Bull, J. J., and I. J. Molineux. 2008. Predicting evolution from genomics: experimental evolution of
bacteriophage T7. Heredity 100: 453–463.



29

Burke, M. K., and M. R. Rose. 2009. Experimental evolution with Drosophila. Am. J. Physiol.-Regul.
Integr. Comp. Physiol. 296: R1847–R1854.

Caravagna, G., Y. Giarratano, D. Ramazzotti, I. Tomlinson, T. A. Graham, G. Sanguinetti, and A.
Sottoriva. 2018. Detecting repeated cancer evolution from multi-region tumor
sequencing data. Nat. Methods 15: 707–714.

Champer, J., E. Yang, E. Lee, J. Liu, A. G. Clark, and P. W. Messer. 2020. A CRISPR homing gene drive
targeting a haplolethal gene removes resistance alleles and successfully spreads
through a cage population. Proc. Natl. Acad. Sci. 117: 24377–24383.

Chang, C.-Y., J. C. C. Vila, M. Bender, R. Li, M. C. Mankowski, M. Bassette, J. Borden, S. Golfier, P. G. L.
Sanchez, R. Waymack, X. Zhu, J. Diaz-Colunga, S. Estrela, M. Rebolleda-Gomez, and A.
Sanchez. 2021. Engineering complex communities by directed evolution. Nat. Ecol. Evol.
1–13.

Charmantier, A., C. Doutrelant, G. Dubuc-Messier, A. Fargevieille, and M. Szulkin. 2016.
Mediterranean blue tits as a case study of local adaptation. Evol. Appl. 9: 135–152.

Charmantier, A., D. Garant, and L. E. B. Kruuk. 2014. Quantitative Genetics in the Wild. OUP
Oxford.

Charmantier, A., R. H. McCleery, L. R. Cole, C. Perrins, L. E. B. Kruuk, and B. C. Sheldon. 2008.
Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population.
Science 320: 800–803.

Chen, Y., and J. Nielsen. 2021. Mathematical modeling of proteome constraints within metabolism.
Curr. Opin. Syst. Biol. 25: 50–56.

Ciliberti, S., O. C. Martin, and A. Wagner. 2007. Robustness Can Evolve Gradually in Complex
Regulatory Gene Networks with Varying Topology. PLOS Comput. Biol. 3: e15.

Clutton-Brock, T. H., O. F. Price, S. D. Albon, and P. A. Jewell. 1991. Persistent Instability and
Population Regulation in Soay Sheep. J. Anim. Ecol. 60: 593–608.

Cobey, S. 2020. Modeling infectious disease dynamics. Science 368: 713–714.
Colautti, R. I., and S. C. H. Barrett. 2013. Rapid Adaptation to Climate Facilitates Range

Expansion of an Invasive Plant. Science 342: 364–366.
Colizzi, E. S., R. M. Vroomans, and R. M. Merks. 2020. Evolution of multicellularity by collective

integration of spatial information R. E. Goldstein and A. M. Walczak (Eds.). eLife 9:
e56349.

Cooper, M., C. D. Messina, D. Podlich, L. R. Totir, A. Baumgarten, N. J. Hausmann, D. Wright, and G.
Graham. 2014. Predicting the future of plant breeding: complementing empirical
evaluation with genetic prediction. Crop Pasture Sci. 65: 311.

Cote-Hammarlof, P. A., I. Fragata, J. Flynn, D. Mavor, K. B. Zeldovich, C. Bank, and D. N. A. Bolon.
2021. The Adaptive Potential of the Middle Domain of Yeast Hsp90. Mol. Biol. Evol. 38:
368–379.

Couce, A., and O. A. Tenaillon. 2015. The rule of declining adaptability in microbial evolution
experiments. Front. Genet. 6. Available at:
https://www.frontiersin.org/articles/10.3389/fgene.2015.00099/full [Accessed July 5,
2021].

Cuypers, T. D., and P. Hogeweg. 2012. Virtual Genomes in Flux: An Interplay of Neutrality and
Adaptability Explains Genome Expansion and Streamlining. Genome Biol. Evol. 4:
212–229.

Daalman, W. K.-G., and L. Laan. 2020. Predicting an epistasis-rich genotype-phenotype map with a
coarse-grained bottom-up model of budding yeast polarity. bioRxiv 2020.11.09.374363.

Day, T., S. Gandon, S. Lion, and S. P. Otto. 2020. On the evolutionary epidemiology of SARS-CoV-2.
Curr. Biol. 30: R849–R857.

Dhole, S., A. L. Lloyd, and F. Gould. 2020. Gene Drive Dynamics in Natural Populations: The



30

Importance of Density Dependence, Space, and Sex. Annu. Rev. Ecol. Evol. Syst. 51:
505–531.

van Dijk, B., J. Meijer, T. D. Cuypers, and P. Hogeweg. 2019. Trusting the hand that feeds: microbes
evolve to anticipate a serial transfer protocol as individuals or collectives. BMC Evol.
Biol. 19: 201.

Doekes, H. M., C. Fraser, and K. A. Lythgoe. 2017. Effect of the Latent Reservoir on the Evolution of
HIV at the Within- and Between-Host Levels. PLOS Comput. Biol. 13: e1005228.

Doulcier, G., A. Lambert, S. De Monte, and P. B. Rainey. 2020. Eco-evolutionary dynamics of nested
Darwinian populations and the emergence of community-level heredity W. Shou, P. J.
Wittkopp, W. Shou, S. Mitri, and A. Sanchez (Eds.). eLife 9: e53433.

Du, W., J. A. Jongbloets, C. van Boxtel, H. P. Hernández, D. Lips, B. G. Oliver, K. J. Hellingwerf, and F. B.
Dos Santos. 2018. Alignment of microbial fitness with engineered product formation:
obligatory coupling between acetate production and photoautotrophic growth.
Biotechnol. Biofuels 11: 1–13.

Du, W., J. A. Jongbloets, M. Guillaume, B. van de Putte, B. Battaglino, K. J. Hellingwerf, and F. Branco
dos Santos. 2019. Exploiting Day-and Night-Time Metabolism of Synechocystis sp. PCC
6803 for Fitness-Coupled Fumarate Production around the Clock. ACS Synth. Biol. 8:
2263–2269.

Duncan, B. K., and J. H. Miller. 1980. Mutagenic deamination of cytosine residues in DNA. Nature
287: 560–561.

Ebenhard, T. 1995. Conservation breeding as a tool for saving animal species from extinction.
Trends Ecol. Evol. 10: 438–443.

Edwards, C. E. 2015. Looking to the future of conservation genetics: The case for using
quantitative genetic experiments to estimate the ability of rare plants to withstand climate
change. Am. J. Bot. 102: 1011–1013.

Eyre-Walker, A., and P. D. Keightley. 2007. The distribution of fitness effects of new mutations.
Nat. Rev. Genet. 8: 610–618.

Feder, A. F., K. N. Harper, C. J. Brumme, and P. S. Pennings. 2021. Understanding patterns of HIV
multi-drug resistance through models of temporal and spatial drug heterogeneity G. H.
Perry, D. Gifford, and K. Atkins (Eds.). eLife 10: e69032.

Feder, A. F., P. S. Pennings, and D. A. Petrov. 2021. The clarifying role of time series data in the
population genetics of HIV. PLOS Genet. 17: e1009050.

Fitzpatrick, M. C., and S. R. Keller. 2015. Ecological genomics meets community-level modelling of
biodiversity: mapping the genomic landscape of current and future environmental
adaptation. Ecol. Lett. 18: 1–16.

Fitzpatrick, M. J., and A. H. Edelsparre. 2018. The genomics of climate change. Science 359:
29–30.

Fowler, D. M., and S. Fields. 2014. Deep mutational scanning: a new style of protein science. Nat.
Methods 11: 801–807.

Fragata, I., A. Blanckaert, M. A. Dias Louro, D. A. Liberles, and C. Bank. 2019. Evolution in the light of
fitness landscape theory. Trends Ecol. Evol. 34: 69–82.

Gaffney, J., J. Schussler, C. Löffler, W. Cai, S. Paszkiewicz, C. Messina, J. Groeteke, J. Keaschall, and M.
Cooper. 2015. Industry-Scale Evaluation of Maize Hybrids Selected for Increased Yield in
Drought-Stress Conditions of the US Corn Belt. Crop Sci. 55: 1608–1618.

Gerhauser, C. et al. 2018. Molecular Evolution of Early-Onset Prostate Cancer Identifies
Molecular Risk Markers and Clinical Trajectories. Cancer Cell 34: 996-1011.e8.

Gerrish, P. J., and R. E. Lenski. 1998. The fate of competing beneficial mutations in an asexual
population. Genetica 102: 127.

Gerstung, M. et al. 2020. The evolutionary history of 2,658 cancers. Nature 578: 122–128.



31

Gillespie, J. H. 1983. A simple stochastic gene substitution model. Theor. Popul. Biol. 23:
202–215.

Goelzer, A., J. Muntel, V. Chubukov, M. Jules, E. Prestel, R. Nölker, M. Mariadassou, S. Aymerich, M.
Hecker, P. Noirot, D. Becher, and V. Fromion. 2015. Quantitative prediction of genome-wide
resource allocation in bacteria. Metab. Eng. 32: 232–243.

Gomulkiewicz, R., M. L. Thies, and J. J. Bull. 2021. Evading resistance to gene drives. Genetics
217. Available at: https://doi.org/10.1093/genetics/iyaa040 [Accessed July 7, 2021].

Gordo, I., M. G. M. Gomes, D. G. Reis, and P. R. A. Campos. 2009. Genetic Diversity in the SIR Model of
Pathogen Evolution. PLOS ONE 4: e4876.

Gould, S. J. 1990. Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton &
Company.

Govaert, L., E. A. Fronhofer, S. Lion, C. Eizaguirre, D. Bonte, M. Egas, A. P. Hendry, A. D. B. Martins, C.
J. Melián, J. A. M. Raeymaekers, I. I. Ratikainen, B.-E. Saether, J. A. Schweitzer, and B.
Matthews. 2019. Eco-evolutionary feedbacks—Theoretical models and perspectives.
Funct. Ecol. 33: 13–30.

Grant, P. R., and B. R. Grant. 2002. Unpredictable Evolution in a 30-Year Study of Darwin’s
Finches. Science 296: 707–711.

Gu, C., G. B. Kim, W. J. Kim, H. U. Kim, and S. Y. Lee. 2019. Current status and applications of
genome-scale metabolic models. Genome Biol. 20: 121.

Hagolani, P. F., R. Zimm, R. Vroomans, and I. Salazar-Ciudad. 2021. On the evolution and
development of morphological complexity: A view from gene regulatory networks. PLOS
Comput. Biol. 17: e1008570.

Harvey, W. T., A. M. Carabelli, B. Jackson, R. K. Gupta, E. C. Thomson, E. M. Harrison, C. Ludden, R.
Reeve, A. Rambaut, S. J. Peacock, and D. L. Robertson. 2021. SARS-CoV-2 variants, spike
mutations and immune escape. Nat. Rev. Microbiol. 19: 409–424.

Hawkins, N. J., and B. A. Fraaije. 2021. Contrasting levels of genetic predictability in the evolution
of resistance to major classes of fungicides. Mol. Ecol.

Hayati, M., P. Biller, and C. Colijn. 2020. Predicting the short-term success of human influenza
virus variants with machine learning. Proc. R. Soc. B Biol. Sci. 287: 20200319.

Hendricks, S., B. Epstein, B. Schönfeld, C. Wiench, R. Hamede, M. Jones, A. Storfer, and P. Hohenlohe.
2017. Conservation implications of limited genetic diversity and population structure in
Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. Print 18: 977–982.

Hernando-Amado, S., F. Sanz-García, and J. L. Martínez. 2020. Rapid and robust evolution of
collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6:
eaba5493.

Hoffmann, A., P. Griffin, S. Dillon, R. Catullo, R. Rane, M. Byrne, R. Jordan, J. Oakeshott, A. Weeks, L.
Joseph, P. Lockhart, J. Borevitz, and C. Sgrò. 2015. A framework for incorporating
evolutionary genomics into biodiversity conservation and management. Clim. Change
Responses 2: 1.

Hogeweg, P. 2012. Toward a Theory of Multilevel Evolution: Long-Term Information Integration
Shapes the Mutational Landscape and Enhances Evolvability. In O. S. Soyer (Ed.)
Evolutionary Systems Biology. Advances in Experimental Medicine and Biology. pp.
195–224, Springer, New York, NY. Available at:
https://doi.org/10.1007/978-1-4614-3567-9_10 [Accessed June 18, 2021].

Hughes, A. R., B. D. Inouye, M. T. J. Johnson, N. Underwood, and M. Vellend. 2008. Ecological
consequences of genetic diversity. Ecol. Lett. 11: 609–623.

Huynen, M. A., P. F. Stadler, and W. Fontana. 1996. Smoothness within ruggedness: the role of
neutrality in adaptation. Proc. Natl. Acad. Sci. 93: 397–401.

Jay, F., S. Manel, N. Alvarez, E. Y. Durand, W. Thuiller, R. Holderegger, P. Taberlet, and O. François.



32

2012. Forecasting changes in population genetic structure of alpine plants in response to
global warming. Mol. Ecol. 21: 2354–2368.

Jones, F. C. et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature
484: 55–61.

Joyce, P., D. R. Rokyta, C. J. Beisel, and H. A. Orr. 2008. A General Extreme Value Theory Model for
the Adaptation of DNA Sequences Under Strong Selection and Weak Mutation. Genetics
180: 1627–1643.

Kandul, N. P., J. Liu, J. B. Bennett, J. M. Marshall, and O. S. Akbari. 2021. A confinable
home-and-rescue gene drive for population modification C. Desplan and P. J. Wittkopp
(Eds.). eLife 10: e65939.

Karr, J. R., J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival, N. Assad-Garcia, J. I.
Glass, and M. W. Covert. 2012. A Whole-Cell Computational Model Predicts Phenotype
from Genotype. Cell 150: 389–401.

Kawecki, T. J., R. E. Lenski, D. Ebert, B. Hollis, I. Olivieri, and M. C. Whitlock. 2012. Experimental
evolution. Trends Ecol. Evol. 27: 547–560.

Kearney, M., W. P. Porter, C. Williams, S. Ritchie, and A. A. Hoffmann. 2009. Integrating biophysical
models and evolutionary theory to predict climatic impacts on species’ ranges: the
dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 23: 528–538.

Kellermann, V., B. van Heerwaarden, C. M. Sgrò, and A. A. Hoffmann. 2009. Fundamental
Evolutionary Limits in Ecological Traits Drive Drosophila Species Distributions. Science
325: 1244–1246.

Kemble, H., C. Eisenhauer, A. Couce, A. Chapron, M. Magnan, G. Gautier, H. L. Nagard, P. Nghe, and O.
Tenaillon. 2020. Flux, toxicity, and expression costs generate complex genetic
interactions in a metabolic pathway. Sci. Adv. 6: eabb2236.

Keulen, W., N. K. Back, A. van Wijk, C. A. Boucher, and B. Berkhout. 1997. Initial appearance of the
184Ile variant in lamivudine-treated patients is caused by the mutational bias of human
immunodeficiency virus type 1 reverse transcriptase. J. Virol. 71: 3346–3350.

Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press,
Cambridge Available at:
https://www.cambridge.org/core/books/neutral-theory-of-molecular-evolution/0FF60E9F4
7915B17FFA2620C49400632 [Accessed June 1, 2021].

Kissler, S. M., C. Tedijanto, E. Goldstein, Y. H. Grad, and M. Lipsitch. 2020. Projecting the
transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368:
860–868.

Kreiner, J. M., D. A. Giacomini, F. Bemm, B. Waithaka, J. Regalado, C. Lanz, J. Hildebrandt, P. H. Sikkema,
P. J. Tranel, D. Weigel, J. R. Stinchcombe, and S. I. Wright. 2019. Multiple modes of
convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus.
Proc. Natl. Acad. Sci. 116: 21076–21084.

Kyrou, K., A. M. Hammond, R. Galizi, N. Kranjc, A. Burt, A. K. Beaghton, T. Nolan, and A. Crisanti.
2018. A CRISPR–Cas9 gene drive targeting doublesex causes complete population
suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36: 1062–1066.

Lang, G. I., D. P. Rice, M. J. Hickman, E. Sodergren, G. M. Weinstock, D. Botstein, and M. M. Desai. 2013.
Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.
Nature 500: 571–574.

Lässig, M., and V. Mustonen. 2020. Eco-evolutionary control of pathogens. Proc. Natl. Acad. Sci.
117: 19694–19704.

Lässig, M., V. Mustonen, and A. M. Walczak. 2017. Predicting evolution. Nat. Ecol. Evol. 1: 0077.
Lee, J. M., J. Huddleston, M. B. Doud, K. A. Hooper, N. C. Wu, T. Bedford, and J. D. Bloom. 2018. Deep

mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2
influenza variants. Proc. Natl. Acad. Sci. 115: E8276–E8285.



33

Lescat, M., A. Launay, M. Ghalayini, M. Magnan, J. Glodt, C. Pintard, S. Dion, E. Denamur, and O.
Tenaillon. 2017. Using long-term experimental evolution to uncover the patterns and
determinants of molecular evolution of an Escherichia coli natural isolate in the
streptomycin-treated mouse gut. Mol. Ecol. 26: 1802–1817.

Lieberman, T. D., J.-B. Michel, M. Aingaran, G. Potter-Bynoe, D. Roux, M. R. Davis, D. Skurnik, N. Leiby,
J. J. LiPuma, J. B. Goldberg, A. J. McAdam, G. P. Priebe, and R. Kishony. 2011. Parallel bacterial
evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet.
43: 1275–1280.

Lind, P. A. 2019. Repeatability and Predictability in Experimental Evolution. In P. Pontarotti (Ed.)
Evolution, Origin of Life, Concepts and Methods. pp. 57–83, Springer International
Publishing, Cham. Available at: https://doi.org/10.1007/978-3-030-30363-1_4 [Accessed
November 3, 2020].

Lind, P. A., A. D. Farr, and P. B. Rainey. 2017. Evolutionary convergence in experimental
Pseudomonas populations. ISME J. 11: 589–600.

Lind, P. A., E. Libby, J. Herzog, and P. B. Rainey. 2019. Predicting mutational routes to new adaptive
phenotypes P. J. Wittkopp (Ed.). eLife 8: e38822.

Łuksza, M., and M. Lässig. 2014. A predictive fitness model for influenza. Nature 507: 57–61.
Mansky, L. M., and H. M. Temin. 1995. Lower in vivo mutation rate of human immunodeficiency

virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol.
69: 5087–5094.

Masuka, B., G. N. Atlin, M. Olsen, C. Magorokosho, M. Labuschagne, J. Crossa, M. Bänziger, K. V.
Pixley, B. S. Vivek, A. von Biljon, J. Macrobert, G. Alvarado, B. M. Prasanna, D. Makumbi, A.
Tarekegne, B. Das, M. Zaman‐Allah, and J. E. Cairns. 2017. Gains in Maize Genetic
Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline. Crop
Sci. 57: 168–179.

Meijer, J., B. van Dijk, and P. Hogeweg. 2020. Contingent evolution of alternative metabolic network
topologies determines whether cross-feeding evolves. Commun. Biol. 3: 1–13.

Milocco, L., and I. Salazar‐Ciudad. 2020. Is evolution predictable? Quantitative genetics under
complex genotype-phenotype maps. Evolution 74: 230–244.

Molenaar, D., R. van Berlo, D. de Ridder, and B. Teusink. 2009. Shifts in growth strategies reflect
tradeoffs in cellular economics. Mol. Syst. Biol. 5: 323.

Morgan, R., M. H. Finnøen, H. Jensen, C. Pélabon, and F. Jutfelt. 2020. Low potential for
evolutionary rescue from climate change in a tropical fish. Proc. Natl. Acad. Sci. 117:
33365–33372.

Morris, D. H., K. M. Gostic, S. Pompei, T. Bedford, M. Łuksza, R. A. Neher, B. T. Grenfell, M. Lässig, and
J. W. McCauley. 2018. Predictive Modeling of Influenza Shows the Promise of Applied
Evolutionary Biology. Trends Microbiol. 26: 102–118.

Morris, S. C. 2003. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University
Press.

Nadell, C. D., K. Drescher, and K. R. Foster. 2016. Spatial structure, cooperation and competition in
biofilms. Nat. Rev. Microbiol. 14: 589–600.

Neher, R. A., C. A. Russell, and B. I. Shraiman. 2014. Predicting evolution from the shape of
genealogical trees G. McVean (Ed.). eLife 3: e03568.

Nichol, D., P. Jeavons, A. G. Fletcher, R. A. Bonomo, P. K. Maini, J. L. Paul, R. A. Gatenby, A. R. A.
Anderson, and J. G. Scott. 2015. Steering Evolution with Sequential Therapy to Prevent
the Emergence of Bacterial Antibiotic Resistance. PLoS Comput. Biol. 11.

Noble, C., J. Olejarz, K. M. Esvelt, G. M. Church, and M. A. Nowak. 2017. Evolutionary dynamics of
CRISPR gene drives. Sci. Adv. 3: e1601964.

Nosil, P., S. M. Flaxman, J. L. Feder, and Z. Gompert. 2020. Increasing our ability to predict



34

contemporary evolution. Nat. Commun. 11: 5592.
O’Brien, E. J., J. A. Lerman, R. L. Chang, D. R. Hyduke, and B. Ø. Palsson. 2013. Genome-scale models

of metabolism and gene expression extend and refine growth phenotype prediction. Mol.
Syst. Biol. 9: 693.

Olivieri, I., J. Tonnabel, O. Ronce, and A. Mignot. 2015. Why evolution matters for species
conservation: perspectives from three case studies of plant metapopulations. Evol. Appl.
9: 196–211.

Orr, H. A. 1998. THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF
FACTORS FIXED DURING ADAPTIVE EVOLUTION. Evol. Int. J. Org. Evol. 52:
935–949.

Orr, H. A. 2005. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6: 119–127.
Orth, J. D., I. Thiele, and B. Ø. Palsson. 2010. What is flux balance analysis? Nat. Biotechnol. 28:

245–248.
Pennings, P. S., C. B. Ogbunugafor, and R. Hershberg. 2020. Reversion is most likely under high

mutation supply, when compensatory mutations don’t fully restore fitness costs. bioRxiv
2020.12.28.424568.

Perelson, A. S., and P. W. Nelson. 1999. Mathematical Analysis of HIV-1 Dynamics in Vivo. SIAM
Rev. 41: 3–44.

Perron, G. G., R. F. Inglis, P. S. Pennings, and S. Cobey. 2015. Fighting microbial drug resistance: a
primer on the role of evolutionary biology in public health. Evol. Appl. 8: 211–222.

Pinheiro, F., O. Warsi, D. I. Andersson, and M. Lässig. 2021. Metabolic fitness landscapes predict
the evolution of antibiotic resistance. Nat. Ecol. Evol. 1–11.

Pinsky, M. L., A. M. Eikeset, C. Helmerson, I. R. Bradbury, P. Bentzen, C. Morris, A. T.
Gondek-Wyrozemska, H. T. Baalsrud, M. S. O. Brieuc, O. S. Kjesbu, J. A. Godiksen, J. M. I. Barth,
M. Matschiner, N. C. Stenseth, K. S. Jakobsen, S. Jentoft, and B. Star. 2021. Genomic stability
through time despite decades of exploitation in cod on both sides of the Atlantic. Proc.
Natl. Acad. Sci. 118. Available at: https://www.pnas.org/content/118/15/e2025453118
[Accessed April 15, 2021].

Poelwijk, F. J., S. Tănase-Nicola, D. J. Kiviet, and S. J. Tans. 2011. Reciprocal sign epistasis is a
necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272: 141–144.

Radchuk, V. et al. 2019. Adaptive responses of animals to climate change are most likely
insufficient. Nat. Commun. 10: 3109.

Read, A. F., and R. J. Woods. 2014. Antibiotic resistance management. Evol. Med. Public Health
2014: 147.

Rellstab, C., S. Zoller, L. Walthert, I. Lesur, A. R. Pluess, R. Graf, C. Bodénès, C. Sperisen, A. Kremer,
and F. Gugerli. 2016. Signatures of local adaptation in candidate genes of oaks (Quercus
spp.) with respect to present and future climatic conditions. Mol. Ecol. 25: 5907–5924.

Remigi, P., C. Masson-Boivin, and E. P. C. Rocha. 2019. Experimental Evolution as a Tool to
Investigate Natural Processes and Molecular Functions. Trends Microbiol. 27: 623–634.

Rocheleau, G., C. J. Brumme, J. Shoveller, V. D. Lima, and P. R. Harrigan. 2018. Longitudinal trends of
HIV drug resistance in a large Canadian cohort, 1996–2016. Clin. Microbiol. Infect. 24:
185–191.

Roff, D. A. 2007. A Centennial Celebration for Quantitative Genetics. Evolution 61: 1017–1032.
Roush, R. T., G. P. Fitt, N. W. Forrester, and J. C. Daly. 1998. Resistance management for insecticidal

transgenic crops: theory and practice. In M. P. Zalucki, R. Drew, and G. G. White (Eds.)
Pest Management - Future Challenges. University of Queensland Press, Australia.

Rouzic, A. L., C. Renneville, A. Millot, S. Agostini, D. Carmignac, and É. Édeline. 2020. Unidirectional
response to bidirectional selection on body size II. Quantitative genetics. Ecol. Evol. 10:
11453–11466.



35

Sackman, A. M., L. W. McGee, A. J. Morrison, J. Pierce, J. Anisman, H. Hamilton, S. Sanderbeck, C.
Newman, and D. R. Rokyta. 2017. Mutation-Driven Parallel Evolution during Viral
Adaptation. Mol. Biol. Evol. 34: 3243–3253.

Salverda, M. L. M., E. Dellus, F. A. Gorter, A. J. M. Debets, J. van der Oost, R. F. Hoekstra, D. S. Tawfik,
and J. A. G. M. de Visser. 2011. Initial Mutations Direct Alternative Pathways of Protein
Evolution. PLOS Genet. 7: e1001321.

Sánchez, B. J., C. Zhang, A. Nilsson, P. Lahtvee, E. J. Kerkhoven, and J. Nielsen. 2017. Improving the
phenotype predictions of a yeast genome‐scale metabolic model by incorporating
enzymatic constraints. Mol. Syst. Biol. 13. Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572397/ [Accessed April 16, 2021].

Sane, M., J. J. Miranda, and D. Agashe. 2018. Antagonistic pleiotropy for carbon use is rare in new
mutations. Evolution 72: 2202–2213.

Sarraf-Yazdi, S., M. Sharpe, K. M. Bennett, T. L. Dotson, D. J. Anderson, and S. N. Vaslef. 2012. A
9-Year retrospective review of antibiotic cycling in a surgical intensive care unit. J. Surg.
Res. 176: e73–e78.

Schenk, M. F., M. P. Zwart, S. Hwang, P. Ruelens, E. Severing, J. Krug, and J. A. G. M. de Visser. 2021.
Population size mediates the contribution of high-rate and large-benefit mutations to
parallel evolution. bioRxiv 2021.02.02.429281.

Schuetz, R., L. Kuepfer, and U. Sauer. 2007. Systematic evaluation of objective functions for
predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 119.

Sniegowski, P. D., P. J. Gerrish, and R. E. Lenski. 1997. Evolution of high mutation rates in
experimental populations of E. coli. Nature 387: 703–705.

Sommer, M. O. A., C. Munck, R. V. Toft-Kehler, and D. I. Andersson. 2017. Prediction of antibiotic
resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol. 15: 689–696.

Stern, D. L., and V. Orgogozo. 2008. The Loci of Evolution: How Predictable Is Genetic Evolution?
Evolution 62: 2155–2177.

Stoltzfus, A. 2021. Mutation, Randomness, and Evolution. Oxford University Press Available at:
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Q9fzhu4AAAA
J&sortby=pubdate&citation_for_view=Q9fzhu4AAAAJ:p2g8aNsByqUC [Accessed
February 4, 2022].

Stoltzfus, A., and D. M. McCandlish. 2017. Mutational Biases Influence Parallel Adaptation. Mol.
Biol. Evol. 34: 2163–2172.

Stoltzfus, A., and L. Y. Yampolsky. 2009. Climbing Mount Probable: Mutation as a Cause of
Nonrandomness in Evolution. J. Hered. 100: 637–647.

Storz, J. F. 2016. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev.
Genet. 17: 239–250.

Storz, J. F., C. Natarajan, A. V. Signore, C. C. Witt, D. M. McCandlish, and A. Stoltzfus. 2019. The role
of mutation bias in adaptive molecular evolution: insights from convergent changes in
protein function. Philos. Trans. R. Soc. B Biol. Sci. 374: 20180238.

Szabó, A., and R. M. H. Merks. 2017. Blood vessel tortuosity selects against evolution of
aggressive tumor cells in confined tissue environments: A modeling approach. PLOS
Comput. Biol. 13: e1005635.

Szendro, I. G., J. Franke, J. A. G. M. de Visser, and J. Krug. 2013. Predictability of evolution depends
nonmonotonically on population size. Proc. Natl. Acad. Sci. 110: 571–576.

Tabashnik, B. E., T. Brévault, and Y. Carrière. 2013. Insect resistance to Bt crops: lessons from the
first billion acres. Nat. Biotechnol. 31: 510–521.

Tataru, P., M. Mollion, S. Glémin, and T. Bataillon. 2017. Inference of Distribution of Fitness Effects
and Proportion of Adaptive Substitutions from Polymorphism Data. Genetics 207:
1103–1119.

Tenaillon, O., A. Rodríguez-Verdugo, R. L. Gaut, P. McDonald, A. F. Bennett, A. D. Long, and B. S. Gaut.



36

2012. The Molecular Diversity of Adaptive Convergence. Science 335: 457–461.
Teotónio, H., S. Estes, P. C. Phillips, and C. F. Baer. 2017. Experimental Evolution with

Caenorhabditis Nematodes. Genetics 206: 691–716.
Teusink, B., A. Wiersma, L. Jacobs, R. A. Notebaart, and E. J. Smid. 2009. Understanding the Adaptive

Growth Strategy of Lactobacillus plantarum by In Silico Optimisation. PLOS Comput.
Biol. 5: e1000410.

Tisthammer, K. H., W. Dong, J. B. Joy, and P. S. Pennings. 2020. Assessing in vivo mutation
frequencies and creating a high-resolution genome-wide map of fitness costs of Hepatitis
C virus. bioRxiv 2020.10.01.323253.

Tyers, M., and G. D. Wright. 2019. Drug combinations: a strategy to extend the life of antibiotics in
the 21st century. Nat. Rev. Microbiol. 17: 141–155.

Unckless, R. L., A. G. Clark, and P. W. Messer. 2017. Evolution of Resistance Against CRISPR/Cas9
Gene Drive. Genetics 205: 827–841.

Uusi‐Heikkilä, S., A. R. Whiteley, A. Kuparinen, S. Matsumura, P. A. Venturelli, C. Wolter, J. Slate, C. R.
Primmer, T. Meinelt, S. S. Killen, D. Bierbach, G. Polverino, A. Ludwig, and R. Arlinghaus.
2015. The evolutionary legacy of size-selective harvesting extends from genes to
populations. Evol. Appl. 8: 597–620.

de Visser, J. A. G. M., and J. Krug. 2014. Empirical fitness landscapes and the predictability of
evolution. Nat. Rev. Genet. 15: 480–490.

de Vos, M. G. J., A. Dawid, V. Sunderlikova, and S. J. Tans. 2015. Breaking evolutionary constraint
with a tradeoff ratchet. Proc. Natl. Acad. Sci. 112: 14906–14911.

Vos, M. G. J. de, S. E. Schoustra, and J. A. G. M. de Visser. 2018. Ecology dictates evolution? About the
importance of genetic and ecological constraints in adaptation. EPL Europhys. Lett. 122:
58002.

Vroomans, R. M. A., P. Hogeweg, and K. H. W. J. ten Tusscher. 2016. In silico evo-devo:
reconstructing stages in the evolution of animal segmentation. EvoDevo 7: 14.

Waldvogel, A.-M., B. Feldmeyer, G. Rolshausen, M. Exposito‐Alonso, C. Rellstab, R. Kofler, T. Mock, K.
Schmid, I. Schmitt, T. Bataillon, O. Savolainen, A. Bergland, T. Flatt, F. Guillaume, and M.
Pfenninger. 2020. Evolutionary genomics can improve prediction of species’ responses
to climate change. Evol. Lett. 4: 4–18.

Walsh, B., and M. Lynch. 2018. Evolution and Selection of Quantitative Traits. Oxford University
Press.

Wang, X., V. Zorraquino, M. Kim, A. Tsoukalas, and I. Tagkopoulos. 2018. Predicting the evolution
of Escherichia coli by a data-driven approach. Nat. Commun. 9: 3562.

Weinreich, D. M., N. F. Delaney, M. A. DePristo, and D. L. Hartl. 2006. Darwinian Evolution Can
Follow Only Very Few Mutational Paths to Fitter Proteins. Science 312: 111–114.

Weinreich, D. M., R. A. Watson, and L. Chao. 2005. Perspective: Sign Epistasis and Genetic
Costraint on Evolutionary Trajectories. Evolution 59: 1165–1174.

Wiser, M. J., N. Ribeck, and R. E. Lenski. 2013. Long-Term Dynamics of Adaptation in Asexual
Populations. Science 342: 1364–1367.

Wortel, M. T., E. Bosdriesz, B. Teusink, and F. J. Bruggeman. 2016. Evolutionary pressures on
microbial metabolic strategies in the chemostat. Sci. Rep. 6: 29503.

Wortel, M. T., E. Noor, M. Ferris, F. J. Bruggeman, and W. Liebermeister. 2018. Metabolic enzyme
cost explains variable trade-offs between microbial growth rate and yield. PLOS Comput.
Biol. 14: e1006010.

Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution.
Proc. 6th Int. Congr. Genet. 1: 356–366.

Yen, P., and J. A. Papin. 2017. History of antibiotic adaptation influences microbial evolutionary
dynamics during subsequent treatment. PLOS Biol. 15: e2001586.



37

Zandbergen, L. E., T. Halverson, J. K. Brons, A. J. Wolfe, and M. G. J. de Vos. 2021. The Good and the
Bad: Ecological Interaction Measurements Between the Urinary Microbiota and
Uropathogens. Front. Microbiol. 12. Available at:
https://www.frontiersin.org/articles/10.3389/fmicb.2021.659450/full [Accessed July 5,
2021].

Zhao, S., T. D. Lieberman, M. Poyet, K. M. Kauffman, S. M. Gibbons, M. Groussin, R. J. Xavier, and E. J.
Alm. 2019. Adaptive Evolution within Gut Microbiomes of Healthy People. Cell Host
Microbe 25: 656-667.e8.


