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The major frameworks for predicting evolutionary change assume that a phenotype’s9

underlying genetic and environmental components are normally distributed. However,10

the predictions of these frameworks may no longer hold if distributions are skewed.11

Despite this, phenotypic skew has never been decomposed, meaning the fundamental12

assumptions of quantitative genetics remain untested. Here, we demonstrate that13

the substantial phenotypic skew in the body size of juvenile blue tits (Cyanistes14

caeruleus) is driven by environmental factors. Although skew had little impact on15

our predictions of selection response in this case, our results highlight the impact16

of skew on the estimation of inheritance and selection. Specifically, the non-linear17

parent-offspring regressions induced by skew, alongside selective disappearance, can18

strongly bias estimates of heritability. The ubiquity of skew and strong directional19

selection on juvenile body size implies that heritability is commonly overestimated,20

which may in part explain the discrepancy between predicted and observed trait21

evolution.22

Two equations describe how traits respond to selection, the breeders equation1 and Lande’s23

gradient equation2. Both describe evolutionary change in terms of selection and inheritance.24

Although these frameworks are generally thought to be interchangeable, they only converge25

when phenotypes (and their genetic and environmental components) are normally distributed26

or fitness functions are linear3. Given that fitness functions are highly unlikely to be linear in27

practice4;5, skew can lead to problems with the application of these equations. Consequently,28

normality is seen as a fundamental assumption in quantitative genetics6–8, yet to our knowledge29

has not been directly tested, despite the major consequences it has for how traits are predicted30

to respond to selection9–17.31

The breeders equation gives the predicted response to selection as the heritability (h2) multiplied32

by the selection differential (S). The most natural interpretation of heritability in the context33

of the breeders equation is the slope of a linear parent-offspring (PO) regression12–14;18,34

whilst S describes the linear relationship between a phenotype and fitness. The accuracy35

of the breeders equation relies heavily on the linearity of both of these functions - if both36

are non-linear, the residuals from the linear functions may be correlated, creating a ‘spurious37

response to selection’14. The linearity of the parent-offspring relationship breaks down when38

the amount of skew differs between genetic and environmental components19;20, with genetic39

and environmental skew causing curvature in opposite directions (Figure 1). Lande’s gradient40

equation gives the response to selection as the additive genetic variance (VA) of the trait41

multiplied by the selection gradient (β). Whilst the gradient equation is robust to environmental42

skew, it doesn’t correctly describe the response to selection in the presence of genetic skew if43

the fitness function is non-linear11. Environmental skew can, however, impact the estimation44

of β when using Lande-Arnold regression5;17;21.45

Although extensions to these two equations have been derived that allow for the non-linearity46

of the PO-regression12 and the non-normality of genetic values11, the majority of the work in47

this area remains theoretical. Whilst non-linearity in PO-regressions has been demonstrated48

in the lab12;22–26 and ad-hoc methods have been used to test for skew at the genetic level27;28,49

to our knowledge, no study has 1) relaxed the normality assumptions when making statistical50

inferences to examine the origin and extent of skew at different levels, and 2) explored how51

observed patterns of natural selection interact with skew to determine how well breeders and52
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gradient equations predict selection response in the wild.53

Juvenile body size is under strong, persistent, directional selection across taxa29, yet is known54

to show little response to this selection30. We show that juvenile body size is highly negatively55

skewed across bird species, but the origin of this skew is unknown. To determine this, we56

developed statistical methods to decompose the phenotypic distribution into a set of skew-t57

distributions, and predict the shape of PO-regression based on the estimated skew. We applied58

these methods to data from a long-term cross-fostering experiment of a wild bird population.59

By estimating survival selection acting on juvenile body size, we tested the robustness of the60

predicted response to selection from the breeders and gradient equations.61

Results62

Prevalence of Phenotypic Skew63

Across 27 species of birds, tarsus length (a common measure of structural size) was substantially64

negatively skewed in juveniles (-1.054 [-1.394, -0.686], pMCMC<0.001), but not adults65

(-0.302 [-0.641, 0.052], pMCMC=0.086), with tarsus length being significantly more skewed66

in juveniles than adults (-0.752 [-1.124, -0.366], pMCMC<0.001; Figure 2).67

Decomposing Phenotypic Skew68

Using data on four juvenile body size traits (tarsus length, head-bill length, mass and wing69

length), measured on 15 day old chicks from a long-term cross-fostering experiment on a wild70

population of blue tits, we decomposed phenotypic skew into genetic, between- and within-nest71

environmental components. We used a mixed model approach with skew-t distributed random72

effects which allowed the extent and direction of skew to vary between these levels. There73

was considerable phenotypic skew in all four traits, with the coefficient of skew ranging from74

-0.51 to -1.60 (Figure 3). There was little evidence of genetic skew in any trait (Figure 3,75

Tables S5, S8, S11 and S12 and further discussion in supplementary methods). Phenotypic76

skew was instead driven by considerable environmental skew at both between- and within-nest77

levels, with the relative magnitude of this skew varying between traits (Figure 3, Tables S6,78

S9, S12 and S15).79

Given the environmental origin of the negative phenotypic skew, we would expect a convex80

PO-regression for all traits19 (Figure 1C). Through deriving a method to compute this non-linear81

PO-regression (Equation 1), we can show that for all traits the slope in the lower tail of the82

distributions is close to zero, but becomes steeper with increasing body size (Figure 3).83

Selection on Juvenile Body Size84

To quantify selection acting on body size, we estimated the linear and quadratic effects of85

body size on survival from both day 15 to fledging (leaving the nest) and fledging to local86

recruitment in a bivariate probit event-history model. As expected, all traits showed significant87

positive linear effects of body size on survival at both stages, with survival increasing at larger88

body sizes (Figure 4, Tables S16-19). Interestingly, all quadratic effects of juvenile size on89

survival between day 15 and fledging were positive, with these effects being suggestive and90
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significant for mass and wing length, respectively (Figure 4, Tables S16-19), indicating an91

accelerating effect of size on offspring survival. In contrast, negative quadratic effects were92

typical for survival from fledging to recruitment although this effect was only suggestive in the93

case of tarsus length (Figure 4, Tables S16-19). The fitness functions over both events were94

generally concave (Figure 4), which would indicate stabilising selection, but the hypothesis95

that the optimal trait value lay outside of the observed phenotypic range for any trait could96

not be rejected (proportion of iterations with an internal optimum: tarsus 0.853; head-bill97

0.543; mass 0.757; wing 0.017).98

Using these fitness functions, we were able to estimate selection gradients (β) for each trait by99

taking the partial derivative of the individual relative fitness function with respect to the trait100

and averaging it over the trait’s distribution. However, β is more frequently approximated101

using a Lande-Arnold regression of fitness on a trait21 and phenotypic skew can bias this102

approximation when the fitness function is not linear or quadratic (as is the case for survival103

functions)21. To test this, we calculated the expected estimates of β that would be obtained104

from the Lande-Arnold approach without (β1) and with (β2) a quadratic term fitted21;31;32,105

over the posterior distribution of the survival models (Equations 10 and 11). Figure 4 shows106

that generally there is little meaningful difference between estimates, with the exception of107

wing length, where there is suggestive evidence that β1 would underestimate β by nearly 30%108

(β1/β: 0.711 [0.532, 0.915], pMCMC=0.012).109

Predicted Response to Selection110

In the absence of genetic skew, the correct response to selection is given by Lande’s gradient111

equation (VAβ), which for these traits gives: tarsus: 0.085mm [0.034, 0.127]; head-bill:112

0.069mm [0.037, 0.102]; mass: 0.094g [0.052, 0.139]; wing: 0.175mm [0.077, 0.280]. The113

breeders equation is equal to the gradient equation when the Lande-Arnold regression without114

the quadratic term gives good estimates of the selection gradient, irrespective of whether the115

PO-regression is linear or not (i.e if β1 = β then h2S = VAβ). Given the similarity between116

β and β1 for tarsus, head-bill and mass, the breeders equation will therefore give accurate117

predictions of the selection response for these traits. However, it underestimates the response118

to selection in wing length by nearly 30%, as the proportional change in the predicted response119

to selection is equal to β1/β (shown above).120

Selection Bias and Heritability Estimation121

The heritability in the breeders equation is the heritability before selection (h2b) which can122

be interpreted as the slope of the PO-regression averaged over all individuals irrespective123

of their fitness. However, direct estimates of the PO-regression can only be obtained from124

individuals that survive to become parents and so to some extent measure the heritability125

after selection (h2a; note these terms are used differently from14). Since larger individuals are126

more likely to survive, and the PO-regression is steeper for these individuals, direct estimates127

of the PO-regression are likely to upwardly bias estimates of heritability. To demonstrate this,128

we obtained direct estimates of the PO-regression from the 182 individuals (118 male and129

64 female) that were measured as chicks and survived to produce offspring that were also130

measured. Although the estimated linear regression (blue line in Figure 5) is similar to the131

predicted non-linear PO-regression (red line in Figure 5) for the large surviving individuals132
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(the direct estimate and the predicted regression fit the data equally well for all traits; tarsus133

p = 0.195, head-bill p = 0.087, mass p = 0.060 and wing p = 0.052), the two diverge134

substantially at small body sizes (Figure 5). In order to directly compare h2a and h2b , we used135

the parameters of the quantitative genetic and survival models described above calculate h2a136

as the linear PO-regression weighted by the fitness of the parents (Equation 16) and h2b as137

VA/VP . For tarsus, head-bill and mass, h2a was substantially and significantly higher than h2b ,138

with a proportional increase in h2a of over 60% for head-bill and mass (h2a/h
2
b : tarsus 1.223139

[1.137, 1.333], pMCMC=0.002; head-bill 1.664 [1.421, 1.951], pMCMC<0.001; mass 1.645140

[1.325, 2.046], pMCMC<0.001; wing 1.584 [0.373, 2.551], pMCMC=0.372).141

Estimates of h2b will only be accurate if they do not suffer from the same selection bias142

present in PO-regression. Our experimental cross-fostering design means that the majority143

of information in our pedigree comes from the comparison of siblings, rather than parents144

and offspring, suggesting the bias should be small. However, many wild bird pedigrees rely145

largely on information from parent-offspring relationships to estimate genetic effects - without146

cross-fostering and using social pedigrees (no within-nest variation in relatedness), sibling147

comparisons provide little information on genetic effects because they are confounded with148

common environment (nest) effects. To test this, we simulated data using the parameters149

from our quantitative genetic and selection models for mass, assuming social and genetic150

monogamy, with and without skew and with and without partial cross-fostering. As expected,151

environmental skew caused PO-regressions to be consistently and substantially upwardly biased152

by a similar amount as we observed in our data, regardless of cross-fostering (estimated/simulated:153

no cross-fostering 1.609; cross-fostering 1.616). Without cross-fostering, estimates of VA,154

and so heritability, from animal models were upwardly biased, although less than in the155

PO-regressions (VA 1.226, h2 1.228), whereas cross-fostering led to the correct estimation of156

VA( 1.012) and h2 (1.015; Figure 6).157

Discussion158

A common assumption in quantitative genetics is that phenotypes, and their underlying159

genetic and environmental components, are normally distributed. Here we demonstrate160

that this assumption is commonly violated, and in four morphological traits the observed161

negative phenotypic skew is driven by environmental, rather than genetic, skew. There162

was strong directional viability selection acting on all four traits, with non-linear fitness163

functions. Under these conditions the breeders equation may give inaccurate predictions164

for the response to selection, but Lande’s gradient equation - which only assumes genetic165

values are normally distributed - is expected to be accurate11. However, this assumes that166

the methods used to obtain estimates of β and VA are robust to deviations from normality.167

Here we empirically demonstrate that common methods used to estimate both metrics can168

produce biased estimates in the presence of environmental skew.169

Perhaps the most striking result is the apparent absence of genetic skew. Theory shows that170

directional selection can generate genetic skew, but the direction of the skew differs between171

models. Under the infinitesimal (Gaussian descendants33) model (assumed in our analyses),172

directional selection can drive a Gaussian distribution of breeding values to be skewed in173

the direction of selection through the build up of linkage disequilibrium11;34;35. However,174
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stabilising selection may mitigate this (11 Eq 46) and the breeding value distribution quickly175

returns to normality if selection ceases (the skew quarters each generation for unlinked loci;34).176

Finite allele models also generate genetic skew through changes in allele frequency. Under the177

rare-alleles model, directional selection after a long period of stabilising selection generates178

skew in the direction of selection10;11 but sustained long term directional selection (with179

directional mutation) is expected to drive skew in the opposite direction to selection36;37.180

Given juvenile body size appears to be under sustained positive directional selection29 and181

gene knockout studies in mice provide evidence for directional mutation, with loss-of-function182

mutations reducing size more often than increasing it38, we would predict negative genetic183

skew in our system. However, these models predict that the amount of skew generated184

through selection should be small, consistent with our finding of no or negligible genetic185

skew. Other processes, such as few loci, alleles of large effect, extreme allele frequencies186

or substantial non-additive gene action, particularly directional dominance, could generate187

greater levels of skew20;36;39;40. This seems unlikely for body size, which appears to be highly188

polygenic41;42, although the finding that inbred individuals are on average smaller does suggest189

some directional dominance43–46 which would also generate skew in the opposite direction to190

selection. Two other studies have looked at the distribution of breeding values (indirectly191

through estimating the skew of breeding values estimated in a Gaussian model) and while192

one also found little evidence of skew28, the other found skew in the opposite direction to193

selection27. More widespread assessments of the prevalence of genetic skew are needed to194

assess the generality of these results.195

Environmental skew has received little attention from theoreticians, with most studies assuming196

that environmental effects are normally distributed11;12;14. There are, however, several biological197

processes that are known to induce environmental skew. For example, asymmetric competition,198

when larger individuals have a disproportionate negative competitive effect on others, can drive199

negative skew47–50. Blue tits have moderate levels of hatching asynchrony (hatching spread is200

approximately 2 days; see51 for distribution across bird species) which is expected to generate201

asymmetries in competitive ability52 and therefore skew at the within-nest level. However, the202

dominant source of phenotypic skew is at the between-nest level (contribution to phenotypic203

skew relates to standardised skew and variance)and so if asymmetric competition was the main204

driver of phenotypic skew, it would require parental ability to be driven by asymmetric adult205

competition, perhaps through differences in condition and/or territory quality. An alternative206

explanation is that (some) chicks have yet to reach their asymptotic size by the time of207

measurement and so variation in their size at this time is driven by variation in growth rate208

and asymptotic size. If variation in growth rate is largely at the between-nest level and variation209

in the asymptote is largely genetic, as has been suggested in great tits53, then the non-linearity210

of growth functions could result in skew that is primarily environmental in origin (see54 for211

a related result). This skew would be expected to disappear further into development as all212

chicks reach their asymptotic size, but due to the strong selective disappearance of small213

chicks this may not necessarily manifest itself (see below).214

The strong, negative environmental skew led the PO-regression in all traits to be convex. This215

occurs because the long tail of small individuals are primarily small because of environmental216

factors and so resemble their offspring less than larger individuals. Most discussions of217

the linearity of the PO-regression focus on how, in combination with a non-linear fitness218

function, a non-linear PO-regression leads the breeders equation to be inaccurate, through219

6



generating a covariance between the residuals from a linear fitness function and the linear220

PO-regression3;14 (see also Figure S18). This ’spurious response to selection’14 will be largest221

when the non-linear fitness function and the PO-regression have the same (e.g. both concave)222

or opposite (e.g. one concave and one convex) shape, causing a positive or negative covariance223

between residuals, and so leading the breeders equation to under or over-estimate the response224

to selection, respectively. Skew generates quite predictable and simple non-linearity in the225

PO-regression (Figure 1), and so generally accelerating or decelerating fitness functions will226

be more likely to generate a spurious response to selection, as is seen with wing length (Figure227

S18).228

We additionally show that the selective disappearance of small individuals alongside a non-linear229

PO-regression leads to h2 estimates that are biased towards the slope of the surviving large230

individuals. This selection bias is particularly striking in estimates from PO-regression but231

interestingly also occurs in animal models applied to pedigrees where information about232

the genetic variance comes primarily from parent-offspring comparisons (e.g. typical bird233

pedigrees). This occurs because both PO-regression and the animal model assume that234

the relationship between offspring and parental phenotypes is linear, and so the missing235

parent-offspring comparisons would follow the same slope. Previous work in this system236

has shown that selection differentially eliminates negative environmental, but not genetic,237

deviations for mass over the course of development55. This was interpreted as mass being238

an environmentally correlated target of selection rather than the true target56. However,239

incorporating skew into our models challenges this interpretation as, under our model, size is240

the true target of selection. As the long tail of small individuals are small for environmental241

reasons, the selective disappearance of these individuals drives the observed decrease in242

environmental variance and skew though ontogeny. Given the selective disappearance previously243

observed was prior to the measurements analysed here55 it seems likely that the environmental244

skew we observe is an underestimation of the true skew, meaning we are likely underestimating245

the true non-linearity of the PO-regression. Multivariate methods would account for this246

selective disappearance57, however, these proved to complex to implement in this instance.247

Given the consistent negative environmental skew we see across the four traits, and the248

conserved nature of negative phenotypic skew in juvenile (but not adult) size across bird249

species, we believe a concave PO-regression for juvenile size traits might be a general finding.250

As found here, juvenile body size is also generally under strong viability selection across251

taxa29. Together, this suggests that previous heritability estimates of juvenile size are likely252

to have been systematically over-estimated, especially as a large proportion are based on253

PO-regressions58. Indeed, tarsus length heritability estimates from PO-regressions have been254

shown to be consistently larger than those from animal models58. Juvenile size is a hallmark255

trait of evolutionary stasis, whereby traits that should respond to selection in the wild appear256

not to. Although these results do not fully explain this stasis, they do show that the predicted257

response to selection may be being substantially overestimated in traits with non-Gaussian258

phenotypic distributions.259

Lande-Arnold regression is by far the most common method for estimating β 5;31;59 and is260

known to be unbiased in the presence of phenotypic skew only if the fitness function is261

linear or quadratic and this quadratic term is modelled21. Although the estimated survival262

functions deviated from a quadratic for all traits, estimates of β were close to those that263
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would have been obtained under Lande-Arnold regression including the quadratic term (β2)264

for all traits, and without the quadratic term (β1) for three traits. The near equivalence265

of these different estimates seems at odds with the conclusions of Bonamour et al.17, who266

demonstrate that selection gradients approximated with Lande-Arnold regression are biased267

in the presence of phenotypic skew. However, Bonamour et al. only modelled the linear term268

in the Lande-Arnold regression (β1) whilst assuming a quadratic fitness function - had the269

quadratic term also been included, the linear term in the Lande-Arnold regression (β2) would270

have been unbiased3;21, in correspondence with our wing length results (β1 underestimated271

β, but β2 did not). However, there is no reason to believe including a quadratic term in a272

Lande-Arnold regression will generally result in a good approximation of β. Indeed, Morrissey273

& Sakrejda5 compared β with that approximated from a quadratic Lande-Arnold regression274

and found quite large proportional differences ( 30%), although small differences in absolute275

terms. We therefore urge caution in assuming that our results are a general statement about276

the accuracy of Lande-Arnold regression under non-normality.277

Quantitative genetics uses two frameworks to predict how traits will respond to selection.278

Here we demonstrate how both of these frameworks are affected by skew at the environmental279

and genetic levels. Genetic skew can lead both the breeders equation and Lande’s gradient280

equation to be inaccurate. Although little or no genetic skew has been found in the few281

studies that have tried to quantify it, it remains unknown to what extent this is a generality,282

and will be highly dependent on the genetic architecture of specific traits. In the absence of283

genetic skew, the gradient equation presents an accurate prediction of selection response11,284

although environmental skew provides challenges to the accurate estimation of both β and VA.285

Whilst the breeders equation may provide a more intuitive way of thinking about selection286

response, the extensions to this framework that allow for non-linearity12 are complex and287

computationally expensive. We therefore recommend a focus on the gradient equation (and288

its extensions11) in wild systems, where fitness functions are highly likely to be non-linear and289

trait distributions are commonly skewed.290
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Methods291

This study was preregistered (see https://osf.io/7qyp4/). We have highlighted in the following292

sections where our methods deviate from those planned.293

Meta-analysis of Skew294

We collected raw data on juvenile and adult tarsus length from several sources: we used a295

mailing list to request data, we searched the dryad repository for ’tarsus’, we emailed groups296

with known long-term avian datasets that were not represented in these sources and included297

any tarsus length data that we otherwise encountered. When datasets from different studies of298

the same population overlapped in time, we use the largest single dataset available. Datasets299

were taken from42;60–97.300

Sample standardised skew was estimated from raw data z as

1
n

∑n
i=1(zi − µ̂)3[

1
n

∑n
i=1(zi − µ̂)2

]3/2
√
n(n− 1)

n− 2

with sampling variance as
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)

where n is sample size and µ̂ the estimate of the trait mean.301

Using this data, we ran a random-effect meta-analytic model in MCMCglmm with age (juvenile302

or adult) as a fixed factor and random effects of species and study. Models were run for303

65000 iterations, with a burnin of 15000 and a thinning intervals of 50. The priors for the304

random-effect variances were scaled (by 100) F1,1 and the prior for the residual variance was305

inverse-gamma with a shape and scale of 0.001. The fixed effects had a diffuse normal prior306

(mean=0, variance=1010).307

Study population308

We used data from a nest-box population of blue tits (Cyanistes caeruleus), on the Dalmeny309

estate, Edinburgh, United Kingdom, collected from 2011 to 2018, with 253 nest-boxes over310

two sites. Detailed methods are described in55;98. Briefly, all nests were visited regularly until311

the discovery of the first egg, and then daily for egg cross-fostering, when eggs were weighed.312

From 2011-2013 and 2016-2018 a partial egg cross-fostering design was used to enable additive313

genetic and nest-of-rearing effects on offspring size to be separated55. In 2014-2015 a mixture314

of full and partial cross-fostering was used as part of a separate experiment. Full details of315

cross-fostering can be found in99. After egg laying was complete, nests were left undisturbed316

for 11 days and then checked daily for hatching. At hatching (day 0), all chicks were uniquely317

marked (within a nest). The chicks had blood samples taken at day 3 and were given a unique318

metal ring at day 9. At day 15, chick’s tarsus, wing and head-bill lengths were measured and319

they were weighed. For the morphometric measurements, one chick from each nest was320

measured twice in order to account for measurement error55. From day 10, adults were321
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caught at the nest in order to identify them; blood samples and morphometric measurements322

were taken and the birds were uniquely ringed. At the end of the season we checked all323

nests and recorded any dead chicks left in the nest. From this we could infer which chicks324

fledged. Chicks were considered recruited if they were recaptured as breeders in subsequent325

years.326

Social parentage was assigned through catching parents at the nest. When no female was327

caught, the social female was assigned a dummy mother identity. When no male was caught,328

the social father was assigned as the genetic sire with the largest proportion of paternity in329

a nest, either a male caught at a different nest that year, or an unsampled male assigned a330

dummy identity.331

For the assignment of genetic parentage and chick sex, genotypes were obtained using blood332

and tissue samples from adults and chicks. Genotyping and pedigree reconstruction largely333

followed protocols outlined in55 and98. However, adults not caught in the focal year but that334

were known to be alive (because they were caught in subsequent years and were aged 2 years335

or over) were allowed to be parents of chicks in the focal year. The distance between the336

nest-of-origin of the chicks and the nest at which the candidate parents were caught in the337

subsequent year was fitted as a covariate. Mothers were allowed to be polygamous when338

(half) sib-ships were assigned to chicks with unknown fathers (see Supplementary Methods).339

When assigning chick sex, we used morphological sexing of recruits over molecular sexing from340

chicks (sexing didn’t match for 5 chicks).341

For our analysis we included data on chick size measured at day 15 post-hatching, collected on342

this project from 2011-2018, and additionally chick recruitment data from 2019 and 2020. We343

included all nests for which hatching date was known. Although similar morphological data344

was collected in 2010, we excluded all records from this year as egg size was not measured.345

Egg size was used to account for nest-of-origin effects in our models (see below). We also346

excluded data from an additional two nests where egg size was not measured, from chicks for347

which molecular sexing was not successful (n=20 chicks) and where we did not have one of348

the day 15 measurements (n=11 chicks). In total, we had records of 5123 day 15 chicks in349

715 nests, with 642 chicks repeatedly measured.350

Statistical analysis351

All models were run in a Bayesian framework. From all models posterior means and 95%352

credible intervals are presented. A p-value for the fixed effects and covariances in these353

models was approximated (pMCMC) as two times the smaller number of iterations where the354

parameter value is either less than zero or greater than zero100. We use a threshold of 0.005355

to refer to results as significant and those between 0.05 and 0.005 as suggestive101.356

Decomposing phenotypic skew using hierarchical models357

We modelled the four traits (tarsus length, head-bill length, mass and wing length) measured358

at day 15 using linear mixed effects models with sex (2 level factor), year (8 level factor), time359

of day (continuous - hours from midnight) and egg size (continuous) as fixed. Additive genetic360

and nest-of-rearing effects were modelled as random. Because we have repeated measurements361

of tarsus, wing and head-bill lengths, we additionally modelled measurement error effects in362
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these traits, by including bird identity effects, which are equivalent to the residuals in a model363

without repeat measures, and the residuals are measurement error effects55. In contrast to364

past analyses55;98, we do not model nest-of-origin effects but rather include egg size as a365

covariate to account for these effects (see55 and Supplementary materials). As estimating366

skew-t distributed random effects (see below) is parameter heavy, including a covariate rather367

than a random effect is preferable, especially as nest-of-origin effects are very small for these368

traits55;98.369

Skew due to the fixed effects was obtained by multiplying the fixed effect design matrix by the370

fixed effects and either estimating the parameters for the skew-t distribution of the resulting371

variable to use for the calculation of non-linear parent offspring regression or obtaining the372

sample skew for plotting. This assumes that the joint distribution of the covariates is equal to373

the empirical distribution we observe. In combination with a diffuse prior on the fixed effects,374

this assumption probably leads to a small inflation in the estimated (absolute) skew. Time375

of day was excluded from this estimate as any skew induced by this is due to our sampling376

design rather than being biologically relevant.377

In order to estimate skew in in the random effects, we fitted random effects with skew-t378

distributions. The residuals for the repeat measured traits were treated as Gaussian as these379

represent measurement errors. As with the normal distribution, the skew-t distribution102–105
380

has a location ξ and scale ω parameter, but also parameters δ and ν which modify the skew381

and tailness of the data, respectively. The distribution converges on a normal distribution when382

δ = 0 and ν approaches infinity. As δ moves away from 0 and ν decreases the (absolute) skew383

in a variable increases, with the sign of δ signifying the direction of the skew. The skew-t384

distribution is unbounded and readily allows for considerable amounts of positive and negative385

skew. The reasons for the use of this distribution are further discussed in the supplementary386

materials. Our approach to modelling the additive genetic effects is to extend standard387

quantitative genetic models by allowing the base population breeding values to have a skew-t388

distribution, with normally distributed Mendelian sampling deviations in the descendants (with389

variance ω2(1−F )/2 where F is the average inbreeding coefficient of the individual’s parents).390

This assumes that inheritance occurs under the Gaussian descendants infinitesimal model33;106;391

i.e. the Mendelian sampling deviations are normally distributed within families, and any genetic392

skew results from selection. In practice, however, the Mendelian sampling deviations are largely393

confounded with residual effects in our data because there are few parent-offspring comparisons394

(due to high migration and low recruitment) and so inferences are probably quite robust to395

any violation of the Gaussian descendants assumption. Initially we tried to fit this model in an396

animal model framework, but due to poor mixing we chose to approximate the model using397

a dam-sire model. This model discards information about the Mendelian-sampling deviations398

and subsumes them in the residual effects which then come from a mixture distribution107.399

Given there is little information in our data about the Mendelian-sampling deviations the400

dam-sire and animal models are expected to give almost identical answers (see Supplementary401

Materials). Although this method allows us to directly estimate skew in breeding values, when402

the environmental residuals are skew-t, as assumed here, the mixture distribution does not403

have standard from. Here, we approximate the mixture distribution as skew-t and although404

we cannot derive the full distribution of the environmental residuals we are able to obtain their405

variance and skew. These models provided little evidence for genetic skew in any trait and so406

we reverted to an animal model with normally distributed breeding values - the animal model407
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approach having the advantage that the environmental residual skew can then be directly408

estimated. The dam and sire effects were modelled in a multi-membership model where the409

two sets of effects were constrained to having the same skew-t distribution.410

Initially we intended to model chick mass over ontogeny in a multivariate framework (see411

preregistration), as in previous studies of this population55;98. However, implementing the412

required multivariate skew-t models proved too challenging. Since there is strong directional413

selection on chick body mass throughout ontogeny55;98, our estimates of skew at day 15414

are likely underestimates as the univariate analysis used will fail to account for selective415

disappearance prior to day 1555;98. We also planned to have a global box-cox parameter416

in case there was a single transformation that would make everything linear and additive.417

However, given the problems we had with implementing more complex models, we chose not418

to include this additional complexity.419

It should also be noted that estimates from these skew-t models seem to be more sensitive420

to unmodelled heteroskedasticity than standard Gaussian mixed effects models, even when421

skew exists, and this can lead to biased fixed effect and variance estimates. This led us422

to fit a reduced set of fixed effects compared with previous analyses55;98 and outlined in423

our pre-registration (see Supplementary materials). To partly address this issue we also ran424

equivalent Gaussian models for all skew-t models, and present the results in the Supplementary425

materials. There were small differences the between models but the results remain qualitatively426

the same (see SM; Figure S17, Tables S4-15).427

These models were run using Stan (version 2.21.0)108 using the cmdstanr package (Stan428

Development Team, 2019) in R (version 4). Four chains were run for each model with429

a warmup of 4000 iterations and 6000 iterations post-warmup, with the exception of the430

dam-sire wing length model which was run with a warmup of 5000 iterations and 10000431

iterations post-warmup. Convergence of individual chains was visually assessed, as well as432

ensuring that the Gelman–Rubin diagnostic (R-hat) across chains was less than 1.1109. We433

used diffuse normal priors for fixed effects (mean=0 and standard deviation=100), half-Cauchy434

priors (mean=0 and standard deviation=10) for standard deviations and uniform priors from435

-1 to 1 for δ and 4 to 40 on ν. The choice of priors is discussed further in the Supplementary436

materials.437

Non-Linear Parent-Offspring Regression438

The PO-regression function is defined as E[zo|z] where zo is the phenotype of offspring from a439

parent with phenotype z. Assuming random mating and environmental values in the offspring440

(eo) are independent of parental phenotypes this becomes 1
2
E[g|z] + 1

2
E[g] + E[eo] under441

the Gaussian descendants assumption, where g is breeding value. Have θg be the parameters442

of the breeding value distribution and θe the parameters of the environmental distribution.443

Then,444

E[g|z] =
∫
(z−e)p(z−e|θg)p(e|θe)de∫

p(z−e|θg)p(e|θe)de (1)

The integrals have to be evaluated numerically, which is time consuming, and so the regression445

function was evaluated at the posterior mean of the parameters from the skew-t animal models446
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to give E[zo|z] for each trait (Figure 5). Also note that in the presence of pre-breeding survival447

selection the term 1
2
E[g] in the intercept of the regression function should be replaced by448

1
2
(E[g] + ∆g) where ∆g is the change in mean breeding value due to selection such that449

E[g] + ∆g is the expected breeding value of the other parent.450

Selection on chick body mass451

Given that we were not able to model chick body mass in a multivariate framework, we did452

not model survival throughout ontogeny as originally planned (see preregistration), but rather453

modelled survival from day 15 to fledging and fledging to recruitment. We modelled this as454

an event history in a probit regression (binomial error distribution and probit link function)455

including a quadratic effect of chick size at day 15 on both events, allowing us to model the456

stabilising component of selection. These models accounted for measurement error in tarsus,457

head-bill and wing lengths, using the repeated measurements of these traits. Originally we458

planned to correct our measurements for time of day effects (see preregistration). However,459

these effects proved to be very small and for most traits non-significant (see Supplementary460

Results). We therefore decided not to add this extra complexity into our models.461

Sex, day of hatching within the nest, year, clutch size, male presence, nest hatch date were462

also included as fixed effects. All fixed effects were allowed to differ between the two events.463

Finally we modelled the 2x2 covariance matrix of nest-of-rearing effects. This model was464

run using Stan. Four chains were run for each model with 5000 iterations and a warmup of465

2500 iterations with a thinning interval of 10. Convergence of chains was assessed as above.466

Diffuse priors for fixed effects (mean=0 and standard deviation=100), half-Cauchy priors for467

all standard deviations (mean=0 and standard deviation=10) and LKJ priors on correlations468

with shape=2110.469

The Individual Relative Fitness Function470

Partitioning the linear predictors for each survival event (1: day 15 to fledging, 2: fledging to471

recruitment) into a part due to the trait and a part due to remaining terms (denoted η), and472

assuming that the distribution of η(1) and η(2) are bivariate normal conditional on the trait z,473

then the absolute fitness function has the form:474

W (z) = FMVN (s|Σ) (2)

where FMVN is the multivariate normal cumulative density function in which the first argument475

is the quantile to be evaluated and the second argument is the (co)variance of the variates476

(the means are zero and are therefore not given). For event i477

s(i) = E[η(i)] +
COV (η(i), z)

µ2

(z − µ) + β(i)z +
1

2
γ(i)z2 (3)

where β(i) and 1
2
γ(i) are the linear and quadratic effect of the trait on event i, µ is the trait478
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mean and µi the ith central moment of the phenotypic distribution.479

Σ(i,j) = COV (η(i), η(j))− COV (η(i), z)COV (η(j), z)

µ2

+ COV (u(i), u(j)) + δ(i,j) (4)

where u(i) are the nest effects for event i and δ(i,j) = 1 when i = j and represents the residual480

variance.481

The partial derivative of W (z) with respect to z is given by482

∂W (z)
∂z

= fN
(
s(1|2)|Σ(1|2)) (COV (η(1),z)2

µ2
+ β(1) + γ(1)z − Σ(1,2)

Σ(2) (COV (η(2),z)2

µ2
+ β(2) + γ(2)z)

)
FN
(
s(2)|Σ(2)

)
+ fN

(
s(2)|Σ(2)

) (COV (η(2),z)2

µ2
+ β(2) + γ(2)z

)
FN
(
s(1|2)|Σ(1|2))

(5)

where fN and FN are the density and cumulative density functions for a centred normal483

distribution, and484

s(1|2) = s(1) − Σ(1,2)

Σ(2) s
(2) Σ(1|2) = Σ(1) − (Σ(1,2))2

Σ(2)
(6)

Solving Equation 5 to find the stationary point(s), and therefore the optimal trait value, is485

difficult. Instead we evaluated the derivative of Equation 5 at the minimum and maximum486

observed trait value and assessed whether the derivative at the minimum is positive and487

negative at the maximum. This condition implies an optimal trait value within the range of488

observed trait values.489

Selection Gradients490

The Lande-Arnold method21 for estimating the selection gradient is only robust to phenotypic491

skew if the fitness function is quadratic and both the mean-centered trait value and its square492

are fitted in the regression3;21. We therefore computed three selection gradients. Using the493

notation in32, we calculated our best estimate of it111,494

β = E

[
∂w(z)

∂z

]
=

∫
∂w(z)

∂z
p(z)dz ≈ 1

n

n∑
i=1

∂w(z)

∂z

∣∣∣∣
zi

(7)

where p(z) is the probability density function for z, w(z) is the relative fitness function495

obtained by dividing W (z) by mean fitness (E[W ] =
∫
W (z)p(z)dz) and zi are the observed496

trait values. Put simply, we calculated the mean partial derivative of individual fitness function497

(from Equation 5) across our observed phenotypic distributions, divided by mean fitness.498

The linear selection differential is defined as499

S =

∫
zw(z)p(z)dz − µ ≈ 1

n

n∑
i=1

ziw(zi)− µ̂ (8)
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and the quadratic selection differential as500

C =

∫
(z − µ)2p(z)w(z)dz − µ2 ≈

1

n

n∑
i=1

(zi − µ̂)2w(zi)− µ̂2 (9)

From these we can calculate the expected linear regression coefficient from the Lande-Arnold501

method when only the linear term was fitted:502

β1 =
S

µ̂2

(10)

and the linear regression coefficient from the Lande-Arnold method when both the linear and503

quadratic term are fitted (Eq. 29.28a from3):504

β2 =
(µ̂4 − µ̂2

2)S − µ̂3C

µ̂2(µ̂4 − µ̂2
2)− µ̂2

3

(11)

Selection cannot operate on between-sex differences in trait values (the average fitness of505

the two sexes is constrained to be equal) and we assume that selection does not operate on506

between-year differences in trait values (which might occur if juvenile size impacts on adult507

survival). We therefore estimated each β as the average of each sex by year combination508

(Figure 4 e-h), calculated across the posterior distribution of the survival model.509

Response to Selection510

The extension of Lande’s gradient equation to a non-normal distribution of genetic effects is511

(combining Equations 26 and 42 from11):512

∆z =
∞∑
j=1

Kj+1(g)
1

j!

∫
∂jw(z)

∂zj
p(z)dz (12)

where Kj(x) denotes the jth cumulant of x, which up to the third cumulant (skew) is513

∆z = VAE

[
∂w(z)

∂z

]
+
SA
2
E

[
∂2w(z)

∂z2

]
(13)

where SA is the skew in the additive genetic effects. When the distribution of additive genetic514

values is normal and/or the fitness function is linear, Equation 12 reduces to Lande’s gradient515

equation516

∆z = VAE

[
∂w(z)

∂z

]
= VAβ (14)

since all cumulants > 2 of the genetic distribution are zero.517
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Heritability518

We compared how well our inferred non-linear PO-regression (Equation 1) performed at519

predicting offspring phenotype compared to linear single-parent mid-offspring regression. Using520

the 182 individuals (118 male and 64 female) that were measured as chicks at day 15 and521

survived to produce offspring that were also measured at day 15, we fitted a weighted (by522

family size) regression with our inferred non-linear PO-regression fitted as an offset. We then523

compared the fit of this model to an identical model but where the raw parental phenotype524

was also fitted as a covariate with a free parameter.525

We then compared estimates of the heritability before and after selection (h2b and h2a, respectively).526

The heritability can be defined as the regression coefficient of a linear mid-PO-regression, and527

can be calculated before selection528

h2b = 2COV (zo,z)
µ2

= VA
VP

(15)

or after selection529

h2a = 2E[w(z)zoz]−E[w(z)zo]E[w(z)z]
E[w(z)z2]−E[w(z)z]2 (16)

The posterior distribution of h2b was evaluated directly, but the ith posterior sample of h2a530

was obtained by simulating 104 values of z and zo using the parameters sampled at the531

ith iteration of the trait model, calculating expected fitness for each sampled z using the532

parameters sampled at the ith iteration of the fitness model, and then evaluating the relevant533

expectations.534

Simulations535

To test how different sampling designs and standard estimation procedures (PO-regression536

and Gaussian animal model) impact estimates of heritability in the presence of skew and537

selection, we simulated data according to the posterior mean of the parameters from our538

skew-t quantitative genetic and selection models for mass. A closed population with 1000539

breeding pairs was simulated over three generations, with 10 measured full-sib offspring per540

pair. Simulations were set up with either no cross-fostering or with nests paired and five541

offspring reciprocally crossed and with either skew t-distributed random effects (with ω, δ542

and ν parameters set to their posterior means) or normally distributed random effects with543

matching variance. The probability of a chick recruiting to be a parent was obtained by544

applying the estimated survival model for chick mass to the simulated phenotype. Each of the545

four scenarios were simulated 2000 times and for each data set the heritability was estimated546

directly using PO-regression and as the estimate of the additive genetic variance over the sum547

of all variance estimates from a Gaussian animal model fitted in ASReml-R112.548

Data availability549

All data and code can be found at https://doi.org/10.5281/zenodo.5342526.550
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Figure 1: The effects of different distributions of breeding values (G) and environmental
values (E) on the phenotypic distribution (P) and the shape of the PO-regression. When both
genetic and environmental values are normally distributed (1), as typically assumed, there is a
linear PO-regression. Negative genetic (2) and environmental (3) skew affect the shape of the
parent-offspring relationship in opposite directions, whilst inducing the same phenotypic skew.
If genetic and environmental distributions are skewed in the same direction (4) their effects
on the parent-offspring relationship can cancel each other out, giving a linear parent-offspring
relationship, despite considerable phenotypic skew. If genetic and environmental are skewed
in opposite directions (5), although they may can cancel each other out at the phenotypic
level, they induce a highly non-linear parent-offspring relationship. 1-5) are all simulated with
a heritability (VA/VP ) of 0.5.
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Figure 2: Skew in the distribution of avian tarsus lengths across different species. In the
boxplots, the center line shows the median; box limits show upper and lower quartiles; whiskers
show 1.5x interquartile range; points show outliers. Numbers above the plots show the number
of estimates, and species in parenthesis. The red points show the skew in our blue tit data.
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Figure 3: Decomposition of variance and skew in juvenile body size traits in blue tits. Top plots shows the phenotypic distribution of the
traits, with the red line showing the distribution predicted from the skew models. The middle rows show the variance and skew (top and
bottom, respectively) for each component for all four traits, with all model estimates coming from the skew-t animal model, except the
genetic skew which was estimated in the skew-t dam-sire model (see methods). ME stands for measurement error. The bottom row shows
the predicted shape of the PO-regression based on the model estimates.
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Figure 4: Average fitness functions (a-d) and selection gradients (e-h) for tarsus length,
head-bill length, mass and wing length, respectively. In plots a-d, solid lines show the posterior
mean fitness functions, dotted lines show the 95% credible intervals, and points show the
average survival of individuals in equally spaced intervals. The size of the points is proportional
to the square root of the sample size. The phenotypic distribution of the traits is shown, with
the grey vertical line showing the phenotypic mean. The significance of the effect of the
trait on fitness is also shown, ‘F’ and ‘R’ are survival to fledging and recruitment respectively,
and ‘L’ and ‘Q’ and linear and quadratic effects. In plots e-h, β refers to the selection
gradient, β1 and β2 refer to the approximations from the Lande-Arnold regression excluding
and including a quadratic term, respectively. In all plots ‘NS’ indicates p > 0.05, ‘*’ indicates
0.05 > p > 0.005 and ‘**’ p < 0.005.
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Figure 5: PO-regressions for four body size traits. Top panels show distribution of all chicks (red) and those that survived to recruit
(blue). Scatter plots show mid-offspring versus single parental traits. Values are corrected for year, sex and time of day at which they
were measured, and the size of the points is proportional to the square root of the family size. The red line is the predicted non-linear
PO-regression based on the posterior means of the parameters from the skew-t quantitative genetic model and the blue line is the fit of
a weighted (by family size) linear regression to the actual data. These are not corrected for measurement error. Lower panels show the
comparison between heritabilities calculated before (h2b) and after (h2a) selection, calculated across the posterior distribution of the skew-t
animal model trait models. In these lower plots all heritabilities account for measurement error. In all plots ‘NS’ indicates p > 0.05, ‘*’
indicates 0.05 > p > 0.005 and ‘**’ p < 0.005.
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Figure 6: Average estimates of heritability from PO-regression and Gaussian animal models
across 2000 simulated data sets. Three-generation simulations were set up with either no
cross-fostering or with nests paired and half f each nest’s offspring reciprocally crossed.
Phenotypes were simulated according to the model estimated for chick mass exactly (skewed)
or as Gaussian with matching variance. The probability of a chick recruiting to be a parent
was obtained by applying the estimated survival model for chick mass.
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