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The major frameworks for predicting evolutionary change assume that a phenotype’s9

underlying genetic and environmental components are normally distributed. However,10

the predictions of these frameworks may no longer hold if distributions are skewed.11

Despite this, phenotypic skew has never been decomposed, meaning the fundamental12

assumptions of quantitative genetics remain untested. Here, we demonstrate that13

the substantial phenotypic skew in the body size of juvenile blue tits (Cyanistes14

caeruleus) is driven by environmental factors. Although skew had little impact on15

our predictions of selection response in this case, our results highlight the impact16

of skew on the estimation of inheritance and selection. Specifically, the non-linear17

parent-offspring regressions induced by skew, alongside selective disappearance, can18

strongly bias estimates of heritability. The ubiquity of skew and strong directional19

selection on juvenile body size implies that heritability is commonly overestimated,20

which may in part explain the discrepancy between predicted and observed trait21

evolution.22

Quantitative genetics describes how traits respond to selection in terms of selection and23

inheritance. Typically we use two equations to describe this, the breeder’s equation (124

Chapter 12) and Lande’s gradient equation (2 Eq 7). The breeder’s equation gives the25

predicted response to selection as the heritability (h2) multiplied by the selection differential26

(S), whereas Lande’s gradient equation describes the response to selection as the additive27

genetic variance (VA) of the trait multiplied by the selection gradient (β). Although these28

frameworks are generally thought to be interchangeable, they only converge when phenotypes29

(and their genetic and environmental components) are normally distributed or fitness functions30

(the relationship between a trait and fitness) are linear (3 Chapter 29). Given that fitness31

functions are highly unlikely to be linear in practice4;5, any deviation from normality can32

lead to problems with the application of these equations. Consequently, normality is seen33

as a fundamental assumption in quantitative genetics6–8, yet to our knowledge has not been34

directly tested, despite the major consequences it has for how traits are predicted to respond35

to selection9–17.36

The most natural interpretation of heritability in the context of the breeder’s equation is the37

slope of a linear parent-offspring (PO) regression12–14;18;19, whilst S (the covariance between38

a trait and fitness) describes the linear relationship between a phenotype and fitness. The39

accuracy of the breeder’s equation relies heavily on the linearity of both of these functions -40

if both are non-linear, the residuals from the linear functions may be correlated, creating a41

‘spurious response to selection’14. The linearity of the parent-offspring relationship breaks42

down when the amount of skew (asymmetry) differs between genetic and environmental43

components20;21, with genetic and environmental skew causing curvature in opposite directions44

(Figure 1). Formally, a distribution is skewed when it has a non-zero third central moment.45

Whilst the gradient equation is robust to environmental skew, it doesn’t correctly describe the46

response to selection in the presence of genetic skew if the fitness function is non-linear (11 Eq47

42). Environmental skew, through it’s contribution to phenotypic skew, can, however, impact48

the estimation of β when it is approximated using Lande-Arnold regression5;17;22.49

Although extensions to these two equations have been derived that allow for the non-linearity50

of the PO-regression12 and the non-normality of genetic values11, the majority of the work51

in this area remains theoretical. Non-linearity in PO-regressions has been demonstrated in52
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the lab12;23–27 and ad-hoc methods have been used to test for skew at the genetic level28;29.53

Nevertheless, to our knowledge, no study has 1) relaxed the normality assumptions when54

making statistical inferences to examine the origin and extent of skew at different levels, and55

2) explored how observed patterns of natural selection interact with skew to determine how56

well these two equations predict selection response in the wild.57

Juvenile body size is under strong, persistent, directional selection across taxa30, yet is known58

to show little response to this selection31. We show that juvenile body size is highly negatively59

skewed (long tail of small individuals) across bird species, but the origin of this skew is60

unknown. To determine this, we developed statistical methods to decompose the phenotypic61

distribution into a set of skew-t distributions, and predict the shape of PO-regression based62

on the estimated skew. We applied these methods to data from a long-term cross-fostering63

experiment of a wild bird population. By estimating survival selection acting on juvenile body64

size, we tested the robustness of the predicted response to selection from the breeder’s and65

gradient equations.66

Results67

Prevalence of Phenotypic Skew68

Across 27 species of birds, tarsus length (a common measure of structural size) was substantially69

negatively skewed (long tail of small individuals) in juveniles (coefficient of skew: -1.05470

[-1.394, -0.686], pMCMC<0.001), but not adults (-0.302 [-0.641, 0.052], pMCMC=0.086),71

with tarsus length being significantly more skewed in juveniles than adults (difference = -0.75272

[-1.124, -0.366], pMCMC<0.001; Figure 2).73

Decomposing Phenotypic Skew74

Using data on four juvenile body size traits (tarsus length, head-bill length, mass and wing75

length), measured on 15 day old chicks from a long-term cross-fostering experiment on a wild76

population of blue tits, we decomposed phenotypic skew into genetic, between- and within-nest77

environmental components. We used a mixed model approach with skew-t distributed random78

effects which allowed the extent and direction of skew to vary between these levels. There79

was considerable phenotypic skew in all four traits, with the coefficient of skew ranging from80

-0.51 to -1.60 (Figure 3). There was little evidence of genetic skew in any trait (Figure 3,81

Tables S5, S8, S11 and S12 and further discussion in supplementary methods). Phenotypic82

skew was instead driven by considerable environmental skew at both between- and within-nest83

levels, with the relative magnitude of this skew varying between traits (Figure 3, Tables S6,84

S9, S12 and S15).85

Given the environmental origin of the negative phenotypic skew, we would expect a convex86

PO-regression for all traits20 (Figure 1c). By deriving a method to compute this non-linear87

PO-regression (Equation 1), we can show that for all traits the slope in the lower tail of the88

distributions is close to zero, but becomes steeper with increasing body size (Figure 3).89
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Selection on Juvenile Body Size90

To quantify selection acting on body size, we estimated the linear and quadratic effects of body91

size on survival from both day 15 to fledging and fledging to local recruitment in a bivariate92

probit event-history model. As expected, all traits showed significant positive linear effects of93

body size on survival at both stages, with survival increasing at larger body sizes (Figure 4,94

Tables S16-19). Interestingly, all quadratic effects of juvenile size on survival between day 1595

and fledging were positive, with these effects being suggestive and significant for mass and96

wing length, respectively (Figure 4, Tables S16-19), indicating an accelerating effect of size97

on offspring survival. In contrast, negative quadratic effects were typical for survival from98

fledging to recruitment although this effect was only suggestive in the case of tarsus length99

(Figure 4, Tables S16-19). The fitness functions over both events were generally concave100

(Figure 4), which would indicate stabilising selection, but the hypothesis that the optimal101

trait value lay outside of the observed phenotypic range for any trait could not be rejected102

(proportion of iterations with an internal optimum: tarsus 0.853; head-bill 0.543; mass 0.757;103

wing 0.017).104

Using these fitness functions, we were able to estimate selection gradients (β) for each trait by105

taking the partial derivative of the individual relative fitness function with respect to the trait106

and averaging it over the trait’s distribution. However, β is more frequently approximated107

using a Lande-Arnold regression of fitness on a trait22 and phenotypic skew can bias this108

approximation when the fitness function is not linear or quadratic (as is the case for survival109

functions)22. To test this, we calculated the expected estimates of β that would be obtained110

from the Lande-Arnold approach without (β1) and with (β2) a quadratic term fitted22;32;33,111

over the posterior distribution of the survival models (Equations 10 and 11). Figure 4 shows112

that generally there is little meaningful difference between estimates, with the exception of113

wing length, where there is suggestive evidence that β1 would underestimate β by nearly 30%114

(β1/β: 0.711 [0.532, 0.915], pMCMC=0.012).115

Predicted Response to Selection116

In the absence of genetic skew, the correct response to selection is given by Lande’s gradient117

equation (VAβ), which for these traits gives: tarsus: 0.085mm [0.034, 0.127]; head-bill:118

0.069mm [0.037, 0.102]; mass: 0.094g [0.052, 0.139]; wing: 0.175mm [0.077, 0.280]. The119

breeder’s equation is equal to the gradient equation when the Lande-Arnold regression without120

the quadratic term gives good estimates of the selection gradient, irrespective of whether121

the PO-regression is linear or not (i.e if β1 = β then h2S = VAβ;3 Chapter 29). Given122

the similarity between β and β1 for tarsus, head-bill and mass, the breeder’s equation will123

therefore give accurate predictions of the selection response for these traits. However, it124

underestimates the response to selection in wing length by nearly 30%, as the proportional125

change in the predicted response to selection is equal to β1/β (shown above).126

Selection Bias and Heritability Estimation127

The heritability in the breeder’s equation is the heritability before selection (h2b) which can be128

interpreted as the slope of the PO-regression averaged over all individuals irrespective of their129

fitness. However, direct estimates of the PO-regression can only be obtained from individuals130
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that survive to become parents and so to some extent measure the heritability after selection131

(h2a; note the terms heritability before and after selection are used in a broader sense than132

in14, and capture a different bias; see3 p171 for a clear explanation of Heywood’s usage).133

Since larger individuals are more likely to survive, and the PO-regression is steeper for these134

individuals, direct estimates of the PO-regression are likely to be upwardly biased estimates135

of heritability. To demonstrate this, we obtained direct estimates of the PO-regression from136

the 182 individuals (118 male and 64 female) that were measured as chicks and survived to137

produce offspring that were also measured. Although the estimated linear regression (blue line138

in Figure 5) is similar to the predicted non-linear PO-regression (red line in Figure 5) for the139

large surviving individuals (the linear and non-linear regressions fit the data equally well for all140

traits; tarsus p = 0.195, head-bill p = 0.087, mass p = 0.060 and wing p = 0.052), the two141

diverge substantially at small body sizes (Figure 5). In order to directly compare h2a and h2b ,142

we used the parameters of the quantitative genetic and survival models described above to143

calculate h2a as the linear PO-regression weighted by the fitness of the parents (Equation 16)144

and h2b as VA/VP . For tarsus, head-bill and mass, h2a was substantially and significantly higher145

than h2b , with a proportional increase in h2a of over 60% for head-bill and mass (h2a/h
2
b : tarsus146

1.223 [1.137, 1.333], pMCMC=0.002; head-bill 1.664 [1.421, 1.951], pMCMC<0.001; mass147

1.645 [1.325, 2.046], pMCMC<0.001; wing 1.584 [0.373, 2.551], pMCMC=0.372).148

Estimates of h2b will only be accurate if they do not suffer from the same selection bias149

present in PO-regression. Our experimental cross-fostering design means that the majority150

of information used to estimate VA in our analysis comes from the comparison of siblings151

(569 nests have chicks from at least 2 clutches), rather than parents and offspring (182152

parent-offspring comparisons). Sibling comparisons are made before selection, and so should153

not suffer from the same selection bias as parent-offspring comparisons. However, many154

wild bird pedigrees rely largely on information from parent-offspring relationships to estimate155

genetic effects - without partial cross-fostering and using social pedigrees (no within-nest156

variation in relatedness), sibling comparisons provide little information on genetic effects157

because they are confounded with common environment (nest) effects. As both PO-regression158

and the animal model assume that the relationship between offspring and parental phenotypes159

is linear, animal models relying mainly on the information from parent-offspring comparisons160

may also be biased. To test this, we simulated data using the parameters from our quantitative161

genetic and selection models for mass, assuming social and genetic monogamy, with and162

without skew and with and without partial cross-fostering. As expected, environmental skew163

caused h2 estimated from PO-regressions to be consistently and substantially upwardly biased164

by a similar amount as we observed in our data, regardless of cross-fostering (estimated/simulated:165

no cross-fostering 1.609; cross-fostering 1.616). Without cross-fostering (information mainly166

from parent-offspring comparisons), estimates of VA, and so heritability, from animal models167

were upwardly biased, although less than in the PO-regressions (estimated/simulated: VA168

1.226, h2 1.228), whereas cross-fostering (information mainly from sibling comparisons) led169

to the correct estimation of VA and h2 (estimated/simulated: 1.012 and 1.015 respectively;170

Table 1).171
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Discussion172

A common assumption in quantitative genetics is that phenotypes, and their underlying173

genetic and environmental components, are normally distributed. Here we demonstrate174

that this assumption is commonly violated, and in four morphological traits the observed175

negative phenotypic skew is driven by environmental, rather than genetic, skew. There176

was strong directional viability selection acting on all four traits, with non-linear fitness177

functions. Under these conditions the breeder’s equation may give inaccurate predictions178

for the response to selection, but Lande’s gradient equation - which only assumes genetic179

values are normally distributed - is expected to be accurate11. However, this assumes that180

the methods used to obtain estimates of β and VA are robust to deviations from normality.181

Here we empirically demonstrate that common methods used to estimate both metrics can182

produce biased estimates in the presence of environmental skew.183

Perhaps the most striking result is the apparent absence of genetic skew. Theory shows that184

directional selection can generate genetic skew, but the direction of the skew differs between185

models. Under the infinitesimal (Gaussian descendants34) model (assumed in our analyses),186

directional selection can drive a Gaussian distribution of breeding values to be skewed in187

the direction of selection through the build up of linkage disequilibrium11;35;36. However,188

stabilising selection may mitigate this (11 Eq 46) and the breeding value distribution quickly189

returns to normality if selection ceases (the skew quarters each generation for unlinked loci;35190

p149). Finite allele models also generate genetic skew through changes in allele frequency.191

Under the rare-alleles model, directional selection after a long period of stabilising selection192

generates skew in the direction of selection10;11 but sustained long term directional selection193

(with new mutations, on average, having effects in the opposite direction) is expected to194

drive skew in the opposite direction to selection37;38. Given juvenile body size appears to be195

under sustained positive directional selection30 and gene knockout studies in mice show that196

loss-of-function mutations reduce size more often than increase it39, we would predict negative197

genetic skew in our system. However, these models predict that the amount of skew generated198

through selection should be small, consistent with our finding of no or negligible genetic199

skew. Other processes, such as few loci, alleles of large effect, extreme allele frequencies200

or substantial non-additive gene action, particularly directional dominance, could generate201

greater levels of skew21;37;40;41. This seems unlikely for body size, which appears to be highly202

polygenic42;43, although the finding that inbred individuals are on average smaller does suggest203

some directional dominance44–47 which would also generate skew in the opposite direction to204

selection. Two other studies have looked at the distribution of breeding values (indirectly205

through estimating the skew of breeding values estimated in a Gaussian model) and while206

one also found little evidence of skew29, the other found skew in the opposite direction to207

selection28. Lack of genetic skew would also be a consequence of selection acting on an208

environmentally correlated trait, rather than acting directly on size48;49 (discussed further209

below). More widespread assessments of the prevalence of genetic skew are needed to assess210

the generality of these results.211

Environmental skew has received little attention from theoreticians, with most studies assuming212

that environmental effects are normally distributed11;12;14. There are, however, several biological213

processes that are known to induce environmental skew. As far as we are aware, these214

processes are all predicted to generate negative environmental skew, which fits with our215
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general observation of negative skew in juvenile body size across species (Figure 2). For216

example, asymmetric competition, when larger individuals have a disproportionate negative217

competitive effect on others, can drive negative skew50–53. Blue tits have moderate levels of218

hatching asynchrony (hatching spread is approximately 2 days; see54 for distribution across219

bird species) which is expected to generate asymmetries in competitive ability55 and therefore220

skew at the within-nest level. However, the dominant source of phenotypic skew is at the221

between-nest level (contribution to phenotypic skew relates to standardised skew and variance)222

and so if asymmetric competition was the main driver of phenotypic skew, it would require223

parental ability to be driven by asymmetric adult competition, perhaps through differences224

in condition and/or territory quality. An alternative explanation is that (some) chicks have225

yet to reach their asymptotic size by the time of measurement and so variation in their size226

at this time is driven by variation in growth rate and asymptotic size. If variation in growth227

rate is largely at the between-nest level and variation in the asymptote is largely genetic, as228

has been suggested in great tits56, then the non-linearity of growth functions could result in229

skew that is primarily environmental in origin (see57 for a related result). This skew would be230

expected to disappear further into development as all chicks reach their asymptotic size, but231

due to the strong selective disappearance of small chicks this may not necessarily manifest232

itself (see below).233

The strong, negative environmental skew led the PO-regression in all traits to be convex. This234

occurs because the long tail of small individuals are primarily small because of environmental235

factors and so resemble their parents less than larger individuals. Most discussions of the236

linearity of the PO-regression focus on how, in combination with a non-linear fitness function,237

a non-linear PO-regression leads the breeder’s equation to be inaccurate, through generating a238

covariance between the residuals from a linear fitness function and the linear PO-regression3;14
239

(see also Figure S18). This ’spurious response to selection’14 will be largest when the240

non-linear fitness function and the PO-regression either have the same non-linear shape (e.g.241

both concave) causing a positive covariance between residuals, leading the breeder’s equation242

to under-estimate the response to selection or opposite shapes (e.g. one concave and one243

convex), creating negative covariance between residuals and so over-estimation of selection244

response. Skew generates quite predictable and simple non-linearity in the PO-regression245

(Figure 1), and so generally accelerating or decelerating fitness functions will be more likely246

to generate a spurious response to selection, as is seen with wing length (Figure S18).247

We additionally show that the selective disappearance of small individuals alongside a non-linear248

PO-regression leads to h2 estimates that are biased towards the slope of the surviving large249

individuals. This selection bias is particularly striking in estimates from PO-regression (approx250

65% increase in h2 for mass and head-bill length; Figure 5) but importantly also occurs251

in animal models applied to pedigrees where information about the genetic variance comes252

primarily from parent-offspring comparisons (e.g. typical bird pedigrees without cross-fostering),253

although to a lesser degree (23% increase in animal models compared to a 61% increase in254

PO-regression; Table 1). This bias occurs because both PO-regression and the animal model255

assume that the relationship between offspring and parental phenotypes is linear, and so256

assumes the missing parent-offspring comparisons would follow the same slope. It is worth257

noting that we simulated closed populations and so a higher relatedness structure than in258

most wild bird populations, which are characterised by low recruitment and high immigration.259

Thus, our simulations likely underestimated the possible bias in animal models. We also260
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demonstrated that cross fostering eliminated this bias in animal models. This occurs because261

cross-fostering shifts the majority of the information for estimating VA from parent-offspring262

comparisons, to sibling comparisons, and sibling comparisons are made before selection whilst263

parent-offspring comparisons are made after.264

Previous work in this system has shown that selection differentially eliminates negative environmental,265

but not genetic, deviations for mass over the course of development58. This was interpreted266

as mass being an environmentally correlated target of selection rather than the true target267

(i.e. no causal relationship between size and survival)48. However, incorporating skew into268

our models challenges this interpretation as, under our model, size is the true target of269

selection. As the long tail of small individuals are small for environmental reasons, the selective270

disappearance of these individuals drives the observed decrease in environmental variance and271

skew though ontogeny. Given the selective disappearance previously observed was prior to the272

measurements analysed here58 it seems likely that the environmental skew we observe is an273

underestimation of the true skew, meaning we are likely underestimating the true non-linearity274

of the PO-regression. Multivariate methods would account for this selective disappearance59,275

however, these proved too complex to implement in this instance.276

Given the consistent negative environmental skew we see across the four traits, and the277

conserved nature of negative phenotypic skew in juvenile (but not adult) size across bird278

species, we believe a concave PO-regression for juvenile size traits might be a general finding.279

As found here, juvenile body size is also generally under strong viability selection across280

taxa30. Together, this suggests that previous heritability estimates of juvenile size are likely281

to have been systematically over-estimated, especially as a large proportion are based on282

PO-regressions60. Indeed, tarsus length heritability estimates from PO-regressions have been283

shown to be consistently larger than those from animal models60. Juvenile size is a hallmark284

trait of evolutionary stasis, whereby traits that should respond to selection in the wild appear285

not to. Although these results do not fully explain this stasis, they do show that the predicted286

response to selection may be being substantially overestimated in traits with non-Gaussian287

phenotypic distributions.288

Lande-Arnold regression is by far the most common method for estimating β 5;32;61 and is289

known to be unbiased in the presence of phenotypic skew only if the fitness function is linear290

or quadratic and this quadratic term is modelled22. Although the estimated survival functions291

deviated from a quadratic for all traits, estimates of β were close to those that would have292

been obtained under Lande-Arnold regression including the quadratic term (β2) for all traits,293

and without the quadratic term (β1) for three traits. The near equivalence of these different294

estimates seems at odds with the conclusions of Bonamour et al.17, who demonstrate that295

selection gradients approximated with Lande-Arnold regression are biased in the presence of296

phenotypic skew. However, Bonamour et al. only modelled the linear term in the Lande-Arnold297

regression (β1) whilst assuming a quadratic fitness function - had the quadratic term also been298

included, the linear term in the Lande-Arnold regression (β2) would have been unbiased (22,3299

Chapter 29), in correspondence with our wing length results (β1 underestimated β, but β2300

did not). However, there is no reason to believe including a quadratic term in a Lande-Arnold301

regression will generally result in a good approximation of β. Indeed, Morrissey & Sakrejda5
302

compared β with that approximated from a quadratic Lande-Arnold regression and found quite303

large proportional differences (approx. 30%), although small differences in absolute terms.304
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We therefore urge caution in assuming that our results are a general statement about the305

accuracy of Lande-Arnold regression under non-normality.306

Quantitative genetics uses two main frameworks to predict how traits will respond to selection.307

Here we demonstrate how both of these frameworks are affected by skew at the environmental308

and genetic levels. Genetic skew can lead both the breeder’s equation and Lande’s gradient309

equation to be inaccurate. Although little or no genetic skew has been found in the few310

studies that have tried to quantify it, it remains unknown to what extent this is a generality,311

and will be highly dependent on the genetic architecture of specific traits. In the absence of312

genetic skew, the gradient equation presents an accurate prediction of selection response11,313

although environmental skew provides challenges to the accurate estimation of both β and VA.314

Whilst the breeder’s equation may provide a more intuitive way of thinking about selection315

response, the extensions to this framework that allow for non-linearity12 are complex and316

computationally expensive. We therefore recommend a focus on the gradient equation (and317

its extensions11) in wild systems, where fitness functions are highly likely to be non-linear and318

trait distributions are commonly skewed.319
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Methods320

This study was preregistered (see https://osf.io/7qyp4/). We have highlighted in the following321

sections where our methods deviate from those planned.322

Meta-analysis of Skew323

We collected raw data on juvenile and adult tarsus length from several sources: we used a324

mailing list to request data, we searched the dryad repository for ’tarsus’, we emailed groups325

with known long-term avian datasets that were not represented in these sources and included326

any tarsus length data that we otherwise encountered. When datasets from different studies of327

the same population overlapped in time, we use the largest single dataset available. Datasets328

were taken from43;62–99.329

Sample standardised skew was estimated from raw data z as

1
n

∑n
i=1(zi − µ̂)3[

1
n

∑n
i=1(zi − µ̂)2

]3/2
√
n(n− 1)

n− 2

with sampling variance as
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)

where n is sample size and µ̂ the estimate of the trait mean100.330

Using these data, we ran a random-effect meta-analytic model in MCMCglmm with age331

(juvenile or adult) as a fixed factor and random effects of species and study. Models were run332

for 65000 iterations, with a burnin of 15000 and a thinning intervals of 50. The priors for the333

random-effect variances were scaled (by 100) F1,1 and the prior for the residual variance was334

inverse-gamma with a shape and scale of 0.001. The fixed effects had a diffuse normal prior335

(mean=0, variance=1010).336

Study population337

We used data from a nest-box population of blue tits (Cyanistes caeruleus), on the Dalmeny338

estate, Edinburgh, United Kingdom, collected from 2011 to 2018, with 253 nest-boxes over339

two sites. Detailed methods are described in58;101. Briefly, all nests were visited regularly until340

the discovery of the first egg, and then daily for egg cross-fostering, when eggs were weighed.341

From 2011-2013 and 2016-2018 a partial egg cross-fostering design was used to enable additive342

genetic and nest-of-rearing effects on offspring size to be separated58. In 2014-2015 a mixture343

of full and partial cross-fostering was used as part of a separate experiment. Full details of344

cross-fostering can be found in102. After egg laying was complete, nests were left undisturbed345

for 11 days and then checked daily for hatching. At hatching (day 0), all chicks were uniquely346

marked (within a nest). The chicks had blood samples taken at day 3 and were given a unique347

metal ring at day 9. At day 15, chick’s tarsus, wing and head-bill lengths were measured and348

they were weighed. For the morphometric measurements, one chick from each nest was349

measured twice in order to account for measurement error58. From day 10, adults were350
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caught at the nest in order to identify them; blood samples and morphometric measurements351

were taken and the birds were uniquely ringed. At the end of the season we checked all352

nests and recorded any dead chicks left in the nest. From this we could infer which chicks353

fledged. Chicks were considered recruited if they were recaptured as breeders in subsequent354

years. Permission to monitor, catch and ring the birds was given by Scottish Natural Heritage355

and the British Trust for Ornithology and permission to take blood samples was granted by356

the UK Government’s Home Office. All permission and licenses were granted to JDH.357

Social parentage was assigned through catching parents at the nest. When no female was358

caught, the social female was assigned a dummy mother identity. When no male was caught,359

the social father was assigned as the genetic sire with the largest proportion of paternity in360

a nest, either a male caught at a different nest that year, or an unsampled male assigned a361

dummy identity.362

For the assignment of genetic parentage and chick sex, genotypes were obtained using blood363

and tissue samples from adults and chicks. Genotyping and pedigree reconstruction largely364

followed protocols outlined in58 and101. However, adults not caught in the focal year but365

that were known to be alive (because they were caught in subsequent years and were aged 2366

years or over) were allowed to be parents of chicks in the focal year. The distance between367

the nest-of-origin of the chicks and the nest at which these candidate parents were caught in368

the subsequent year was fitted as a covariate. Mothers were allowed to be polygamous when369

(half) sib-ships were assigned to chicks with unknown fathers (see Supplementary Methods).370

When assigning chick sex, we used morphological sexing of recruits over molecular sexing from371

chicks (sexing didn’t match for 5 chicks).372

For our analysis we included data on chick size measured at day 15 post-hatching, collected on373

this project from 2011-2018, and additionally chick recruitment data from 2019 and 2020. We374

included all nests for which hatching date was known. Although similar morphological data375

was collected in 2010, we excluded all records from this year as egg size was not measured.376

Egg size was used to account for nest-of-origin effects in our models (see below). We also377

excluded data from an additional two nests where egg size was not measured, from chicks for378

which molecular sexing was not successful (n=20 chicks) and where we did not have one of379

the day 15 measurements (n=11 chicks). In total, we had records of 5123 day 15 chicks in380

715 nests, with 642 chicks repeatedly measured.381

Statistical analysis382

All models were run in a Bayesian framework. From all models posterior means and 95%383

credible intervals are presented. A p-value for the fixed effects and covariances in these384

models was approximated (pMCMC) as two times the smaller number of iterations where the385

parameter value is either less than zero or greater than zero103. We use a threshold of 0.005386

to refer to results as significant and those between 0.05 and 0.005 as suggestive104.387

Decomposing phenotypic skew using hierarchical models388

We modelled the four traits (tarsus length, head-bill length, mass and wing length) measured389

at day 15 using linear mixed effects models with sex (2 level factor), year (8 level factor), time390

of day (continuous - hours from midnight) and egg size (continuous) as fixed. Additive genetic391
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and nest-of-rearing effects were modelled as random. Because we have repeated measurements392

of tarsus, wing and head-bill lengths, we additionally modelled measurement error effects in393

these traits, by including bird identity effects, which are equivalent to the residuals in a model394

without repeat measures, and the residuals are measurement error effects58. In contrast to395

past analyses58;101, we do not model nest-of-origin effects but rather include egg size as a396

covariate to account for these effects (see58 and Supplementary materials). As estimating397

skew-t distributed random effects (see below) is parameter heavy, including a covariate rather398

than a random effect is preferable, especially as nest-of-origin effects are very small for these399

traits58;101.400

Skew due to the fixed effects was obtained by multiplying the fixed effect design matrix by the401

fixed effects and estimating the parameters for the skew-t distribution of the resulting variable.402

These were used when calculating the non-linear parent offspring regression and when plotting403

the sample skew. This method assumes that the joint distribution of the covariates is equal to404

the empirical distribution we observe. In combination with a diffuse prior on the fixed effects,405

this assumption probably leads to a small inflation in the estimated (absolute) skew. Time406

of day was excluded from this estimate as any skew induced by this is due to our sampling407

design rather than being biologically relevant.408

In order to estimate skew in in the random effects, we fitted random effects with skew-t409

distributions. The residuals for the repeat measured traits were treated as Gaussian as these410

represent measurement errors. As with the normal distribution, the skew-t distribution105–108
411

has a location ξ and scale ω parameter, but also parameters δ and ν which modify the skew and412

tailness, respectively. The distribution converges on a normal distribution when δ = 0 and ν413

approaches infinity. As δ moves away from 0 and ν decreases the (absolute) skew in a variable414

increases, with the sign of δ signifying the direction of the skew. The skew-t distribution is415

unbounded and readily allows for considerable amounts of positive and negative skew. The416

reasons for the use of this distribution are further discussed in the supplementary materials.417

Our approach to modelling the additive genetic effects is to extend standard quantitative418

genetic models by allowing the base population breeding values to have a skew-t distribution,419

with normally distributed Mendelian sampling deviations in the descendants (with variance420

ω2(1− F )/2 where F is the average inbreeding coefficient of the individual’s parents). This421

assumes that inheritance occurs under the Gaussian descendants infinitesimal model34;109; i.e.422

the Mendelian sampling deviations are normally distributed within families, and any genetic423

skew results from selection. In practice, however, the Mendelian sampling deviations are largely424

confounded with residual effects in our data because there are few parent-offspring comparisons425

(due to high migration and low recruitment) and so inferences are probably quite robust to426

any violation of the Gaussian descendants assumption. Initially we tried to fit this model in an427

animal model framework, but due to poor mixing we chose to approximate the model using428

a dam-sire model. This model discards information about the Mendelian-sampling deviations429

and subsumes them in the residual effects which then come from a mixture distribution110.430

Given there is little information in our data about the Mendelian-sampling deviations the431

dam-sire and animal models are expected to give almost identical answers (see Supplementary432

Materials). Although this method allows us to directly estimate skew in breeding values, when433

the environmental residuals are skew-t, as assumed here, the mixture distribution does not434

have standard from. Here, we approximate the mixture distribution as skew-t and although435

we cannot derive the full distribution of the environmental residuals we are able to obtain their436
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variance and skew. These models provided little evidence for genetic skew in any trait and so437

we reverted to an animal model with normally distributed breeding values - the animal model438

approach having the advantage that the environmental residual skew can then be directly439

estimated. The dam and sire effects were modelled in a multi-membership model where the440

two sets of effects were constrained to having the same skew-t distribution.441

Initially, we intended to model chick mass over ontogeny in a multivariate framework (see442

preregistration), as in previous studies of this population58;101. However, implementing the443

required multivariate skew-t models proved too challenging. Since there is strong directional444

selection on chick body mass throughout ontogeny58;101, our estimates of skew at day 15445

are likely underestimates as the univariate analysis used will fail to account for selective446

disappearance prior to day 1558;101. We also planned to have a global box-cox parameter447

in case there was a single transformation that would make everything linear and additive.448

However, given the problems we had with implementing more complex models, we chose not449

to include this additional complexity.450

It should also be noted that estimates from these skew-t models seem to be more sensitive451

to unmodelled heteroskedasticity than standard Gaussian mixed effects models, even when452

skew exists, and this can lead to biased fixed effect and variance estimates. This led us453

to fit a reduced set of fixed effects compared with previous analyses58;101 and outlined in454

our pre-registration (see Supplementary materials). To partly address this issue we also ran455

equivalent Gaussian models for all skew-t models, and present the results in the Supplementary456

materials. There were small differences the between models but the results remain qualitatively457

the same (see SM; Figure S17, Tables S4-15).458

These models were run using Stan (version 2.21.0)111 using the cmdstanr package (Stan459

Development Team, 2019) in R (version 4). Four chains were run for each model with460

a warmup of 4000 iterations and 6000 iterations post-warmup, with the exception of the461

dam-sire wing length model which was run with a warmup of 5000 iterations and 10000462

iterations post-warmup. Convergence of individual chains was visually assessed, as well as463

ensuring that the Gelman–Rubin diagnostic (R-hat) across chains was less than 1.1112. We464

used diffuse normal priors for fixed effects (mean=0 and standard deviation=100), half-Cauchy465

priors (mean=0 and standard deviation=10) for standard deviations and uniform priors from466

-1 to 1 for δ and 4 to 40 on ν. The choice of priors is discussed further in the Supplementary467

materials.468

Non-Linear Parent-Offspring Regression469

The PO-regression function is defined as E[zo|z] where zo is the phenotype of offspring from a470

parent with phenotype z. Assuming random mating and environmental values in the offspring471

(eo) are independent of parental phenotypes this becomes 1
2
E[g|z] + 1

2
E[g] + E[eo] under472

the Gaussian descendants assumption, where g is breeding value. Have θg be the parameters473

of the breeding value distribution and θe the parameters of the environmental distribution.474

Then,475

E[g|z] =
∫
(z−e)p(z−e|θg)p(e|θe)de∫

p(z−e|θg)p(e|θe)de (1)
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The integrals have to be evaluated numerically, which is time consuming, and so the regression476

function was evaluated at the posterior mean of the parameters from the skew-t animal models477

to give E[zo|z] for each trait (Figure 5). Also, note that in the presence of pre-breeding survival478

selection, the term 1
2
E[g] in the intercept of the regression function should be replaced by479

1
2
(E[g] + ∆g) where ∆g is the change in mean breeding value due to selection such that480

E[g] + ∆g is the expected breeding value of the other parent14.481

Selection on chick body mass482

Given that we were not able to model chick body mass in a multivariate framework, we did483

not model survival throughout ontogeny as originally planned (see preregistration), but rather484

modelled survival from day 15 to fledging and fledging to recruitment. We modelled this as485

an event history in a probit regression (binomial error distribution and probit link function)486

including a quadratic effect of chick size at day 15 on both events, allowing us to model the487

stabilising component of selection. These models accounted for measurement error in tarsus,488

head-bill and wing lengths, using the repeated measurements of these traits. Originally we489

planned to correct our measurements for time of day effects (see preregistration). However,490

these effects proved to be very small and for most traits non-significant (see Supplementary491

Results). We therefore decided not to add this extra complexity into our models.492

Sex, day of hatching within the nest, year, clutch size, male presence, nest hatch date were493

also included as fixed effects. All fixed effects were allowed to differ between the two events.494

Finally we modelled the 2x2 covariance matrix of nest-of-rearing effects. This model was495

run using Stan. Four chains were run for each model with 5000 iterations and a warmup of496

2500 iterations with a thinning interval of 10. Convergence of chains was assessed as above.497

Diffuse priors for fixed effects (mean=0 and standard deviation=100), half-Cauchy priors for498

all standard deviations (mean=0 and standard deviation=10) and LKJ priors on correlations499

with shape=2113 were used.500

The Individual Relative Fitness Function501

Partitioning the linear predictors for each survival event (1: day 15 to fledging, 2: fledging to502

recruitment) into a part due to the trait and a part due to remaining terms (denoted η), and503

assuming that the distribution of η(1) and η(2) are bivariate normal conditional on the trait z,504

then the absolute fitness function has the form:505

W (z) = FMVN (s|Σ) (2)

where FMVN is the multivariate normal cumulative density function in which the first argument506

is the quantile to be evaluated and the second argument is the (co)variance of the variates507

(the means are zero and are therefore not given). For event i508

s(i) = E[η(i)] +
COV (η(i), z)

µ2

(z − µ) + β(i)z +
1

2
γ(i)z2 (3)
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where β(i) and 1
2
γ(i) are the linear and quadratic effect of the trait on event i, µ is the trait509

mean and µi the ith central moment of the phenotypic distribution.510

Σ(i,j) = COV (η(i), η(j))− COV (η(i), z)COV (η(j), z)

µ2

+ COV (u(i), u(j)) + δ(i,j) (4)

where u(i) are the nest effects for event i and δ(i,j) = 1 when i = j and represents the residual511

variance.512

The partial derivative of W (z) with respect to z is given by513

∂W (z)
∂z

= fN
(
s(1|2)|Σ(1|2)) (COV (η(1),z)2

µ2
+ β(1) + γ(1)z − Σ(1,2)

Σ(2) (COV (η(2),z)2

µ2
+ β(2) + γ(2)z)

)
FN
(
s(2)|Σ(2)

)
+ fN

(
s(2)|Σ(2)

) (COV (η(2),z)2

µ2
+ β(2) + γ(2)z

)
FN
(
s(1|2)|Σ(1|2))

(5)

where fN and FN are the density and cumulative density functions for a centred normal514

distribution, and515

s(1|2) = s(1) − Σ(1,2)

Σ(2) s
(2) Σ(1|2) = Σ(1) − (Σ(1,2))2

Σ(2)
(6)

Solving Equation 5 to find the stationary point(s), and therefore the optimal trait value, is516

difficult. Instead we evaluated the derivative of Equation 5 at the minimum and maximum517

observed trait value and assessed whether the derivative at the minimum is positive and518

negative at the maximum. This condition implies an optimal trait value within the range of519

observed trait values.520

Selection Gradients521

The Lande-Arnold method22 for estimating the selection gradient is only robust to phenotypic522

skew if the fitness function is quadratic and both the mean-centered trait value and its square523

are fitted in the regression3;22. We therefore computed three selection gradients. Using the524

notation in33, we calculated our best estimate of it114,525

β = E

[
∂w(z)

∂z

]
=

∫
∂w(z)

∂z
p(z)dz ≈ 1

n

n∑
i=1

∂w(z)

∂z

∣∣∣∣
zi

(7)

where p(z) is the probability density function for z, w(z) is the relative fitness function526

obtained by dividing W (z) by mean fitness (E[W ] =
∫
W (z)p(z)dz) and zi are the observed527

trait values. Put simply, we calculated the mean partial derivative of individual fitness function528

(from Equation 5) across our observed phenotypic distributions, divided by mean fitness.529

The linear selection differential is defined as530

S =

∫
zw(z)p(z)dz − µ ≈ 1

n

n∑
i=1

ziw(zi)− µ̂ (8)
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and the quadratic selection differential as531

C =

∫
(z − µ)2p(z)w(z)dz − µ2 ≈

1

n

n∑
i=1

(zi − µ̂)2w(zi)− µ̂2 (9)

From these we can calculate the expected linear regression coefficient from the Lande-Arnold532

method when only the linear term was fitted:533

β̂1 =
Ŝ

µ̂2

(10)

and the linear regression coefficient from the Lande-Arnold method when both the linear and534

quadratic term are fitted (Eq. 29.28a from3):535

β̂2 =
(µ̂4 − µ̂2

2)Ŝ − µ̂3Ĉ

µ̂2(µ̂4 − µ̂2
2)− µ̂2

3

(11)

Selection cannot operate on between-sex differences in trait values (the average fitness of536

the two sexes is constrained to be equal) and we assume that selection does not operate on537

between-year differences in trait values (which might occur if juvenile size impacts on adult538

survival). We therefore estimated each β as the average of each sex by year combination539

(Figure 4 e-h), calculated across the posterior distribution of the survival model.540

Response to Selection541

The extension of Lande’s gradient equation to a non-normal distribution of genetic effects is542

(combining Equations 26 and 42 from11):543

∆µ =
∞∑
j=1

Kj+1(g)
1

j!

∫
∂jw(z)

∂zj
p(z)dz (12)

where Kj(x) denotes the jth cumulant of x, which up to the third cumulant (skew) is544

∆µ = VAE

[
∂w(z)

∂z

]
+
SA
2
E

[
∂2w(z)

∂z2

]
(13)

where SA is the skew in the additive genetic effects. When the distribution of additive genetic545

values is normal and/or the fitness function is linear, Equation 12 reduces to Lande’s gradient546

equation547

∆µ = VAE

[
∂w(z)

∂z

]
= VAβ (14)

since all cumulants > 2 of the genetic distribution are zero.548
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Heritability549

We compared how well our inferred non-linear PO-regression (Equation 1) performed at550

predicting offspring phenotype compared to linear single-parent mid-offspring regression. Using551

the 182 individuals (118 male and 64 female) that were measured as chicks at day 15 and552

survived to produce offspring that were also measured at day 15, we fitted a weighted (by553

family size) regression with our inferred non-linear PO-regression fitted as an offset. We then554

compared the fit of this model to an identical model but where the raw parental phenotype555

was also fitted as a covariate with a free parameter.556

We then compared estimates of the heritability before and after selection (h2b and h2a, respectively).557

The heritability can be defined as the regression coefficient of a linear mid-PO-regression, and558

can be calculated before selection559

h2b = 2COV (zo,z)
µ2

= VA
VP

(15)

or after selection560

h2a = 2E[w(z)zoz]−E[w(z)zo]E[w(z)z]
E[w(z)z2]−E[w(z)z]2 (16)

The posterior distribution of h2b was evaluated directly, but the ith posterior sample of h2a561

was obtained by simulating 104 values of z and zo using the parameters sampled at the562

ith iteration of the trait model, calculating expected fitness for each sampled z using the563

parameters sampled at the ith iteration of the fitness model, and then evaluating the relevant564

expectations.565

Simulations566

To test how different sampling designs and standard estimation procedures (PO-regression567

and Gaussian animal model) impact estimates of heritability in the presence of skew and568

selection, we simulated data according to the posterior mean of the parameters from our569

skew-t quantitative genetic and selection models for mass. A closed population with 1000570

breeding pairs was simulated over three generations, with 10 measured full-sib offspring per571

pair. Four scenarios were simulated: either nests were not cross-fostered or they were paired572

and five offspring reciprocally crossed, and the random effects were either skew t-distributed573

(with ω, δ and ν parameters set to their posterior means) or they were normally distributed but574

with matching variance. The probability of a chick recruiting to be a parent was obtained by575

applying the estimated survival model for chick mass to the simulated phenotype. Each of the576

four scenarios were simulated 2000 times and for each data set the heritability was estimated577

directly using PO-regression and as the estimate of the additive genetic variance over the sum578

of all variances estimated from a Gaussian animal model fitted in ASReml-R115.579

Data availability580

All data and code can be found at https://doi.org/10.5281/zenodo.5794316.581
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Figure 1: The effects of different distributions of breeding values (G) and environmental values
(E) on the distribution of phenotypes (P) and the shape of the PO-regression. When both
genetic and environmental values are normally distributed (a), as typically assumed, there is a
linear PO-regression. Negative genetic (b) and environmental (c) skew affect the shape of the
parent-offspring relationship in opposite directions, whilst inducing the same phenotypic skew.
If genetic and environmental distributions are skewed in the same direction (d) their effects
on the parent-offspring relationship can cancel each other out, giving a linear parent-offspring
relationship, despite considerable phenotypic skew. If genetic and environmental are skewed
in opposite directions (e), although they may can cancel each other out at the phenotypic
level, they induce a highly non-linear parent-offspring relationship. 1-5) are all simulated with
a heritability (VA/VP ) of 0.5.
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Figure 2: Skew in the distribution of avian tarsus lengths across different species, measured
as the coefficient of skew. In the boxplots, the center line shows the median; box limits
show upper and lower quartiles; whiskers show 1.5x interquartile range; points show outliers.
Numbers above the plots show the number of estimates, and species in parenthesis. The red
points show the skew in our blue tit data.
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Figure 3: Decomposition of variance and skew in juvenile body size traits in blue tits. Top plots shows the phenotypic distribution of the
traits, with the red line showing the distribution predicted from the skew models. The middle rows show the variance and skew (top and
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Figure 4: Average (over years and sexes) fitness functions (a-d) and selection gradients
(e-h) for tarsus length, head-bill length, mass and wing length, respectively, from day 15
to recruitment. In plots a-d, solid lines show the posterior mean fitness functions, dotted lines
show the 95% credible intervals, and points show the average survival of measured individuals
from day 15 to recruitment in equally spaced intervals. The size of the points is proportional
to the square root of the sample size. The phenotypic distribution of the traits is shown, with
the grey vertical line showing the phenotypic mean. The direction and significance of the
effect of the trait on fitness is also shown, ‘F’ and ‘R’ are survival from day 15 to fledging and
from fledgling to recruitment respectively, and ‘L’ and ‘Q’ and linear and quadratic effects. In
plots e-h, β refers to the selection gradient derived from this fitness function, β1 and β2 refer
to the approximations from the Lande-Arnold regression excluding and including a quadratic
term, respectively. In all plots ‘NS’ indicates p > 0.05, ‘*’ indicates 0.05 > p > 0.005 and
‘**’ p < 0.005. 30
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Figure 5: PO-regressions for four body size traits. Top panels show distribution of all chicks (red) and those that survived to recruit
(blue), representing the distribution of potential parents before and after selection, respectively. Scatter plots show mid-offspring versus
single parental traits. Values are corrected for year, sex and time of day at which they were measured, and the size of the points is
proportional to the square root of the family size. The red line is the predicted non-linear PO-regression based on the posterior means of
the parameters from the skew-t quantitative genetic model and the blue line is the fit of a weighted (by family size) linear regression to the
actual data. These are not corrected for measurement error. Lower panels show the comparison between heritabilities calculated before
(h2b) and after (h2a) selection, calculated across the posterior distribution of the skew-t animal model trait models. In these lower plots all
heritabilities account for measurement error. In all plots ‘NS’ indicates p > 0.05, ‘*’ indicates 0.05 > p > 0.005 and ‘**’ p < 0.005.
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Table 1: Estimates (mean± SE) of heritability and additive genetic variance from
PO-regression and Gaussian animal models (AM) across 2000 simulated data sets.
Three-generation simulations were set up with either no cross-fostering (N) or with nests
paired and half of each nest’s offspring reciprocally crossed (X). Phenotypes were simulated
according to the model estimated for chick mass exactly (skewed) or as Gaussian with
matching variance. The probability of a chick recruiting to be a parent was obtained by
applying the estimated survival model for chick mass.

Simulated Gaussian Skewed
N X N X

h2 PO 0.138 0.139±0.001 0.140±0.001 0.223±0.001 0.224±0.001
h2 AM 0.138 0.137±0.001 0.135±0.000 0.170±0.001 0.141±0.000
VA AM 0.148 0.146±0.001 0.144±0.000 0.181±0.001 0.150±0.000
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