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Abstract: 
 
Recent advances in remotely piloted aerial systems (“drones”) and imagery processing enable 
individual tree mapping in forests across broad areas with low-cost equipment and minimal 
ground-based data collection. One such method involves collecting many partially overlapping 
aerial photos, processing them using “structure from motion” (SfM) photogrammetry to create a 
digital 3D representation, and using the 3D model to detect individual trees. SfM-based forest 
mapping involves myriad decisions surrounding methods and parameters for imagery 
acquisition and processing, but it is unclear how these individual decisions or their combinations 
impact the quality of the resulting forest inventories. 
 
We collected and processed drone imagery of a moderate-density, structurally complex mixed-
conifer stand. We tested 22 imagery collection methods (altering flight altitude, camera pitch, 
and image overlap), 12 imagery processing parameterizations (image resolutions and depth 
map filtering intensities), and 286 tree detection methods (algorithms and their 
parameterizations) to create 7,568 tree maps. We compared these maps to a 3.23-ha ground 
reference map of 1,775 trees > 5 m tall that we created using traditional field survey methods. 
 
The accuracy of individual tree detection (ITD) and the resulting tree maps was generally 
maximized by collecting imagery at high altitude (120 m) with at least 90% image-to-image 
overlap, photogrammetrically processing images into a canopy height model (CHM) with a 2-
fold upscaling (coarsening) step, and detecting trees from the CHM using a variable window 
filter after applying a moving-window mean smooth to the CHM. Using this combination of 
methods, we mapped trees with an accuracy exceeding expectations for structurally complex 
forests (for overstory trees > 10 m tall, sensitivity = 0.69 and precision = 0.90). Remotely 
measured tree heights corresponded to ground-measured heights with R2 = 0.95. Accuracy was 
higher for taller trees and lower for understory trees, and would likely be higher in less dense 
and less structurally complex stands. 
 
Our results may guide others wishing to efficiently produce broad-extent individual-tree maps of 
conifer forests without investing substantial time tailoring imagery acquisition and processing 
parameters. The resulting tree maps create opportunities for addressing previously intractable 
ecological questions and informing forest management. 
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Introduction 
 
 Forest inventories characterize the species, size, condition, and location of individual 
trees and are critical resources for advancing ecological theory and informing forest 
management (Hubbell et al., 1999; Lasky et al., 2014; North et al., 2021; Whittaker, 1956; 
Wright et al., 2010; Young et al., 2020). Forest inventories are traditionally completed by 
ground-based field crews and require substantial time, labor, and financial investment, which 
limits their spatial extent and continuity (Gray et al., 2012; USDA Forest Service, 2016). To 
address these constraints, forest mapping approaches have more recently employed remote 
sensing data to create continuous forest inventories over broad areas. Remote sensing-based 
forest mapping has traditionally taken an “area-based” approach in which remote sensing data 
(e.g., spectral reflectance data from satellite or aerial imagery) are used to estimate forest 
summary statistics such as tree density, mean tree height, and aboveground biomass (De Luca 
et al., 2019; Jayathunga et al., 2018; Puliti et al., 2019; Rodman et al., 2019). However, the 
increasing quality of remote sensing data and processing workflows has recently enabled 
remote forest mapping more analogous to field-based approaches that involve detecting and 
characterizing individual trees (Jeronimo et al., 2018; Koontz et al., 2021; Swayze et al., 2021). 
 Small remotely piloted aerial systems (RPAS, or “drones”) provide data at a scale 
particularly well suited for individual tree detection (ITD). A fundamental technique in drone-
based forest mapping involves collecting many partially overlapping images in a dense grid over 
the study area (Dandois & Ellis, 2013; Westoby et al., 2012). The images are supplied to a 
photogrammetry algorithm, which employs principles of perspective and triangulation to 
estimate the 3D structure of the landscape by quantifying the amount by which landscape 
features move relative to each other between images. This method is commonly referred to as 
“structure from motion” (SfM; Dandois & Ellis, 2013; Westoby et al., 2012) because the many 
optical perspectives from the drone as it moves allows modeling of the 3D structure of objects 
and landscapes. The structure data can be represented as a point cloud in which each point 
identifies a surface (e.g., leaf, stem, ground) that appears in multiple photos. The point cloud 
data can be processed into raster-format vegetation canopy height models (CHMs).  

SfM-derived point cloud data share many characteristics with point clouds derived from 
aerial light detection and ranging (lidar; also known as aerial laser scanning, ALS), which can 
also be used for ITD (Jeronimo et al., 2018; Zaforemska et al., 2019) and may better capture 
sub-canopy structure because some laser pulses penetrate the canopy (Jayathunga et al., 
2018; Lisein et al., 2013). Because ALS-derived point clouds have historically been collected 
using crewed aircraft flying higher than a typical drone operation, they generally cover more 
ground area per mission but have substantially reduced resolution and point density (e.g., < 8 
points m-2 for ALS-derived point cloud; USGS, 2018; Weinstein et al., 2021) compared to drone-
based SfM point clouds (e.g., > 100 points m-2, this study). Technological advances have 
enabled drone-mounted lidar instrumentation that can achieve a resolution of thousands of 
points m-2 but with practical application over only a few hectares (Kellner et al., 2019; Lin et al., 
2011; Sankey et al., 2017)  (Lin 2011, Sankey et al., 2017, Kellner et al., 2019). In comparison 
to drone-mounted lidar, however, drone-based SfM data is much less costly to obtain (it can be 
collected with standard RGB [red, green, blue] cameras) and can be collected over moderately-
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sized focal areas with high frequency and minimal advance planning (Camarretta et al., 2020; 
Mlambo et al., 2017). 
 Numerous algorithms have been developed to detect individual trees from CHMs (e.g., 
Popescu & Wynne, 2004) and directly from point clouds (e.g., Li et al., 2012; Xiao et al., 2019). 
ITD accuracy varies considerably depending on the stand structural characteristics and 
algorithms used, with higher accuracy in lower-density stands and in overstory vs. understory 
trees. ITD accuracy is arguably best summarized using the F score, which incorporates the 
rates of both correct and false positive detections. The F score is calculated as the harmonic 
mean of the sensitivity (proportion of ground reference trees detected; also called recall) and the 
precision (proportion of detected trees that match ground reference trees) and ranges between 
0 (no ground trees detected) and 1 (all ground trees detected and no false positive detections). 
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Recent ITD work using drone-derived SfM products for overstory trees (Creasy et al., 2021; 
Mohan et al., 2017) or for all trees in low- to moderate-density stands (Belmonte et al., 2020; 
Bonnet et al., 2017; Swayze et al., 2021) has obtained F scores ranging roughly between 0.75 
and 0.85, whereas for higher-density stands or understory trees, performance tends to be lower 
(e.g., F < 0.65; Creasy et al., 2021). The height and canopy extent of automatically detected 
trees can usually be measured from CHM or point cloud data with high accuracy (RMSE: 3-7% 
and R2 > 0.70; Belmonte et al., 2020; Creasy et al., 2021; Silva et al., 2016), though the narrow 
tops of standing dead trees can be missing in the 3D reconstruction, leading to underestimates 
of dead tree height (Koontz et al., 2021). 
 Despite the promise of drone-based tree mapping using SfM, relatively little work has 
quantitatively evaluated the influence of different imagery collection, imagery processing, and 
tree detection methods on the accuracy of the resulting tree maps. Using an oblique (as 
opposed to directly downward, or “nadir”) camera pitch can increase the accuracy of digital 
terrain models derived from drone images in areas with low vegetation cover (Nesbit & 
Hugenholtz, 2019) and in forests can increase the point cloud density in the understory (Díaz et 
al., 2020). However, the only published evaluation of camera pitch specifically in the context of 
individual tree detection (ITD) found that tree detection accuracy was greater with a nadir vs. 
oblique camera pitch (Swayze et al., 2021). Flight (image collection) altitude may additionally 
affect 3D reconstruction quality likely through its effect on the spatial resolution of the resulting 
imagery (higher altitude results in coarser grain imagery) (Dandois et al., 2015). Though 
previous work has found little difference in ITD performance among flights conducted between 
64 and 115 m above ground level (Swayze et al., 2021) and between 50 and 100 m above 
ground level (Torres-Sánchez et al., 2018). Finally, while increased image collection density 
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(i.e., overlap) is associated with increased point cloud quality and density (Dandois & Ellis, 
2013; Frey et al., 2018; Ni et al., 2018), it also increases image dataset size and acquisition and 
processing times. Increasing image overlap can increase ITD accuracy (Swayze et al., 2021), 
but provides diminishing returns to accuracy at increasingly high overlap (Torres-Sánchez et al., 
2018). 
 Image resolution and outlier filtering are key parameters that can be adjusted during the 
SfM processing. A strong understanding of photogrammetric analysis principles can provide key 
insights into how these parameters may be adjusted to yield more successful 3D 
reconstructions (Over et al., 2021; USGS, 2017), but empirical validation of these workflows in 
the context of forest inventories is generally lacking. Only one study to our knowledge has 
evaluated image resolution and point cloud filtering parameters in the context of ITD (Tinkham & 
Swayze, 2021). Using the Metashape v1.6.4 photogrammetry software (Agisoft, LLC), Tinkham 
& Swayze (2021) found that retaining maximal image resolution and minimizing outlier filtering 
during point cloud generation yielded the greatest ITD performance. However, this study did not 
evaluate the influence of image resolution during the alignment stage. Using full image 
resolution during processing may increase point cloud detail and density (Jayathunga et al., 
2018; Lisein et al., 2013), but (a) higher resolution data can substantially increase processing 
times, (b) high-resolution images may be difficult to align and compare when they include small 
surfaces like leaves and branches that move or blow in the wind, and (c) the extent to which any 
increase in point cloud detail translates to improved ITD performance is not well known.  
 Finally, once photogrammetric products are generated, there are myriad options for ITD 
algorithm selection and parameterization. Several studies have compared the accuracy of 
different ITD algorithms and/or parameterizations applied to SfM-derived canopy height models 
and point clouds. Mohan et al. (2017) tested 4 different parameterizations of a CHM-based fixed 
window filter, combined factorially with 4 different CHM smoothing intensities, for a total of 16 
parameter sets. Creasy et al. (2021) evaluated 97 different parameterizations of a CHM-based 
variable- and fixed- window filtering method (Plowright, 2021). Shin et al. (2018) tested 16 
parameterizations of a point cloud-based ITD algorithm (Li et al., 2012). Koontz et al. (2021) 
tested a total of 177 parameter sets across 7 different CHM- and point cloud-based ITD 
algorithms, identifying a parameterization of a point cloud-based method (Roussel, 2021b) as 
the most accurate. While it also included a test of a variable window filtering algorithm 
(Plowright, 2021), it tested only 3 parameter sets for this algorithm based on previous results 
from lidar acquisitions (Popescu and Wynne, 2004) and thus provides limited opportunity for 
comparison with previous studies that employed this method. 
 While work to date has quantified the influence of flight and photogrammetry parameters 
on the resulting photogrammetry products, few studies have evaluated how these parameters 
affect the accuracy of the forest inventory--the ultimate product that informs ecological inference 
and management decisions. Further, evaluations of SfM-based tree detection algorithms to date 
have generally not simultaneously considered the role of imagery collection and processing 
parameters that create the photogrammetry products. Evaluating the influence of these 
categories of variables jointly may allow detection of consistent effects vs. idiosyncrasies and 
may reveal important interactions that enable meaningful improvements in ITD accuracy and 
efficiency. In addition, many evaluations of ITD methods have been conducted in stands with 
relatively simple structure and low tree density, potentially yielding parameter selection and tree 



6 

detection performance different than may be expected in higher-density, more structurally-
complex stands. In the present study, we evaluate multiple factorial combinations of imagery 
collection parameters (flight altitude, camera pitch, and image overlap), imagery processing 
parameters (image resolution for image alignment and for dense cloud generation, and point 
cloud outlier filtering intensity), and tree detection methods (algorithm and parameterization), for 
a total of 7,568 combinations, in a moderately dense, structurally complex mixed-conifer stand 
in the Sierra Nevada of California. 
 
Methods 
 
Overview 
 
 We created a ground reference tree map of 1,916 trees > 5 m tall in a 3.23-ha focal area 
using traditional survey methods. We also used automated algorithms to create 7,568 
alternative tree maps for this area from aerial imagery collected by drone to evaluate the 
influence of image acquisition and processing parameters on aerial tree mapping accuracy. In 
Stage 1, we identified the best-performing photogrammetry processing processing parameters 
and automated tree detection methods. In Stage 2, we applied those methods to identify the 
best image acquisition parameters (flight altitude, image overlap, and camera pitch) (Fig. 1). 
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Fig. 1: The optimization workflow employed in this study. For each of the two optimization 
stages (vertical bars), the ranges of tested parameters appear on the left, and the ranges of 
selected parameters appear on the right in black text, with the best performing sets bolded. 
Additional parameters tested in Stage 2 that were not derived from Stage 1 results appear in 
purple text. For each optimization stage, all factorial combinations of parameters across each 
category (e.g., altitude, photogrammetry, and tree detection) were tested, except that only 
certain pitch-overlap combinations were tested (factorial combinations within blue outlines). 
While Stage 2 revealed several parameter combinations with strong performance (see text), the 
right-hand side of the diagram shows the most consistently best (e.g., vwf_196 tree detection) 
and/or most practical (90/80 and 90/90 overlap; 120 m altitude) among comparably performing 
parameters. Thus, the rightmost column represents the “recommended” set of parameters for 
this forest type, based on our results. Front and side overlap values are given as percentages, 
in the format “front/side”. Overlap pairings in brackets (e.g., [90/90+90/90]) refer to the 
combination of N-S and E-W missions with oblique camera pitch. Oblique pairings are combined 
with nadir missions to create composite sets (e.g., [90/90+90/90] + 95/90). The vwf_196 tree 
detection parameterization is defined by the equation y = 0.04x (depicted in parentheses in the 
figure’s bottom right cell), where y is the radius of the search window for higher points centered 
on a focal point, and x is the height of the focal point; this algorithm is applied to the CHM 
following a 9 x 9 pixel moving window mean smooth. Other tree detection parameter sets are 
defined in Appendix S2: Tables S1 and S2; photo sets are described in Table 2; and 
photogrammetry parameter sets are described in Table 3. Photogrm.: Photogrammetry 
parameterization; Tree det.: Tree detection algorithm; VWF = variable window filter; Pt. cld.: 
point cloud-based method.  
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Focal area 
 
 Our study site was a 3.23 ha area of mixed-conifer forest (Safford & Stevens, 2017) in 
Emerald Bay State Park on the shore of Lake Tahoe in the Sierra Nevada of California (Fig. 2a). 
The stand is co-dominated, in decreasing order of abundance, by ponderosa pine (Pinus 
ponderosa), incense cedar (Calocedrus decurrens), Jeffrey pine (Pinus jeffreyi), and white fir 
(Abies concolor). The stand has high structural complexity, with a continuous size distribution 
and small trees interspersed with larger trees and often underneath their canopies (Figs. 2b, 3). 
The topography is flat (elevation range: 1900 to 1905 m). We developed a 3.23-ha ground-
reference stand inventory by establishing a grid of points and measuring the distance (using a 
laser rangefinder) and azimuth (using a sighting compass) to each tree with diameter at breast 
height (DBH) > 7.5 cm from a nearby grid point (Appendix S1, Supporting Information). The 
3.23-ha focal area contained a total of 2122 trees with DBH > 7.5 cm (657 trees ha-1), 1910 
trees with DBH > 10 cm (591 trees ha-1), 1773 trees with height > 5 m and DBH > 7.5 cm (549 
trees ha-1), and 1093 trees with height > 10 m and DBH > 7.5 cm (338 trees ha-1). Of all trees 
with DBH > 7.5 cm, 290 (14%) were dead (and still standing, but potentially partially broken). 
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Fig. 2: (a) RGB orthomosaic of the project area, with the 3.23-ha focal area indicated with a red 
outline. (b) The ground-based tree stem map of all trees > 5 m tall constructed as a basis for 
evaluation of drone-derived stem maps, with larger points indicating taller trees. (c) Spatial 
locations of drone photos from two drone photo sets (“high nadir” 95% front and side overlap in 
yellow; and “high nadir” 90% front and side overlap in purple; Table 2). (d) Canopy height model 
(lighter indicates taller) of a section of the focal area, with ground-mapped trees shown as light 
blue points, drone-mapped trees shown as dark red points, and pairings between ground- and 
drone-mapped trees shown as purple lines. In (d), the canopy height model was created by 
applying photogrammetry parameter set 16 (Table 3) to the “high nadir” photo set with 90% front 
and side overlap (Table 2). The drone-derived stem map was obtained by applying tree 
detection algorithm “vwf_059” (Appendix S2: Table S1) to this same canopy height model. 
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Fig. 3: Size class distribution of trees within the 3.23-ha ground-reference stem map. 
 
 
Imagery collection and pre-processing 
 
 We collected RGB aerial photographs using a DJI Phantom 4 Advanced quadcopter (SZ 
DJI Technology Co., Ltd.), which has a 1”, 20 megapixel (5472 x 3648 pixel) CMOS sensor, an 
8.8 mm focal length, and an 84° diagonal field of view (74° horizontal field of view; 53° vertical 
field of view). We planned and executed missions using the MapPilot software (Drones Made 
Easy) on an iPad Pro 9.3” (Apple Inc.) connected to the drone’s remote controller. The missions 
consisted of multiple parallel straight-line transects across the study area (and extending at 
least 100 m beyond it on all sides) (Fig. 2c), with transect spacing and image spacing along 
transects set to achieve the specified percentage of overlap between adjacent images (Table 1). 
We report image overlap percentage for a mission in the format “front overlap/side overlap”, with 
units in percent (e.g., “80/80”). Actual image overlap inevitably differs slightly from the specified 
overlap (e.g., due to occasionally missed photos, a normal occurrence with some common DJI 
drones; Fig. 2c), so we treat the overlap amount as a “nominal overlap,” reflecting what a future 
user may expect when using these settings with a similar aircraft. We collected multiple image 
datasets using different flight parameters (altitude, gimbal pitch, and image overlap) (Table 2). 
For the missions with 25° camera gimbal pitch (i.e., “oblique”, with camera angled 25° up from 
nadir), we flew two perpendicular sets of transects (N-S and E-W) so that a given point on the 
landscape would be photographed from four directions. In reporting the percent image overlap 
of these sets, we report the two missions (N-S and E-W) together in brackets (e.g., ”[80/80 + 
80/80]”). The overall image density (and mean overlap percent) for two combined 80/80 overlap 
missions is equivalent to the density of a 90/80 or 80/90 overlap mission. For the nadir missions, 
we only flew N-S transects and only report a single front/side overlap pairing. 

All missions used automatic exposure and automatic white balance settings and were 
flown in MapPilot’s “connectionless” mode. We used the “terrain awareness” function so that the 
aircraft remained at a constant altitude above ground level (as determined by the 30 m Shuttle 
Radar Topography Mission elevation model; Farr et al., 2007) throughout the mission. Images 
were collected between 11 am and 3 pm local time (where solar noon was c. 1:04 pm) on 9-12 
September, 2019. During the flights, winds were light to moderate, visibility was high, and 
conditions were mostly clear with occasional small clouds for brief periods. We used natural 
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features, with geographic locations identified using Google Earth imagery, as ground control 
points (Appendix S1, Supporting Information). To test the effect of image overlap on the quality 
of the resulting tree maps, we subsetted the photo sets to effectively reduce image overlap by 
retaining every nth image on every nth transect (Appendix S1, Supporting Information). 
 
Table 1: Parameters for image collection flights. Photo set numbers in parentheses are the 
photo set ID numbers used in the data files and scripts in the repository accompanying this 
paper. 

Photo set name 
(ID) 

Altitude above 
ground (m) 

Camera gimbal 
pitch 

Transect 
orientation 

Front overlap 
(%) 

Side overlap 
(%) 

High nadir (14) 120 0° (nadir) N-S 95 95 

Low nadir (15) 90 0° (nadir) N-S 95 95 

High oblique 
(26) 

120 25° (oblique) N-S 90 90 

E-W 90 90 

Low oblique (27) 90 25° (oblique) N-S 90 90 

E-W 90 90 

 
 Finally, we tested whether combining nadir (0°) and oblique (25°) camera pitch missions 
into a single composite photo set yielded improved photogrammetric performance and ultimately 
more accurate tree maps. For each flight elevation (90 m and 120 m), we prepared two 
composite photo sets with different overlaps (Appendix S1). We report the overlap percentages 
of these composite datasets as the overlap of a pair of oblique missions (in brackets) plus single 
nadir mission (e.g., [80/80 + 80/80] + 90/80). The overall image density (and thus mean overlap 
percent) for a [80/80 + 80/80] + 90/80 overlap dataset is nominally equivalent to the image 
density of a single 90/90 overlap mission. 
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Table 2: The photo set (flight and image overlap) parameters tested to evaluate the effect of 
flight altitude, camera pitch, and image overlap on quality of the resulting photogrammetry 
products for tree mapping (Stage 2). The multiple image overlap values were obtained by 
thinning the originally collected image datasets (Table 1). Overlap pairings in brackets (e.g., 
[90/90+90/90]) refer to the combination of N-S and E-W missions with oblique camera pitch. 
Oblique pairings are combined with nadir missions to create composite sets (e.g., [90/90+90/90] 
+ 95/90). The bolded text indicates the two photo sets that were also used in identifying the best 
Metashape photogrammetry parameter sets (Stage 1). 

Photo set group Altitude above 
ground (m) 

Camera gimbal 
pitch 

Nominal image overlaps tested 
(front/side) (%) 

High nadir 120 0° 80/80, 90/80, 80/90, 90/90, 95/90, 90/95, 
95/95 

Low nadir 90 0° 80/80, 90/80, 80/90, 90/90, 95/90, 90/95, 
95/95 

High oblique 120 25° [80/80+80/80], [90/90+90/90] 

Low oblique 90 25° [80/80+80/80], [90/90+90/90] 

High composite 120 0° and 25° [80/80+80/80] + 90/80, [90/90+90/90] + 
95/90 

Low composite 90 0° and 25° [80/80+80/80] + 90/80, [90/90+90/90] + 
95/90 

 
 
Photogrammetric processing and post-processing 

 
We performed photogrammetric structure-from-motion (SfM) processing of the aerial 

image sets (see Introduction) to produce 3D point clouds and digital surface models using 
Metashape version 1.6.5 (Agisoft, LLC). We interfaced with Metashape via its Python API using 
the UC Davis Metashape workflow software version 0.1.0 (Young et al., 2021), which executes 
a full photogrammetry workflow from end to end using the processing parameters specified in a 
configuration file by the user. The workflow reads GCP location data from delimited text files 
prepared in advance. 

Our first objective was to determine the combination of photogrammetry processing 
parameters that maximized the quality of the photogrammetric products for the purpose of tree 
mapping (Stage 1). We evaluated all factorial combinations of the photo alignment quality 
parameter (low, medium, or high, corresponding to image upscaling factors of 4, 2, or 1, 
respectively), the dense cloud quality parameter (medium or high, corresponding to image 
upscaling factors of 4 or 2, respectively), and the depth filtering intensity parameter (mild or 
moderate). Upscaling factors refer to the amount by which the image resolution was upscaled 
(coarsened) in each dimension; for example, with an upscaling factor of 4, the resulting image 
resolution in x and y dimensions would be ¼ of its original, with each coarse pixel representing 
the average of 16 original pixels (a 4 x 4 square) (Agisoft, 2020). Recent work has suggested 
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the “medium” and “high” dense cloud quality parameters yield superior ITD results while 
avoiding extreme computational expense associated with the “very high” parameter; it has 
similarly shown the “mild” and “moderate” depth filtering parameters to be among those yielding 
best ITD performance (Tinkham & Swayze, 2021). The three-way factorial combination of photo 
alignment quality, dense cloud quality, and depth filtering parameters yielded 12 different 
processing configurations (Table 3), which we ran on two different aerial photo sets: the 120 m 
nadir (0° camera pitch) mission with 90% front and side photo overlap, and the 90 m nadir 
mission with 90% front and side photo overlap. 

After identifying four Metashape parameter sets that yielded the best tree detection 
results for these two photo sets (see Individual tree detection and Identification of best-
performing methods, below), we used each of these four parameter sets to process all of the 
photo sets (Table 2) to enable an evaluation of the effect of of flight altitude, image overlap, and 
camera pitch on tree mapping performance (Stage 2). Processing all 22 photo sets with the four 
Metashape parameter sets resulted in running 88 photogrammetry workflows. All processing 
parameters besides photo alignment quality, dense cloud quality, and depth filtering intensity 
were held constant across all runs (Appendix S1). These included 100 maximum neighbors for 
dense cloud reconstruction, adaptive camera model fitting of all camera model parameters, and 
default Metashape Python API values for all other parameters. The workflow included a 
modified, automated version of a sparse point cloud filtering procedure recommended by the 
USGS (2017) (Appendix S1). In full, the Metashape workflow had the following steps: add 
photos, align photos, filter sparse cloud points, add GCPs, optimize cameras (using GCPs only), 
filter sparse cloud points again (based on reprojection accuracy only), build dense cloud, and 
build digital surface model. The procedure yielded a digital surface model (DSM) and dense 
point cloud. The code we used to automate this workflow is published (Young et al., 2021). 

We normalized and resampled the products of the photogrammetry workflow to obtain, 
for each run of the workflow, a CHM with 0.12 m resolution (Fig. 2d) and a point cloud with 70 to 
100 points m-2 (Appendix S1). 
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Table 3: Metashape photogrammetry processing parameter combinations tested (Stage 1). The 
image upscaling factor (in parentheses) refers to the factor by which image resolution was 
upscaled (coarsened), in each dimension, prior to processing (photo alignment or dense cloud 
creation). The four parameter sets that yielded the best tree detection results and were 
subsequently used in the evaluations of flight altitude, camera pitch, and overlap (Stage 2) are 
bolded. Parameter set numbering starts at 7 because we preliminarily tested sets with “low” 
dense cloud quality (upscaling factor of 8; set IDs 1-6) but excluded them from full testing due to 
poor 3D reconstruction; we retain the original numbering so that it matches the configuration 
files and analysis code in the repository accompanying this paper. 

Photogrammetry 
parameter set ID 

Photo alignment quality 
(image upscaling factor) 

Dense cloud quality 
(image upscaling factor) 

Depth filtering intensity 

7 low (4) medium (4) mild 

8 low (4) medium (4) moderate 

9 medium (2) medium (4) mild 

10 medium (2) medium (4) moderate 

11 high (1) medium (4) mild 

12 high (1) medium (4) moderate 

13 low (4) high (2) mild 

14 low (4) high (2) moderate 

15 medium (2) high (2) mild 

16 medium (2) high (2) moderate 

17 high (1) high (2) mild 

18 high (1) high (2) moderate 

 
 
Individual tree detection (ITD) 
 
 During Stage 1 of methods evaluation (focused on identifying the best Metashape 
photogrammetry parameters and tree detection algorithms), we tested a wide range of tree 
detection algorithms. We first tested the “variable window filter” (VWF) algorithm of Popesu and 
Wynne (2004) as implemented in the R package ForestTools version 0.2.1 (Plowright, 2021). 
This function uses the CHM raster and evaluates each pixel as a potential tree top by searching 
all pixels within a particular radius around the focal pixel and labeling the focal pixel as a tree 
top if it has the maximum height value with the search radius. The search radius is determined 
by a linear function of the height of the focal pixel. We tested 76 different combinations of the 
intercept and slope parameters of this linear function (Appendix S2: Table S1). For each of 
these parameter sets, we also tested three different CHM smoothing options. These smoothing 
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functions were implemented as moving window algorithms which, for each pixel, computed the 
mean of all pixels in a n x n pixel square centered around the focal pixel and assigned the 
resulting value to the focal pixel. We tested a 5 x 5 pixel window (0.6 x 0.6 m; Smooth: 1), a 9 x 
9 pixel window (1.08 x 1.08 m; Smooth: 2), and no smooth (Smooth: 0). The smooths were 
applied prior to running the VWF algorithm. We included these smoothing options with the 
thought that they may smooth over 3D reconstruction artifacts of the photogrammetry algorithm. 
Factorially combining the three smooth options with each of the 76 variable window filter 
parameter sets resulted in testing 228 implementations of the VWF-based tree detection 
algorithm (Appendix S2: Table S1). 
 We additionally tested six algorithms designed to identify trees directly from 3D point 
clouds, implemented in the R packages lidR v3.0.4 (Roussel, 2021a) and lidRplugins v0.2.0 
(Roussel, 2021b) (Appendix S2: Table S2). Most of these algorithms accept one or more 
parameters; we tested a variety of parameter combinations, focusing on those that Koontz et al. 
(2021) found to produce the best tree detection results. Two of the algorithms (‘hamraz’ and 
‘layerstacking’; Appendix S2: Table S2) were not tested by Koontz et al. The ‘hamraz’ algorithm 
requires no parameters and ‘layerstacking’ requires a single binary parameter for “hardwood” or 
“conifer”; we tested both. Additionally, for each point cloud-based algorithm, we tested the effect 
of thinning (“decimating”) the point cloud to 50 or 10 points m-2 prior to running each algorithm. 
The multiple parameter combinations tested across all the point cloud-based tree detection 
methods resulted in a total of 58 methods tested. Combined with the CHM-based VWF 
methods, we tested a total of 286 tree detection methods for each of the 12 Metashape 
photogrammetry workflows (Table 3) that were run for the Stage 1 comparisons. For the Stage 
2 comparisons, we used four top-performing tree detection methods (see ITD performance 
evaluation). 
 
ITD performance evaluation 
 
 We quantified the accuracy of the drone-derived tree maps by comparing each one 
against the 3.23-ha ground-based stem map. An initial coarse filter was applied to eliminate the 
very poor quality drone-derived maps: if the number of drone-mapped trees > 10 m height was 
more than 5 times the number of ground-mapped trees > 10 m height, or if it was less than 1/10 
the number of ground-mapped trees > 10 m height, it was eliminated from the pool of 
candidates. 

For all remaining drone-derived maps, we programmatically performed a comparison to 
the ground-derived map on a tree-by-tree basis, determining whether each ground-mapped tree 
was present in the drone-based map (true positives) and whether there were any additional 
trees in the drone-derived map that were not present in the ground-derived map (false 
positives). This required determining which tree (if any) from the ground-based map 
corresponded to which tree in the drone-based map (and vice-versa), a challenging and 
subjective exercise given that we never expect trees in a ground-based map to perfectly 
coincide with those in a drone-based map. Differences can arise due to spatial errors in both 
mapping techniques and also due to the fact that the tree top (the point identified in the drone-
based map) is often not located precisely above the stem (the point identified in the ground-
based map).  
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For a drone-mapped tree to match with a ground-mapped tree, it was required to be 
within a distance (dmax) of the ground-mapped tree defined as a function of the height (h) of the 
ground-mapped tree as 

dmax = 0.1h + 1, 
where units are in meters. Its height was also required to be within ± 50% of the height of the 
ground-mapped tree. Thus, for a ground-mapped tree 10 m tall, a drone-mapped tree needed to 
be within 2 m distance and its height needed to be between 5 and 15 m to match. For a ground-
mapped tree 30 m tall, a drone-mapped tree needed to be within 4 m distance and its height 
between 15 and 45 m. Our distance matching threshold was generally similar to or more 
conservative than that used by previous studies (e.g., 4 m used by Swayze et al., 2021 and 3 m 
used by Creasy et al., 2021). We used a more liberal height range for tree matching than 
previous studies (e.g., ± 10% used by Creasy et al., 2021 and ± 2 m used by Swayze et al., 
2021) because (a) we wanted to avoid artificially reducing the estimated error in drone-based 
tree height measurement (as error estimation relies on comparing heights of drone-detected 
trees vs. paired ground-mapped trees) and (b) error substantially less than the matching 
threshold in drone- vs. ground-mapped height would provide evidence that trees were correctly 
matched. 

For each ground tree, the nearest matching drone tree was assigned as its match. If the 
same drone tree was assigned to multiple ground trees, it was removed from all of the ground 
trees except the one spatially closest to it. This procedure was repeated two more times, each 
time for the ground and drone trees remaining (unmatched) following the previous iteration. 
After the third iteration, no further matches were possible. 

To quantify individual tree detection (ITD) accuracy, we computed the true-positive rate 
(“sensitivity” or “recall”, the proportion of ground-mapped trees that had a matching drone-
mapped tree) and the precision (the proportion of drone-mapped trees that matched a ground-
mapped tree). Because it is possible for a tree detection algorithm to achieve high sensitivity at 
the expense of precision (and vice-versa), we also computed the F score, which integrates 
sensitivity and precision by computing their harmonic mean, thus disproportionately penalizing 
low values and favoring balanced sensitivity and precision. We computed sensitivity, precision, 
and F score for two different tree size groups: trees ≥ 10 m height, and trees ≥ 20 m height. 

There is potential for edge effects to confound the tree detection accuracy inferred via 
tree matching. If a ground-mapped tree were just inside the analysis boundary and the 
corresponding drone-mapped tree just outside it, the ground-mapped tree would be considered 
to not have a match (and thus constitute a false-negative detection). To minimize this effect, 
when calculating the proportion of drone-mapped trees that matched ground-mapped trees, we 
considered only drone-mapped trees that were at least 5 m inside the project boundary (so that 
they all had an opportunity to be matched with ground-mapped trees in any direction). We did 
the same with ground-mapped trees when calculating the proportion of ground-mapped trees 
that matched drone-mapped trees. 
 While it is valuable to know the proportion of all ground reference trees that can be 
detected from aerial imagery, it is unrealistic to expect all trees to be detected, particularly in 
structurally complex stands like ours where small trees may be hidden under large trees or two 
immediately adjacent trees of similar size appear as one. Therefore, in addition to evaluating 
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ITD performance across all trees, we evaluated performance in mapping “dominant” trees that 
did not have any immediately adjacent taller neighbors (Appendix S1). 
 
Identification of best performing methods 
 
 To identify the best performing photogrammetry and tree-detection parameter sets 
(Stage 1), we first identified the photogrammetry parameter sets that most consistently yielded 
the highest F score (or within 0.005 of the highest F score) across all factorial combinations of 
photogrammetry parameter set (7-18; Table 3), photo set (High nadir 90/90, Low nadir 90/90; 
Table 2), tree height class (> 10 m or > 20 m), and tree position class (all trees or dominant 
trees only). When evaluating the F score for a given combination of photogrammetry 
parameterization, flight altitude, tree height class, and tree position class, we used the F score 
from the tree detection parameterization with the highest F score across all 286 
parameterizations tested; this parameterization could be different for each combination. We 
selected four photogrammetry parameter sets. Using only those four sets, we then selected the 
tree detection parameter sets that most consistently yielded the highest F score (or within 0.005 
of the hightest F score) across all factorial combinations of photogrammetry parameter set, flight 
altitude, tree height class, and tree position class (Appendix S2: Table S4). We selected 8 tree 
detection parameter sets. 
 To quantify the influence of flight altitude, image overlap, and camera pitch on ITD 
performance (Stage 2), we used the four best-performing photogrammetry parameter sets, 
combined factorially with the eight best-performing tree detection methods, to produce 32 tree 
maps from each of the 22 different photo sets (Table 2). When plotting or describing tree 
detection performance achieved with any of these photo sets, we report the F score obtained 
from the tree detection method that produced the maximum F score for that photoset. 
 
Evaluation of drone-based tree height measurement 
 
 To evaluate the potential to measure tree heights using drone imagery, we extracted 
tree heights from the canopy height model produced by using photogrammetry parameter set 16 
(Table 4) on the high (120 m) nadir photo set with 90% front and side image overlap. We used 
this CHM because it was among the best-performing for individual tree detection (see Results).  
We extracted the height value from the CHM pixel beneath each detected treetop. We then 
compared these extracted heights to the ground-measured heights of the ground reference 
trees to which the drone-detected trees were paired (see ITD performance evaluation). Ground 
reference trees that were not paired with drone-detected trees, and vice versa, were not 
included in the comparison. 
 
Results 
 
Stage 1: Optimal photogrammetry and tree detection parameters 
 
 Photogrammetry parameter combination 16 (medium alignment quality, high dense 
cloud quality, moderate depth filtering) consistently enabled the most accurate tree detection 
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performance as quantified by F score (Fig. 4 and Appendix S2: Table S3), though the 
differences among parameter combinations were relatively small (ΔF < 0.04). Medium 
alignment quality and high dense cloud quality both involve upscaling (coarsening) the image by 
a factor of 2 in both dimensions prior to running the algorithm. Parameter set 16 achieved the 
highest (or within 0.005 of the highest) F scores across all factorial combinations of flight altitude 
(90 m or 120 m), tree position (all trees or dominant trees), and tree height class (> 10 m or > 20 
m). Therefore, for further evaluation, we focused on parameter set 16, along with parameter 
sets 9, 11, and 15, which were among the best-performing parameter sets for multiple 
combinations of tree height, tree position, and flight altitude (Appendix S2: Table S3). We thus 
selected a total of four photogrammetry parameter sets for further evaluation. 
 The most accurate tree detection methods, as quantified by F score, were all CHM-
based VWF methods (Appendix S2: Table S4). This was true across all factorial combinations 
of flight altitude (90 m or 120 m), tree height class (> 10 m or > 20 m), tree position (all trees or 
dominant trees), and photogrammetry parameters (sets 9, 11, 15, and 16). Across all of these 
combinations, methods vwf_121 and vwf_196 most consistently achieved the highest (or within 
0.005 of the highest) F scores for tree detection accuracy (Appendix S2: Table S4). Therefore, 
for further evaluation, we focused on these methods, along with six other consistently top-
performing methods, vwf_109, vwf_110, vwf_113, vwf_120, vwf_122, vwf_185, for a total of 8 
tree detection methods. Among the point cloud-based methods, parameterizations of the 
method of Li et al. (2012) generally performed the best. For the 120 m nadir photo set with 90% 
front and side overlap processed using photogrammetry parameter set 16, the F score for the Li 
et al. (2012) method was 0.04 to 0.06 less than the F score of the top-performing VWF 
parameterization, depending on the tree height class and canopy position (Appendix S2: Table 
S5). 
 For a given scenario (e.g., flight altitude, tree position, tree height, camera pitch, and 
photo overlap), the F score achieved by the combination of photogrammetry parameter set 16 
and tree detection method vwf_196 was generally within 0.01 of the maximum F score achieved 
by the optimal combination of photogrammetry parameter set (out of the four best-performing 
options) and tree detection method (out of the eight best-performing options) (e.g., Table 4). 
The difference in F score was less than 0.01 in approximately 80% of scenarios, particularly 
those with at least 90% front and side photo overlap and nadir images (Appendix S2: Table S6). 
In photo sets with less overlap and/or oblique images, other photogrammetry and tree detection 
parameters often performed better (F score difference > 0.01), but for these scenarios, even the 
optimal photogrammetry and tree detection parameter combinations yielded inferior tree 
mapping performance relative to higher overlap and/or nadir imagery (see Stage 2: Optimal 
image collection parameters). 
 For nadir photo sets with at least 90% front and side overlap, the optimal combination of 
photogrammetry and tree detection parameters achieved tree mapping accuracy ranging 
between F =  0.67 and F = 0.87 (Appendix S2: Table S6). For example, for dominant trees > 10 
m tall, the optimal methods (photogrammetry parameter set 16 paired with tree detection 
method vwf_196, applied to the 90% front and side overlap 120 m nadir mission) achieved an F 
score of 0.78, with a sensitivity of 0.69 and a precision of 0.90 (Table 4). Generally, precision 
was greater than sensitivity (Table 4 and Appendix S2: Table S6). 
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Table 4: Tree mapping accuracy achieved with the optimal combination of photogrammetry 
parameter set and tree detection method (Category 1) or with the specific combination of 
photogrammetry parameter set 16 and tree detection method vwf_196 (Category 2) for each 
factorial combination of tree position (dominant or all) and tree height class (> 20 m or > 10 m). 
All scenarios use the high (120 m altitude) nadir photo set with 90% front and side overlap. For 
two scenarios (dominant trees > 10 m and all trees > 20 m), the combination of photogrammetry 
parameter set 16 and tree detection method vwf_196 is the optimal combination. For accuracy 
metrics for different flight altitudes, camera pitches, and photo overlaps, see Appendix S2: Table 
S6. 

  

Category 1: Photogrammetry and tree detection parameter 
sets yielding maximum F 

 

Category 2: Photogrammetry 
parameter set 16 and tree detection 

method 
 vwf_196 

Canopy 
position 

Tree 
height 

Photogram
metry 

parameter 
set 

Tree 
detection 
method F score Sensitivity Precision F score Sensitivity Precision 

dominant > 20 m 11 vwf_122 0.865 0.838 0.894 0.864 0.841 0.887 

dominant > 10 m 16 vwf_196 0.783 0.691 0.903 0.783 0.691 0.903 

all > 20 m 16 vwf_196 0.826 0.756 0.909 0.826 0.756 0.909 

all > 10 m 15 vwf_121 0.672 0.571 0.814 0.665 0.519 0.924 
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Fig. 4: Individual tree detection performance of different photogrammetry parameter 
combinations at two flight altitudes, for all trees (a, b) and dominant trees (c,d) with height > 10 
m (a, c) or height > 20 m (b, d). The number in each cell indicates the ID of the tree detection 
method (Appendix S2: Tables S1-S2) that yielded the maximum F score for the particular 
combination of parameters; 3-digit numbers refer to VWF methods, while 4-digit numbers refer 
to point cloud-based methods. The F score itself is indicated by the color. The aerial photo sets 
processed were the high nadir set (Alt: 120 m) and the low nadir set (Alt: 90 m) (both with 90% 
front and side image overlap) (bolded entries in Table 2). 
 
 
Stage 2: Optimal image collection parameters 
 
 Tree mapping accuracy tended to increase with increasing image overlap, to a point: 
once overlap percent reached 90/80 (front/side), additional increase in overlap (to 90/90 or 
greater) yielded little increase in accuracy (Fig. 5). At 90/90 percent overlap, both 120 m and 90 
m nadir flights yielded F scores of about 0.78 for dominant trees > 10 m tall and about 0.86 for 
dominant trees > 20 m tall (Appendix S2: Table S6). Among nadir image sets, higher-altitude 
(120 m) sets tended to yield greater accuracy than lower-altitude sets when image overlaps 
were lower (below 90/90) and similar accuracy when overlaps were greater (90/90 and greater) 
(Fig. 5). Interestingly, even though the 90/80 and 80/90 percent overlap image sets contained 
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roughly the same image density, the former consistently enabled substantially greater tree 
mapping accuracy, for both 120 m and 90 m flights (Fig. 5). 

Nadir imagery tended to achieve accuracy greater than or comparable to that of oblique 
or nadir-oblique composite imagery of similar image density (Fig. 5). The 120 m composite 
nadir-oblique image set performed as well as (at higher overlap) or substantially better than (at 
lower overlap) the 90 m composite pitch image set. For a similar image density (i.e., mean 
overlap), a 120 m nadir flight (at, e.g., 90/80 percent overlap) yielded similar accuracy as the 
combined N-S and E-W oblique flights (at, e.g., [80/80 + 80/80] overlap). 

All of the results presented thus far in this section assume that a given image set is 
processed using the photogrammetry and tree detection parameters that yield the greatest 
accuracy for that set. When using a single top-performing photogrammetry parameter set (16) 
combined with a single top-performing tree detection method (vwf_196), the patterns remain 
qualitatively very similar, with generally only very small shifts in tree detection accuracy 
(Appendix S1: Fig. S2). 
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Fig. 5: Individual tree detection F score for different flight altitude, camera pitch, and image 
overlap combinations. For each combination, 8 top-performing tree detection methods were 
combined factorially with 4 top-performing photogrammetry processing parameter sets (see Fig. 
1), and the F score depicted is the maximum across these 32 combinations. From left to right, 
the x-axis represents categories of image overlap with a monotonic, but not consistent, increase in 
nominal image density. All overlap values within vertical blue shaded regions correspond to the 
same nominal image density. Points are connected by lines simply for ease of associating altitude 
and pitch with points. Overlap pairings in brackets (e.g., [90/90+90/90]) refer to the combination 
of N-S and E-W missions with oblique camera pitch. Oblique pairings are combined with nadir 
missions to create composite pitch sets (e.g., [90/90+90/90] + 95/90).  For a version of this 
figure that uses only the single consistently best-performing tree detection method (vwf_196) 
combined with the best-performing photogrammetry parameter set (16), see Fig. S2 (Appendix 
S1). 
 
Tree height measurement 
 
 Tree height measurement was generally highly accurate, with drone-measured and 
ground-measured tree heights corresponding with R2 = 0.95, a mean bias of -0.86 m (with 
drone-derived heights generally shorter than their ground reference counterparts), and a mean 
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absolute error of 1.82 m (Fig. 6). The mean absolute error as a percentage of each tree’s height 
was 9% and the mean bias was -3%. 
 

 
Fig. 6: Drone-based tree height measurements (height value of the CHM at each treetop 
location) relative to ground reference tree heights for the most consistently best-performing tree 
detection method (vwf_196) applied to the CHM produced using the most consistently high-
performing photogrammetry parameter combination (16) on the high (120 m) nadir 90% front 
and side overlap photo set. The blue line is the 1:1 line. 
 
 
Discussion 
 
Imagery acquisition and processing 
 
 Our work helps to identify top-performing approaches to imagery collection and 
processing for SfM-based forest mapping in structurally complex conifer forests using relatively 
low-cost RGB drones. Several clear and consistent results can help forest scientists and 
managers efficiently produce high-quality forest maps. First, a high flight altitude (120 m, the 
maximum flight altitude generally allowed by the United States Federal Aviation Administration) 
consistently yielded tree maps with accuracy better than or effectively equivalent to those 
obtained from lower altitude (90 m) flights (Fig. 5), consistent with previous observations that 
flight altitude has minimal impact (Swayze et al., 2021; Torres-Sánchez et al., 2018). Even in 
contexts where stem map quality is insensitive to flight altitude (in our case, when image overlap 
is 90% or greater), 120 m flights will likely be preferred given that they require fewer images to 
cover a landscape (as each image encompasses more ground area) and therefore less flight 
time. 
 Similarly, our work reveals little if any gain in ITD accuracy by increasing image overlap 
above 90% (front and side) (Fig. 5), consistent with previous results showing decreasing 
marginal returns to ITD accuracy with increasingly high overlap (Torres-Sánchez et al., 2018). In 
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fact, given that increasing image overlap can substantially increase flight time (e.g., increasing 
side overlap from 90% to 95% doubles the number of transects, thus doubling flight time), flights 
with overlap > 90% may be undesirable. Reducing side overlap to 80% (while keeping front 
overlap at 90%) resulted in only minimal change in ITD accuracy. Therefore, given flight time 
constraints or the need to cover extensive area, 90/80 front/side overlap percent may be 
preferable. Surprisingly, photo sets with 90/80 front/side overlap consistently yielded ITD 
accuracy substantially greater than that from sets with 80/90 front/side overlap (Fig. 5), despite 
the fact that the image density of these two sets is nominally identical. This asymmetry may be 
a consequence of the default “generic” image pair preselection (initial image matching) 
algorithm used by Metashape, which initially attempts to pair images chronologically; greater 
overlap along the forward image dimension may facilitate this critical initial step. Alternatively or 
in addition, greater overlap along the shorter dimension of the image may disproportionately 
facilitate image matching and/or depth mapping, as it makes the overlap portion more square 
(as opposed to a thin strip that may lack sufficient spatial context). 
 Our tests of camera pitch revealed that oblique (25°) and oblique-nadir composite 
imagery, regardless of flight altitude, yielded ITD accuracy worse than nadir imagery collected at 
120 m. This finding is surprising because oblique imagery is known to yield more accurate 
terrain models (Nesbit & Hugenholtz, 2019) and increase understory point cloud density (Díaz et 
al., 2020), but it corroborates existing evidence that for ITD specifically, greater accuracy is 
achieved with nadir imagery (Swayze et al., 2021). Although the improved understory imaging 
that is achieved by using oblique imagery can improve estimates of tree DBH (by enabling more 
accurate 3D modeling of tree stems; Swayze et al., 2021), it apparently does not improve the 
potential for detection of understory trees. This limitation to improvement may be explained by 
the fact that all CHM-based tree detection algorithms and many point cloud-based tree detection 
algorithms (e.g., Li et al., 2012) are not designed to detect one tree beneath another, so 
improved imaging of the understory cannot translate to improved tree detection. Improvements 
to multi-layer tree detection algorithms (e.g., Torresan et al., 2020; Xiao et al., 2019), and 
implementations of them in common point cloud processing platforms (e.g., the R package lidR; 
Roussel, 2021a), may make understory imaging (and thus oblique camera angles) more 
valuable for ITD in the future. 
 We expect our results are applicable to many widely used, relatively low cost drones 
with an RGB camera that has a resolution and field of view similar to ours. In fact, given that all 
image processing steps in the optimal parameterization utilize images that have been upscaled 
(coarsened) 2-fold in both dimensions (thus converting a 20 megapixel image to 5 megapixels), 
the same dataset could in theory be generated with a 5 megapixel camera by eliminating the 
upscaling step, assuming optical quality is otherwise similar. Similarly, imagery from a higher-
resolution camera could be used optimally by increasing the upscaling factor. While this may 
represent a waste of data, the coarser scale may actually achieve greater mapping accuracy 
given that tree canopies largely consist of small surfaces (e.g., leaves, branches) that can move 
in the wind and thus confound the image-matching algorithms central to the photogrammetry 
software. 
 
  



25 

Tree detection algorithms 
 
 Despite testing 6 point cloud-based ITD algorithms (and 58 different parameterizations 
of them), the CHM-based VWF algorithm consistently performed the best (Appendix S2: Tables 
S4 and S5), potentially a consequence of the fact that the point cloud-based methods we tested 
are not designed to detect one tree beneath another and therefore provide little additional 
fidelity relative to a CHM (see Discussion section Imagery acquisition and processing). 

As with other SfM-based work (e.g., Creasy et al., 2021; Tinkham & Swayze, 2021) and 
lidar-based work (Ferraz et al., 2012; Jeronimo et al., 2018), we observed substantially 
improved ITD performance for taller trees and canopy-dominant trees vs. all trees (e.g., F = 
0.78 for canopy-dominant trees > 10 m height vs. F = 0.67 for all trees > 10 m height). This 
pattern makes sense considering structure can only be mapped for surfaces that are detected 
by the sensor (which are disproportionately the top-of-canopy objects, especially for SfM; 
Jayathunga et al., 2018; Lisein et al., 2013). Even when using lidar, which can penetrate tree 
canopies to some extent, understory and mid-story detail (and thus potential to detect trees 
there) can be limited, especially when the overstory is dense and/or tall (Campbell et al., 2018). 
This limitation has led some to re-focus detection and mapping of individual trees (ITD) toward 
detection and mapping of tree-approximate objects (TAOs), which can include single trees and 
clusters of trees that are not differentiable (Jeronimo et al., 2018; North et al., 2017). Maps of 
the size and arrangement of TAOs may be valuable for some management applications 
(Jeronimo et al., 2018; North et al., 2017), and important ecological questions can be addressed 
using maps of the specific trees visible from above (Brandt et al., 2020; Weinstein et al., 2021) 
or detectable using SfM that is not canopy-penetrating (Koontz et al., 2021). Our calculation of 
ITD accuracy metrics specifically for “overstory” trees helps to provide a sense of TAO mapping 
accuracy. Given that we used a conservative set of parameters for classifying a tree as “canopy 
dominant” (Appendix S1: Fig. S1), our accuracy metrics may be underestimates. 
 Notably, our ITD precision values were consistently higher than the sensitivity values, 
especially for all trees (as opposed to canopy-dominant trees) (Table 4 and Appendix S2: Table 
S6), indicating that the ITD algorithm failed to detect some trees as a consequence of 
minimizing false-positives. This suggests that there is some potential to select an ITD 
parameterization with greater tree detection sensitivity. This may increase the false-positive rate 
(resulting in an overall lower F score), but future work may incorporate an additional “detected 
tree screening” stage that uses information besides the CHM or point cloud to identify and reject 
false positives. For example, Bonnet et al. (2017) used a machine learning approach to predict 
tree detections as true or false positives based on the textural and spectral characteristics of the 
detected objects and thereby reduced the false-positive rate from 75-82% to 3-8%. 
Incorporating both structural and spectral data (e.g., taking advantage of the fact that points in 
SfM-derived point clouds, in contrast to lidar-derived clouds, can be assigned spectral values) in 
tree detection algorithms may improve tree detection sensitivity (Yancho et al., 2019). 
 
Tree height measurement and matching of ground and drone trees 
 
 The canopy height model resulting from the optimal photogrammetry parameter set 
provided a relatively accurate representation of tree heights (Fig. 6). The small negative height 
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bias (CHM heights < field-measured heights) generally increased with increasing tree height, 
suggesting either (a) disproportionate overestimation of tall tree heights during ground surveys 
or (b) disproportionate underestimation of tall tree heights by the photogrammetry algorithm. 
Given that CHM generation involves some degree of interpolation and smoothing of the point 
cloud, it may make sense that objects that are disproportionately tall relative to their 
surroundings are underestimated by the CHM. Nonetheless, the mean absolute height error 
was relatively small (1.8 m or 9% of tree height). Further, given that our algorithm for matching 
SfM-detected trees with ground-measured trees required the SfM tree to be within ± 50% of the 
height of the ground tree, the fact that the mean height difference was only 9% strongly 
suggests that trees were generally matched correctly. Our SfM-based tree height measurement 
accuracy was generally comparable to or better than other SfM-based approaches, which have  
obtained R2 = 0.71 (Belmonte et al., 2020), RMSE = 9-15% (Creasy et al., 2021), RMSE = 24% 
(Tinkham & Swayze, 2021), R2 = 0.99 with RMSE = 18% (Swayze et al., 2021), and R2 = 0.94 
with RMSE = 12.6% for live trees (Koontz et al., 2021). 
 
Conclusions 
 
 Our comprehensive evaluation of numerous SfM imagery collection, imagery processing, 
and tree detection methods led to ITD performance that meets or exceeds expectations based 
on previous work (Table 5). The majority of SfM-based ITD work to date has been conducted in 
relatively low density monodominant stands with low structural complexity, and our work 
demonstrates that SfM-based ITD can also be a practical approach to tree mapping in denser, 
more structurally complex stands, especially if the focus is on canopy-dominant trees or TAOs.   
To evaluate the extent to which the ITD accuracy and optimal parameter sets we identified may 
extend to other forest stands, perhaps the most important considerations are stand density and 
structural complexity (Jeronimo et al., 2018). In forests with lower tree density and limited multi-
stratum structure, such as many ponderosa pine-dominated forests of the southwestern U.S. 
(e.g., Swayze et al. 2021), we might expect higher accuracy than we achieved; we might expect 
the reverse for denser or more structurally complex stands. Historical densities of trees with 
DBH > 10 cm in the yellow pine and mixed-conifer forests of California’s Sierra Nevada 
averaged roughly 195 trees ha-1 (Safford & Stevens, 2017; Young et al., 2020), relative to the 
591 trees ha-1 in our mixed-conifer stand. Considering contemporary stands are roughly 2-4-fold 
denser than the historical average (Safford & Stevens, 2017) (therefore, roughly 400-800 trees 
ha-1), our focal stand may be roughly reflective of mean contemporary California mixed-conifer 
forest structure and thus of expected ITD performance. In denser stands with strong multi-
stratum structure, the use of oblique images, coupled with a point-cloud based ITD algorithm, 
will likely become more important for capturing understory trees (see Discussion section 
Imagery acquisition). With additional refinements (e.g., use of a more sensitive tree detection 
algorithm with a false-positive filtering step, improvement of point cloud-based multi-layer tree 
detection algorithms, and application of deep learning computer vision to tree detection; 
Weinstein et al., 2020, 2021), the accuracy and applicability of drone-based forest mapping will 
continue to improve. 
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Table 5. Summary of recent forest ITD studies that compare drone-derived tree detections to 
ground reference trees in conifer-dominated forests and assess ITD accuracy using the F score. 
Note that Koontz et al. (2021) is included here despite not reporting an F score because of the 
strong similarities in forest structure/type to this study. 

Reference Overall forest density 
(tph) 

Structural 
complexity 

Stratum F score 

This study1 549; tree height > 5 m 
and DBH > 7.5 cm 

Relatively 
high 

Dominant (no nearby, taller neighbors) 0.78-0.87 

All 0.67-0.83 

Belmonte et al. 
(2020)2 

59; tree height > 1.37 m Relatively 
low 
 

All 0.94 

139; tree height > 1.37 m All 0.8 

778; tree height > 1.37 m All 0.44 

Tinkham and 
Swayze (2021) 

374; tree height > 5 m Relatively 
low 

Overstory; trees >7m tall 0.72 

Understory; trees <7m tall 0.6 

Swayze et al. 
(2021) 

374; tree height > 5 m Relatively 
low 

All 0.77 

Creasy et al. 
(2021) [KNF 
site]3 

504; tree height > 1.37 m Relatively 
high 

All 0.57 

Overstory; trees >20m tall 0.71 

Intermediate; trees between 8 and 20m 0.57 

Understory; trees <8m 0.51 

Creasy et al. 
(2021) [MEF 
site]3 

600; tree height > 1.37 m Relatively 
low 

All 0.58 

Overstory; trees >18m tall 0.75 

Intermediate; trees between 6 and 18m 0.53 

Understory; trees <6m 0.50 

Koontz et al. 
(2021)4 

537; tree DBH > 6.35 cm Relatively 
high 

All – 

 
1 Range of F scores reflects multiple assessments for trees meeting different height thresholds 
2 Assessment of ITD performed in post-treatment forested landscape with treatment prescription 
designed to reduce small tree density 
3 F scores reflect best assessment across ITD algorithms; density calculated using total number of trees 
within 4.5 ha unit 
4 F score not reported; RMSE for drone-derived tree count at plot scale: 46%; Density range: 153-1038 
trees ha-1 
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