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ABSTRACT

Wild animals often experience unpredictable challenges that demand rapid and flexible
responses. The glucocorticoid mediated stress response is one of the major systems that allows
vertebrates to rapidly adjust their physiology and behavior. Given its role in responding to
challenges, evolutionary physiologists have focused on the consequences of between-individual
and, more recently, within-individual variation in the acute glucocorticoid response. Although
sophisticated approaches are available to partition this variation statistically, empirical studies
of physiological flexibility are severely limited by the logistical challenges of measuring the
same animal multiple times during a single acute response or across multiple instances of
acute responses. Empiricists have largely adopted the strategy of standardizing sampling
as much as possible to allow for comparison between individuals, but this standardization
also makes it very difficult to detect certain types of variation in the functional shape of
acute response curves. Data simulation is a powerful approach when empirical data are
limited, but has not been adopted to date in studies of physiological flexibility. In this paper,
I describe the simcoRt package, which includes functions that can generate realistic acute
glucocorticoid response data with user specified characteristics. Simulated animals can be
sampled continuously through an acute response and across as many separate responses as
desired, while varying key parameters (e.g., the degree of correlation between the speed and
scope of a response). Using this simulation, I explore several possible scenarios to highlight
areas where simulation might either provide new insight into physiological flexibility directly
or aid in designing empirical studies that are better able to test the hypotheses of interest.
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INTRODUCTION

Animals live in a dynamic environment in which they regularly encounter unpredictable
challenges. Successfully navigating these challenges often requires the ability to rapidly adjust
behavior and physiology to match current conditions. For vertebrates, the glucocorticoid
mediated stress response plays a major role in coordinating these changes when stressors are
encountered (Sapolsky et al., 2000; Wingfield et al., 1998) and similar rapid response systems
mediate changes in other taxa (Taborsky et al., 2020). Because of the central role that this
response plays in coping with challenges, a great deal of research effort over the past 15 years
has focused on understanding whether between-individual differences in the magnitude of
this response predict coping ability and, ultimately, fitness (Breuner et al., 2008; Schoenle et
al., 2020).

More recently, a series of conceptual papers have asked whether the degree of within-individual
variation in glucocorticoid modulation (i.e., endocrine flexibility) across different contexts or
in response to different stressors might also be an important predictor of performance (Hau et
al., 2016; Lema & Kitano, 2013; Taff & Vitousek, 2016; Wada & Sewall, 2014). Perhaps the
major limit to empirical progress, especially for within-individual variation, is the logistical
difficulty of accurately characterizing the functional shape of the acute physiological stress
response for an individual during a single acute response and across multiple acute responses
occurring under different conditions. Often these measures are strictly limited by the number
of samples that can safely be taken from an animal during a single capture and the number of
repeated captures that are possible (but see Koolhaas et al., 2011). Given these limitations,
data simulation is a powerful tool that could complement empirical work in this area, but
that has not yet been applied to studies of endocrine flexibility.

Several recent papers have suggested that physiologists interested in endocrine flexibility
should adopt a within-individual reaction norm approach (e.g., Hau et al., 2016; Taff &
Vitousek, 2016). This approach has been widely adopted in studies of behavioral flexibility
where statistical methods and empirical progress have developed synergistically (e.g., Araya-
Ajoy et al., 2015; Dingemanse et al., 2010; Westneat et al., 2015). This field has also benefited
from simulation studies to evaluate optimal study design (Pol, 2012) and packages that can
create artificial datasets with desired patterns of between, within, and residual variance to
evaluate the consequences of different patterns of variation on the ability to detect effects (see
SQuID package, Allegue et al., 2017). While these approaches are powerful, they have proven
difficult to apply directly to endocrine flexibility data for two reasons. First, simulation studies
suggest that many patterns may only be detectable with a level of repeated sampling that is
possible for many behaviors (especially when collected autonomously), but that is currently
not possible for most studies of endocrine flexibility. Second, and more fundamentally,
these papers often focus on somewhat discrete measures of behavior (e.g., aggression score
or activity level), whereas for acute glucocorticoid responses, the functional shape of the
response itself may be the important trait and it may not be possible to summarize variation
in the shape of the response with a single measure.

The function valued trait (FVT) framework is an alternative approach that explicitly considers
the functional shape of a biological response (Gomulkiewicz et al., 2018; Kingsolver et al.,
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2015; Stinchcombe et al., 2012). While FVT approaches have been suggested for studies
of endocrine flexibility (Taff & Vitousek, 2016), I am not aware of any papers that have
applied this framework to empirical data on acute glucocorticoid responses, probably because
sufficient data are not available. Conceptually, however, this approach is a better match
to the acute glucocorticoid response, because the shape of a response curve is explicitly
considered as the phenotypic trait of interest. In some cases, it may make sense to estimate
particular parameters of the curve (e.g., maximum rate of increase and maximum value
reached) and then treat those parameters as phenotypic values for downstream analysis,
although statistical methods also exist to analyze the shape of the entire curve directly
without the need to extract discrete parameters (Kingsolver et al., 2015). This approach
has been used to study a variety of phenotypes where values can be measured continuously
or pooled across many individuals from the same group to accurately estimate the shape
of a curve (see Table 1 in Stinchcombe et al., 2012). Applying the technique to endocrine
flexibility at the within-individual level faces the same empirical challenges described for
within-individual reaction norms above. Note that FVT and within-individual reaction norms
approaches are not necessarily incompatible, but they have largely developed separately.

The recognition that characterizing the functional shape of an acute stress response is
challenging goes back to the earliest studies conducted in wild animals. Early studies often
employed various control groups and sampled individual animals at a variety of time points
over a long period in order to describe the full response curve for a particular group (e.g.,
a species or a breeding stage, Wingfield et al., 1992). These validations were considered
essential to characterize key parameters of the acute response for each group being studied
(i.e., baseline, rate of increase, maximum level, time of peak, and area under the curve; John
Wingfield, personal communication). The challenge of estimating these parameters becomes
much more difficult when trying to describe the response for an individual animal rather
than for a group, because glucocorticoids can often only be measured at two or three time
points and only a small number of times per animal (e.g., Vitousek et al., 2018). Because
these studies require an estimate for each individual, the solutions used by older studies that
added additional animals to allow for sampling at more time points are not available.

For individual based studies, the most common approach to this problem is to standardize
measurements as much as possible by measuring animals at the same time of the day during the
same context, and by taking blood samples at standard times (often <3 and 30 minutes after
capture) to characterize baseline and stress-induced glucocorticoids. This standardization
allows for comparison between individuals, but in some cases it may also completely obscure
the ability to detect variation in certain characteristics of the acute response curve. For
example, if the speed (rate of initial increase) and scope (maximum value) of the acute
response vary independently, samples taken at only two time points cannot accurately capture
variation in either parameter. Indeed, several discussions in recent years about methods such
as the ‘3 minute rule’ and the relative merits of ‘area under the curve’ versus time point
measures of glucocorticoids are fundamentally related to a recognition of the importance of
understanding variation in the functional shape of stress responses and whether different
components of that shape covary within individuals (e.g., Cockrem & Silverin, 2002; Small et
al., 2017).
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One of the characteristics of both the within-individual reaction norm and FVT literature is
that empirical work has proceeded in very close coordination with simulation and statistical
method development. In contrast, studies of endocrine flexibility often point to these methods,
but don’t address the ways that the particular logistical challenges of hormone measurement
might necessitate different empirical approaches. I believe this is one reason that there are
currently more conceptual papers arguing for a reaction norm approach to endocrine variation
than there are empirical papers actually applying the approach. While many of the tools
developed in these related fields are transferable, studies of physiological flexibility would
benefit from a focus on analysis development and testing that explicitly incorporates the
particular details and challenges of these questions. One way to accomplish these goals is to
use simulations, but to my knowledge no studies of physiological flexibility have developed
simulations of the acute stress response that address the issues discussed above.

Data simulation is a powerful approach for several reasons. Because true parameter values
(e.g., maximum glucocorticoid level) are known, it is possible to evaluate how well different
study designs and analytical choices perform in recovering true patterns and how sensitive
those designs are to different assumptions. Thus, simulation can tell us whether the study
designs we use can in principle detect the patterns we predict given realistic effect sizes.
Simulated data can also identify conditions under which current study designs will perform
well or poorly. For example, if simulations suggest that the baseline paired with stress-induced
paradigm only works well when the speed and scope of responses are positively correlated,
then empirical work could seek to determine the degree of correlation for a particular study
system as justification for the approach. This ability to highlight key assumptions and create
data sets with known properties has the potential to both provide insight into physiological
flexibility directly and to guide empirical work by improving study design and identifying key
areas for subsequent sampling. In the rest of this paper, I develop a simple simulation of
acute physiological stress responses and then briefly illustrate several possible applications of
the simulation.

DESCRIPTION OF THE SIMULATION

I developed a package called simcoRt in R version 4.0.2 (R Core Team, 2020) with functions
to generate acute physiological response curves. This simulation makes no assumptions
about the mechanistic process that results in the shape of a glucocorticoid response. Rather,
parameters are sampled to generate curves that are similar in shape and degree of variation to
empirically observed responses (Figure 1). This simulation is designed to create data sets with
realistic structure that can be used to better design and plan studies of physiological flexibility,
to evaluate power of current study designs, and to evaluate the sensitivity of sampling regimes
to any number of modifications to the shape of glucocorticoid response curves (e.g., changing
covariation patterns between different features of the response). I explore a small number
of scenarios in the next section, but I expect that many other scenarios can be addressed
with these tools. For illustration purposes, I refer to simulated glucocorticoid responses, but
the simulation applies equally well to any physiological mediator of a rapid response. The
package can be installed in R using the following command.
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devtools::install_github("cct663/simcoRt")

Figure 1: Conceptual illustration of the structure of the simulation. For each simulated animal, seven
parameters are sampled from a multivariate normal distribution. Together, these seven parameters define the
turning points in an acute response curve. The mean and standard deviation for each parameter can be set
along with the degree of covariation between each pair of parameters. Note that the simulation can easily be
simplified as desired by setting some parameter mean or standard deviations to zero.

The simulation is constructed as two main functions with several minor functions for down-
stream analysis. Detailed descriptions of the arguments to each function are included with
the package documentation. Briefly, function cort_sim1 samples the parameters shown
in Figure 1 from an arbitrary number of animals. These parameters are sampled from a
multivariate normal distribution with user specified mean, variance, and covariance for each
parameter. I consider these values to be the ‘true,’ unobserved, phenotype of the animal
(setting aside the question of whether or not a ‘true’ physiological phenotype exists).

A second function, cort_sim2, starts with a population of animals generated from cort_sim1
and samples observed acute glucocorticoid responses an arbitrary number of times for each
animal. Two sources of variation in the observed relative to true parameter values can be
specified. First, within-individual variation in expression is represented by specifying what
amount of variation in the observation of each parameter is determined by the true value
and what amount is determined by an additional randomly sampled response, based on
the population parameters (this additional sampling maintains the user specified covariance
structure of the population). After sampling the parameters, values are interpolated for
each one minute time point and a localized regression is fit to create a smoothed curve that
represents the observed glucocorticoid response. From this expressed response, individual
data points are then collected at user specified times that would reflect an empirical study
design (e.g., 2, 30, and 60 minutes). Additional noise can be added to these data points to
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represent measurement error (e.g., assay error).

The function also generates a simulated performance (e.g., fitness) measure, based on the
underlying true values. Data reflecting the true phenotypic values, the repeated expression
of acute responses, and the observed time points can then be used in downstream analyses
with any standard statistical approaches or software. For example, a user could perform an
analysis to ask whether a known relationship between fitness and a particular true parameter
is recovered in a study that includes only measures taken at particular time points. An
additional convenience function summarizes the output of a simulation run in a multi-panel
plot (Figure 2).
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Figure 2: Example of simulation output with default settings. Panel A shows the downsampled data set
for this run with samples collected at 1, 15, and 30 minutes in this case. Panel B shows the full observed
response curve for each animal. Panel C shows the rank order of glucocorticoid level at each time point for
each animal. In each panel, the vertical dashed lines represent the three time points that might have been
measured in a typical empirical study. Note that individuals in the top panels do not match perfectly because
measurement error is added to the downsampled dataset in panel A.

Finally, given recent interest in estimating the repeatability of glucocorticoid regulation
(Cockrem, 2013; Hau et al., 2016; Taff et al., 2018), I also included a function that takes
input from cort_sim2 and calculates the observed repeatability of several measures using
package rptR (Stoffel et al., 2017). Full details are included in the package documentation,
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but this function returns repeatability for each individual time point specified in the down
sampled data set, profile repeatability (Reed et al., 2019), and repeatability for area under
the curve calculated as both increase (AUCI) and ground (AUCG) approaches (Pruessner et
al., 2003). For each AUC measure, the function returns repeatability for the full time course,
for an estimate using only the observed values in the down sampled data set, and for the full
data set constrained to the time period encompassing the observed data points. Simple plots
illustrating repeated samples from the same individuals are also returned by default. I do
not develop an example of repeatability in this manuscript, but the functions here could be
used to determine the impact of different study design choices on repeatability estimates.

EXAMPLE APPLICATIONS OF SIMULATION

The goal of this simulation is to provide a flexible tool that can produce realistic datasets of
physiological flexibility for a variety of different systems and scenarios. As such, there are
many possible applications and here I briefly highlight a few possibilities. These are by no
means exhaustive, and I hope the simulation will be a useful tool to guide empirical work
for specific hypotheses and study systems. Within each scenario, I have illustrated how the
simulation functions might be used to address the particular question of interest, but I have
not fully explored all the possible permutations of parameters systematically, because these
will depend to a large extent on the empirical details of the system being studied. A complete
set of reproducible code to create all of the examples presented in this paper is available on
GitHub (https://github.com/cct663/speed_vs_scope).

Simulating empirically parameterized data

In order for simulation to be useful, we should be able to create artificial datasets that
have similar characteristics to empirical data for different systems. Simulating realistic
data provides a starting point for evaluating different study designs and the consequences
of changes in different assumptions or parameters. Simulating realistic data is also useful
because it can aid in study design or be used as a basis for pre-registered reports that
demonstrate the feasibility of a planned study before data are ever collected. Simulated data
can be created and entered in a complete analysis pipeline, with empirical data substituted
later. In addition to helping to design better studies, this approach has the advantage of
increasing the transparency and reliability for studies of physiological flexibility, by making
analysis choices and predictions clear before data are collected.

To demonstrate this utility, I have redrawn data from Koolhaas et al. (2010). As part of
that study, a series of corticosterone measurements were collected during and after an acute
stressor from 14 laboratory rats Rattus norvegicus using permanently implanted jugular vein
canulae. I next simulated data using the functions described above starting with the input
values calculated directly from the empirical data. The simulation creates a new dataset that
has similar variation and patterns to the empirical data (Figure 3A) along with a population
wide corticosterone response curve shape that closely matches the empirical data (Figure
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Figure 3: Panel A shows the acute corticosterone response for measured (blue) or simulated (orange) rats
measured at five time points. Panel B shows the mean and standard error of the two datasets. Empirical
data are extracted from Koolhaas et al. 2010 Figure 6 using the WebPlotDigitizer tool.

3B). In this case, the plotted simulation data include the same number of animals sampled at
the same time points as the empirical data, but these sampling points and total sample size
can easily be changed as desired. The parameterized simulation can now be used to test the
sensitivity of any number of experimental designs before additional data is collected.

Accurately measuring a single glucocorticoid trait

Single time point measures of glucocorticoids are often interpreted as representing meaningful
variation between individuals. For example, variation in the level of glucocorticoids after
30 minutes of standardized restraint is typically interpreted as variation in the magnitude
of the stress response (Taff et al., 2019). However, this interpretation rests on assumptions
that are rarely explicitly tested with empirical data. For example, the time chosen to take a
stress-induced sample is often assumed to be either at the species peak or during a plateau
period after the species peak. In some early studies, great care was taken to determine
an average population level peak time (Wingfield et al., 1992), but many studies adopt
the widely used ‘standard’ time of 30 minutes post capture without extensive validation
(compiled in Vitousek et al., 2019). While there is a general assumption that sampling
later than the peak is acceptable (and perhaps preferable) because animals will be sampled
during a relatively stable high plateau, there is little empirical data to evaluate this assertion
or to determine how much under or overshooting the species peak timing might influence
inferences. Furthermore, even when the average peak timing is well established, differences
in the amount of between-individual variation in the time to reach the peak or in peak values
are common across species and even in different life history stages within species (Wingfield
et al., 1992). The combinations of these patterns of variation could have major consequences
on the accuracy of single point estimates taken at 30 minutes, but these questions cannot be
addressed directly with empirical datasets where the true underlying values of each individual
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are unknown.

Here, I simulate a simple scenario exploring the consequences of variation in each of these
parameters on the accuracy of estimating between individual differences in maximally ex-
pressed glucocorticoids during an acute response. For purposes of this illustration, I consider
a single study design in which animals are sampled at 30 minutes. Using this design as a
starting point, I systematically vary i) the timing of the population average peak (15, 30, or
45 minutes), ii) the amount of variation in maximum glucocorticoid levels reached, iii) and the
amount of variation in the number of minutes taken to reach peak levels. All other variables
in the simulation are constrained to be invariant between individuals in the population (e.g.,
all individuals have identical baseline glucocorticoids in this case), though I consider cases in
which multiple aspects of the rapid response are correlated with each other in the next section.
I included moderate within-individual variability and a small amount of assay error across all
iterations. For each combination of parameters, I simulated 200 animals and estimated the
R2 value from a regression of the observed estimates of glucocorticoid levels at 30 minutes to
the true known values. This simulation is likely a best case scenario because it eliminates
many sources of variation or noise that would be present in real data, but it illustrates the
effect of variation in these three key parameters even when the exact same sampling design is
employed.
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Figure 4: Results of simulation runs with different amounts of between-individual variation in the time to
reach maximum glucocorticoid levels and in the maximum level reached. Simulations are run with samples
taken at 30 minutes on populations with an average peak time of 15 minutes (left), 30 minutes (center), or 45
minutes (right). Each grid cell is the R2 value from the regression of observed glucocorticoids at 30 minutes
to true maximum levels in a simulation of 200 individuals.

Results of this simulation are summarized in figure 4. The amount of between-individual
variation in the maximum glucocorticoid value has a profound effect on the ability to detect
true maximal levels with samples taken at 30 minutes. In one sense, this result is unsurprising
because it is intuitive that large differences would be easier to detect, but there are important
consequences of this fact for interpreting studies that seek to link between-individual variation
in the magnitude of the stress response with other traits. For example, the magnitude of
the acute stress response often varies substantially across life history stages (Wingfield et
al., 1992). Even if study designs are identical and maximum glucocorticoids are associated
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with performance, it will be easier to detect those patterns during life history stages with
greater variation (see section on detecting fitness associations below). There is a weaker,
but still substantial impact of variation in the time taken to reach maximum values on the
accuracy of estimates in this simulation. Greater variation in the speed of the response
reduces the accuracy of estimates of maximal values. Finally, the timing of sampling relative
to the average population peak timing also influences accuracy. Measuring after the average
peak time results in the most accurate estimates across a range of parameter values, while
measuring before the average peak time produces the least accurate measures, particularly
when there is also high variation in the time to reach maximum values between individuals.
This simple example demonstrates clearly that the same experimental design will perform
better or worse depending on the combination of glucocorticoid regulation parameters in the
population being studied.

Exploring covariance between response components

In reality, fully characterizing the acute glucocorticoid response requires more than identifying
just the maximum value reached. Individuals may differ in baseline levels, rate of initial
increase, the speed of reaching the maximum level, time spent at maximum, and the speed
of return to baseline. Moreover, each of these components of the endocrine response could
be positively or negatively correlated with each other within and between individuals. In
these cases, measurements taken at particular time points contain information about multiple
aspects of the response and without additional information it may be difficult to know what
trait is being measured. The fact that each of these traits might be important and that they
might covary has been discussed in a general sense (e.g., Baugh et al., 2013), but simulations
are uniquely powerful for exploring under exactly what conditions time point measure of
glucocorticoids can or cannot be used as indicators of these traits.
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Figure 5: Simulated glucocorticoid responses in which the maximum value and response speed are positively
correlated (A), uncorrelated (B), or negatively correlated (C). Orange curves show the full response for each
individual. Blue points show the maximum value and time to reach maximum for each individual. Blue
lines are simple linear regressions of speed and maximum value for each group. For clarity, only the first 40
individuals in each simulated dataset are plotted.
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To illustrate this point, I explored the consequences of variation in the correlation between and
relative amount of variation in just two aspects of the acute stress response: the maximum
glucocorticoid level reached and the time required to reach the maximum level. For simplicity,
I refer to the ‘speed’ of the response, but note that other aspects, such as the rate of initial
increase, could also be considered as variation in the speed of response. When considering
these two traits, a population of animals could plausibly display one of three patterns.
Individuals that reach their maximum value faster might also reach higher values (figure 5A;
simulation correlation = -0.6). Alternatively, the speed and maximum values might vary
independently (figure 5B; correlation = 0). Finally, individuals that are faster responders
might max out at lower glucocorticoid values (figure 5C; correlation = 0.6). While many
researchers in this field might have intuitions about which of these scenarios is most likely
to prevail, there is very little empirical data available to actually determine which is most
common. Moreover, regardless of the specifics for this particular correlation, the general
pattern and considerations presented here will apply in similar ways to correlations between
other aspects of the acute stress response.

Using these three simulated populations as a starting point, I asked how well glucocorticoid
values measured at one timepoint reflected true trait values. For each population I set an
average population level speed of 30 minutes with other values in the simulation set at their
default value. For every time point from 0 to 35 minutes I fit two simple linear regressions
of the measured value on the true speed and maximum value and extracted the R2 value
from the model. I repeated this simulation for all populations 50 times with 100 individuals
sampled from the population each time. Finally, I repeated the entire set of simulations with
each combination of low and high between-individual variation in the speed or maximum
values (variation in speed: low = 2 minute SD, high = 12 minute SD; variation in maximum:
low = 1ng/µl SD, high = 10ng/µl SD).

The time that samples were taken at, relative amount of variation in speed and maximum,
and degree of correlation between the speed and maximum all had substantial impacts on
the ability to infer true trait values from single time point glucocorticoid measures (figure
6). While these scenarios do not explore all possible parameter space, there are several
clear conclusions that can be made. First, neither speed or maximum traits could be
assessed accurately when between-individual variation in both traits was low (figure 6A).
This is potentially important for interpreting apparent differences in glucocorticoid fitness
relationships because between-individual variation is known to differ across life history stages
(Wingfield et al., 1992). Second, accurately assessing variation in speed was much harder—if
not impossible—with single measures.

It was only possible to accurately estimate speed when high between-individual variation in
speed was coupled with low variation in maximal values, but this situation may be rare in
natural populations. When speed was tightly correlated with maximum (figure 6D) it was
sometimes possible to attain reasonable estimates of speed (figure 6C-D), but when speed
was not correlated with maximum, single measures were not good indicators of variation in
speed (figure 6A, C-D). Finally, measuring variation in maximum values was much easier
under many conditions (figure 6C-D), but the accuracy of assessment of maximum values
was also negative impacted by variation in speed and the degree of this impact differed
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Figure 6: Relationship between single time point measures of glucocorticoids and the true value of either
maximum level (solid lines) or the speed of the glucocorticoid response (dashed lines). Panels show results
when the overall variation in maximum values and speed are both low (A), when one is low while the other is
high (B and C), and when both are high (D). In each panel, three different simulation scenarios illustrate the
patterns when speed and maximum value are positively correlated (purple), uncorrelated (teal), or negatively
correlated (yellow). Faded lines show the results from each of 50 separate simulation runs and thick lines are
the averages across all runs.

depending on the correlation between the two traits (figure 6). Beyond the specifics of this
particular example, what these results demonstrate clearly is that understanding what aspect
of the glucocorticoid response is being measured by any particular study design depends on
extensive knowledge of the overall shape and amount of variation in different aspects of the
acute stress response.
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Detecting links between fitness and responses

A common goal of recent studies is to establish whether variation in glucocorticoids is
associated with fitness or some proxy for fitness (Schoenle et al., 2020). While there has
been a great deal of discussion about the extent to which these relationships might differ
with life history characteristics or between breeding stages, there has been relatively little
consideration of the way that methodological limitations might limit the ability to detect
these relationships even when they exist.

Here, I imagine a simple scenario in which the ‘true’ maximum glucocorticoid level during
an acute response explains 80% of the variation in fitness (clearly this is unrealistically
high, but it is chosen for illustration only). I next construct a study in which researchers
measure 50 individuals using a typical stress-induced (30 minute) sampling protocol. For
simplicity, I set the other parameters in the simulation at their default values. Keeping the
study design constant, I ask whether the glucocorticoid-fitness relationship can be recovered
for two hypothetical populations that have low or high between-individual variation in
maximum glucocorticoid levels. For each of these two populations, I ask how the ability to
detect glucocorticoid-fitness relationships changes with different amounts of within-individual
variation in acute response expression and with differing amounts of measurement error. For
each combination of parameters, I simulated 50 populations and fit a simple linear regression
model with observed glucocorticoid levels at 30 minutes as a predictor of fitness to ask
whether the true glucocorticoid-fitness relationship was recovered.

Several patterns can be identified by examining the results of this simulation. First, the
correlation between the true maximum glucocorticoid value and fitness does not differ for
populations simulated with high or low between-individual variation (figure 7A-D). In all
cases, however, the observed correlation is lower than the true correlation and always lowest
in the population with low between-individual variation. The ubiquity of this pattern is a
product of the simulation structure, because adding measurement error or within-individual
variation effectively adds noise to the true correlation. It is important to note that in the real
world, it is unlikely that this pattern would be so universal, because unmeasured variables
could influence both fitness and glucocorticoids. For example, if habitat quality directly
alters fitness and glucocorticoids, the observed correlation could be stronger than the ‘true’
correlation. Thus, interpretation of these results should be made cautiosly in light of the
simplicity of the simulation compared to real world conditions.

Nevertheless, general patterns illustrated by the simulation are likely to pertain across a
wide range of conditions. In this case, it is easiest to detect significant glucocorticoid-fitness
relationships when both measurement error and within-individual variation are low (figure 7A).
It becomes harder to detect these true relationships when either measurement error (figure
7B) or within-individual variation (figure 7C) are high, but even in these more challenging
situations the relationship can be detected the majority of the time if between-individual
variation in maximum levels is high. When both measurement error and within-individual
variation are high, it is nearly impossible to detect glucocorticoid-fitness relationships with
low-between individual variation, but in populations with high between-individual variation
the relationship is still detected in about half of the simulations.
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Figure 7: Relationship between observed maximum glucocorticoid values and fitness for simulated populations
that have low between-individual variation (blue) or high between-individual variation (red). Each point is
the result of a separate simulation of 50 individuals using the settings described in the text. Filled circles are
simulations in which observed glucocorticoid values at 30 minutes were significantly correlated with fitness
and crosses are simulations in which the relationship was not significant. Panels illustrate conditions with low
measurement error (A, C) versus high measurement error (B, D) and low within-individual variation (A, B)
versus high within-individual variation (C, D). For each simulation, the correlation between true maximum
glucocorticoids fitness is plotted on the y-axis and the correaltion with observed values is plotted on the
x-axis.

The fact that low between-individual variation in maximum glucocorticoids makes it harder to
detect true glucocorticoid-fitness relationships across a wide range of conditions has important
consequences for interpreting empirical results. Many studies have demonstrated different
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relationships (or lack thereof) between corticosterone and fitness at different life history
stages (Bonier et al., 2009; Vitousek et al., 2018), but it is also well known that the absolute
amount of between individual variation in glucocorticoid traits varies considerably at different
stages (Wingfield et al., 1992). Our simulation demonstrates that the power to detect true
relationships will differ drastically across these conditions even with identical study designs
and samples sizes, suggesting that great care is needed to conclusively differentiate true
differences in glucocorticoid-fitness relationships across contexts from statistical artefacts.

Designing optimal sampling strategies

One of the major benefits of simulating glucocorticoid response curves will be the ability to
design optimal sampling strategies before data are collected. A simulation can be constrained
to match any real world limitations (e.g., maximum number of samples possible per individual)
and then explored to determine how to best allocate sampling resources. The specifics of this
task will vary considerably with the study system and question being addressed, but here I
illustrate one possible application. Consider an experiment in which the acute glucocorticoid
response of a treatment group and control group are compared after some experimental
manipulation. The details of the manipulation are unimportant here, but suppose that
the prediction is that this manipulation should result in a difference in the speed of the
corticosterone response between our two groups, such that the treatment group will reach
it’s maximum glucocorticoid value faster than the control group, but will not differ in the
maximum value itself. I have implemented this difference by simulating two populations in
which the treatment group has a steeper initial slope and also reaches the maximum value
faster (figure 8). Any number of possible hypotheses for a particular study system could be
specified following a similar approach.

Next, we can ask how well different study designs can detect this difference. Here we can
impose any logistical constraints relevant to the study system. As an example, in this case we
can only sample a maximum of 20 individuals per group, we can only sample each individual
once post-treatment, and during that single sampling event we can take a blood sample at a
maximum of two different time points, resulting in a total of 80 data points. Given these
constraints, I compare three different sampling designs: i) a study in which every animal is
sampled at 1 minute, 30 minutes, and 60 minutes, ii) a study in which two sampling times
between 1 and 60 minutes are randomly chosen for every animal, iii) a study in which two
sampling times are randomly chosen for each animal, but weighted more heavily around the
range of times when maximum levels are expected to be reached for the population.

Note that the first sampling scheme closely mirrors the most common empirical design and
in this case I have allowed an extra, third sample at 60 minutes, such that it includes 120,
rather than 80, data points. For illustration purposes I sampled directly from the ‘true’
response curves in this example so that there is no additional measurement error added. To
evaluate these schemes I compare estimates of the acute response curve for each group to
the ‘true’ known curves shown in figure 8. Note that a more complete analysis of a sampling
schemes performance should include many more iterations and full statistical comparisons,
but the details here will be highly dependent on the study system and goals, so I provide this
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Figure 8: Simulated data for a hypothetical control (blue) and treatment (orange) group. Faded thin
lines show the acute response for each individual simulated (20 per group) and thick lines show the average
response curve for each group.

simple example to illustrate the approach rather than to make any more widely applicable
conclusions.
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Figure 9: Three possible sampling schemes to compare two groups. For standard sampling (A), every
individual is sampled at exactly 2, 30, and 60 minutes. For random sampling (B) each individual is sampled
at two random points between 1 and 60 minutes. For weighted sampling (C) two sampling times are chosen
for each individual from a normal distribution with mean of 32 and sd of 9 minutes. In all three panels, solid
lines are the true group averages, dashed lines are the estimates based on samples, and points are individual
samples collected.

In this case, the standard sampling scheme performs very poorly (figure 9A), with no
differences detectable between the two groups, despite the fact that the treatment group
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reaches it’s maximum value on average 12 minutes (~40%) faster than the control group.
In contrast, both the random sampling and weighted sampling schemes detect differences
in the shape of the acute response (figure 9 B & C). In this particular scenario, there is
no clear difference between these two approaches. A few clear takeaways can be derived
from these results. First, while strict standardization of the timing of samples has some
clear advantages, it also comes with costs and likely makes it nearly impossible to detect
certain types of variation between groups or individuals. In this case, standardized sampling
performed much worse than the other two approaches despite the fact that the analysis
included 50% more data; it should be clear that no amount of additional sampling would
allow that approach to detect this particular pattern of between group differences. Second,
while it may be very difficult to accurately estimate the full shape of the acute stress response
for individuals, the sampling schemes shown here demonstrate that it should be possible to
describe these shapes accurately for groups (e.g., treatments, species, different contexts) even
without extraordinarily large sample sizes. A similar argument about the power of randomly
timed sampling has been put forward in the function valued trait literature (Gomulkiewicz
et al., 2018), but this type of sampling scheme is rarely used in evolutionary endocrinology
research. It is perhaps unsurprising that the few empirical papers that have emphasized the
importance of different time courses (rather than only maximum) of the stress response have
often focused on between group comparisons or investigated variation in the exact sampling
time between individuals (e.g., Baugh et al., 2013; Small et al., 2017)

This simulation is particular to a single very specific scenario, but a similar scenario could
be designed for any number of studies and any number of predictions about how the speed,
scope, or other attributes of the glucocorticoid response are expected to change with a
treatment or between different groups or species. Clearly, when estimating the timing of
peak glucocorticoids, a simple baseline plus induced sampling scheme is sub optimal, but this
scheme may be perform well in other situations where the maximum value is the target and
there is relatively little variation in response time. Creating simulations like this before studies
are conducted has the potential to increase the efficient use of researches time and funds,
but also forces researches to think explicitly about quantitative predictions ahead of time.
These simulations could be included as part of a study pre-registration, grant application, or
registered report to demonstrate exactly what data collection and analysis approaches are
planned and to justify those decisions.

CONCLUSION

While there has been increasing interest in understand within- and between-individual
variation in the acute glucocorticoid response in recent years (Hau et al., 2016; Lema &
Kitano, 2013; Taff & Vitousek, 2016; Wada & Sewall, 2014), the methods and data available
to tackle these questions have changed relatively little. Many sophisticated statistical tools are
now available and clear arguments have been made about the need to apply these approaches
to endocrine traits, but relatively few empirical studies have effectively used these tools.
Arguably, the biggest roadblock at the moment is the limited availability of empirical data
needed to test hypotheses. Simulation offers one way forward, by allowing for more efficiently
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designed studies and by allowing researches to identify when the question of interest can in
principle be answered with a given study design. Ideally, conceptual papers, empirical work,
and simulation will proceed together to make progress in this field. The tools presented here
only scratch the surface of the ways that data simulation can be applied to address pressing
questions in evolutionary endocrinology.

Nevertheless, even the simple demonstrations included in this paper suggest several ways that
simulation could help move the field forward. One of the main benefits of simulating datasets
is identifying unmeasured properties and assumptions of currently available data that can
become targets for empirical work. For example, I demonstrated that the covariation between
different components of the acute stress response and the relative amount of variation in each
of these can have profound effects on the ability to accurately measure any single component.
Empirical work specifically designed to assess covariation and variance at different times
could help to understand what conclusions we can reasonably draw from available data. One
takeaway from these simulations is that variation in glucocorticoid-fitness relationships across
seasons or life history stages can easily arise as a statistical artefact when between-individual
variation in hormones also varies across the contexts. The simulation exploring different
sampling designs also suggests that there are potentially gains to be made by considering
more diverse sampling designs tailored to the particular research question and study system.
While standardized sample collection timing has allowed for large scale comparisons in this
field (Vitousek et al., 2019), it also creates clear blind spots to certain types of variation
between groups.

In addition to providing insight in its own right, simulation has great potential to hone
the design of future empirical studies by allowing for a principled analysis of various study
design options and choices before costly data are collected and before animals are needlessly
disturbed. For example, I showed that one of the most common sampling design schemes has
essentially no ability to detect a difference in the speed of increase between two groups if
they do not also differ in maximum values. It is perhaps not surprising to find that there is
little published evidence for differences in the speed of the acute response when most study
designs employed to date cannot in principle detect those differences. Across a wide range of
disciplines there has been an increasing push for pre-registration, reproducible research, and
transparent research practices (O’Dea et al., 2021). Simulation provides an opportunity for
evolutionary endocrinologists to embrace these best practices by improving the quality of
study design, allowing for more quantitative hypotheses and predictions, and providing a
clear justification for experimental choices.

This package and paper is meant only as a very cursory exploration of the ways that simulation
can be applied to evolutionary endocrinology. I have no doubt that many more scenarios and
complications could be added on to each of the simple examples presented here. Furthermore,
there is ample room to create more sophisticated simulations that incorporate realistic
mechanistic processes or interactions with other molecules and other components of the stress
response system. I hope that this work will be a starting point to build and improve on as
we work to understand the importance of variation in these flexible response systems.
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